-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathaffine_transform.py
137 lines (105 loc) · 4.87 KB
/
affine_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from latentsync.utils.util import read_video, write_video
from latentsync.utils.image_processor import ImageProcessor
import torch
from einops import rearrange
import os
import tqdm
import subprocess
from multiprocessing import Process
import shutil
paths = []
def gather_video_paths(input_dir, output_dir):
for video in sorted(os.listdir(input_dir)):
if video.endswith(".mp4"):
video_input = os.path.join(input_dir, video)
video_output = os.path.join(output_dir, video)
if os.path.isfile(video_output):
continue
paths.append((video_input, video_output))
elif os.path.isdir(os.path.join(input_dir, video)):
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
class FaceDetector:
def __init__(self, resolution: int = 512, device: str = "cpu"):
self.image_processor = ImageProcessor(resolution, "fix_mask", device)
def affine_transform_video(self, video_path):
video_frames = read_video(video_path, change_fps=False)
results = []
for frame in video_frames:
frame, _, _ = self.image_processor.affine_transform(frame)
results.append(frame)
results = torch.stack(results)
results = rearrange(results, "f c h w -> f h w c").numpy()
return results
def close(self):
self.image_processor.close()
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir):
video_name = os.path.basename(video_input_path)[:-4]
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav")
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4")
write_video(video_temp, video_frames, fps=25)
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}"
subprocess.run(command, shell=True)
os.makedirs(os.path.dirname(video_output_path), exist_ok=True)
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}"
subprocess.run(command, shell=True)
os.remove(audio_temp)
os.remove(video_temp)
def func(paths, process_temp_dir, device_id, resolution):
os.makedirs(process_temp_dir, exist_ok=True)
face_detector = FaceDetector(resolution, f"cuda:{device_id}")
for video_input, video_output in paths:
if os.path.isfile(video_output):
continue
try:
video_frames = face_detector.affine_transform_video(video_input)
except Exception as e: # Handle the exception of face not detcted
print(f"Exception: {e} - {video_input}")
continue
os.makedirs(os.path.dirname(video_output), exist_ok=True)
combine_video_audio(video_frames, video_input, video_output, process_temp_dir)
print(f"Saved: {video_output}")
face_detector.close()
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers):
print(f"Recursively gathering video paths of {input_dir} ...")
gather_video_paths(input_dir, output_dir)
num_devices = torch.cuda.device_count()
if num_devices == 0:
raise RuntimeError("No GPUs found")
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
split_paths = list(split(paths, num_workers * num_devices))
processes = []
for i in range(num_devices):
for j in range(num_workers):
process_index = i * num_workers + j
process = Process(
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution)
)
process.start()
processes.append(process)
for process in processes:
process.join()
if __name__ == "__main__":
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train"
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train"
temp_dir = "temp"
resolution = 256
num_workers = 10 # How many processes per device
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers)