-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
49 lines (39 loc) · 1.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# some tools for wide deep model
# author: WenYi
# create: 2019-09-23
import torch.nn as nn
import torch
import torch.nn.functional as F
def linear(inp, out, dropout):
"""
linear model module by nn.sequential
:param inp: int, linear model input dimensio
:param out: int, linear model output dimension
:param dropout: float dropout probability for linear layer
:return: tensor
"""
return nn.Sequential(
nn.Linear(inp, out),
nn.LeakyReLU(),
nn.Dropout(dropout)
)
def set_method(method):
if method == 'regression':
return None, F.mse_loss
if method == 'binary':
return torch.sigmoid, F.binary_cross_entropy
if method == 'multiclass':
return F.softmax, F.cross_entropy
# save model的问题,保存整个模型及参数,如果模型很大加载的时候会很慢,不适用与在线预测,在线预测一般是只将模型参数保存及model.state_dict
# 如果实现的是模型的继续训练,则需要同时保存优化器和当前训练的epoch,不保存epoch的话每次训练依然是从第epoch=0开始训练
# 在线预测的时候需要现定义好网络结构,然后load网络参数进行预测即可
def save_model(model, path):
torch.save(model.state_dict(), path)
# 参数model是事先定义好的网络模型
def load_model(model, path):
model.load_state_dict(torch.load(path))
def to_device():
"""
user gpu or cpu
"""
return torch.device("cuda:0" if torch.cuda.is_available() else "cpu")