-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
124 lines (108 loc) · 4.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# train wide deep model
# author: WenYi
# time: 2019-09-24
import torch
from prepare_data import read_data, feature_engine
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import accuracy_score
from WideDeep import WideDeep
import numpy as np
from utils import set_method, to_device, save_model
import argparse
import time
import warnings
warnings.filterwarnings("ignore")
class trainset(Dataset):
def __init__(self, data):
self.wide_data = data[0]
self.deep_data = data[1]
self.target = data[2]
def __getitem__(self, index):
wide_data = self.wide_data[index]
deep_data = self.deep_data[index]
target = self.target[index]
data = (wide_data, deep_data, target)
return data
def __len__(self):
return len(self.target)
def valid_epoch(model, valid_loader, criterion, device):
model.eval()
losses = []
targets = []
outs = []
for idx, (data_wide, data_deep, target) in enumerate(valid_loader):
data_wide, data_deep, target = data_wide.to(device), data_deep.to(device), target.to(device)
x = (data_wide, data_deep)
out = model(x)
loss = criterion(out, target.float())
losses.append(loss.item())
targets += list(target.numpy())
out = out.view(-1).detach().numpy()
outs += list(np.int64(out > 0.5))
met = accuracy_score(targets, outs)
return met, sum(losses) / len(losses)
def train_epoch(model, train_loader, optimizer, criterion, device, epoch, print_step):
model.train()
for idx, (data_wide, data_deep, target) in enumerate(train_loader):
data_wide, data_deep, target = data_wide.to(device), data_deep.to(device), target.to(device)
x = (data_wide, data_deep)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, target.float())
loss.backward()
optimizer.step()
if (idx + 1) % print_step == 0:
print("Epoch %d iteration %d loss is %.4f" % (epoch+1, idx+1, loss.item()))
if idx == len(train_loader):
break
def train(model, train_loader, test_loader, optimizers, criterion, device, epochs, print_step, validation=True):
for epoch in range(epochs):
train_epoch(model, train_loader, optimizers, criterion, device, epoch, print_step)
if validation:
met, loss = valid_epoch(model, test_loader, criterion, device)
print("Epoch %d validation loss is %.4f and validation metrics is %.4f" % (epoch + 1, loss, met))
def main(args):
data = read_data()
train_data, test_data, deep_columns_idx, embedding_columns_dict = feature_engine(data)
data_wide = train_data[0]
train_data = (torch.from_numpy(train_data[0].values), torch.from_numpy(train_data[1].values),
torch.from_numpy(train_data[2].values))
train_data = trainset(train_data)
test_data = (torch.from_numpy(test_data[0].values), torch.from_numpy(test_data[1].values),
torch.from_numpy(test_data[2].values))
test_data = trainset(test_data)
trainloader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
testloader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False)
device = to_device()
# parameters setting
deep_model_params = {
'deep_columns_idx': deep_columns_idx,
'embedding_columns_dict': embedding_columns_dict,
'hidden_layers': args.hidden_layers,
'dropouts': args.dropouts,
'deep_output_dim': args.deep_out_dim}
wide_model_params = {
'wide_input_dim': data_wide.shape[1],
'wide_output_dim': args.wide_out_dim
}
activation, criterion = set_method(args.method)
widedeep = WideDeep(wide_model_params, deep_model_params, activation)
widedeep = widedeep.to(device)
optimizer = torch.optim.Adam(widedeep.parameters(), lr=args.lr)
train(widedeep, trainloader, testloader, optimizer, criterion, device, epochs=args.epochs,
print_step=args.print_step, validation=args.validation)
save_model(widedeep, "wide_deep_model_{}.pkl".format(time.time()))
if __name__ == "__main__":
parse = argparse.ArgumentParser(description="wide deep model include arguments")
parse.add_argument("--hidden_layers", nargs='+', type=int, default=[64, 32, 16])
parse.add_argument("--dropouts", nargs='+', type=int, default=[0.5, 0.5])
parse.add_argument("--deep_out_dim", default=1, type=int)
parse.add_argument("--wide_out_dim", default=1, type=int)
parse.add_argument("--batch_size", default=32, type=int)
parse.add_argument("--lr", default=0.01, type=float)
parse.add_argument("--print_step", default=200, type=int)
parse.add_argument("--epochs", default=10, type=int)
parse.add_argument("--validation", default=True, type=bool)
parse.add_argument("--method", choices=['multiclass', 'binary', 'regression'], default='binary',type=str)
args = parse.parse_args()
main(args)