forked from mithro/netv2-soc
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreverse.py
475 lines (388 loc) · 16 KB
/
reverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/usr/bin/env python3
import sys
import os
from litex.gen import *
from litex.gen.genlib.resetsync import AsyncResetSynchronizer
from litex.build.generic_platform import *
from litex.build.xilinx import XilinxPlatform
from litex.soc.cores import dna
from litedram.modules import MT41J128M16
from litedram.phy import a7ddrphy
from litedram.core import ControllerSettings
from litex.soc.integration.soc_core import *
from litex.soc.integration.soc_sdram import *
from litex.soc.integration.builder import *
from litex.gen.genlib.cdc import MultiReg
_io = [
("clk50", 0, Pins("J19"), IOStandard("LVCMOS33")),
("user_led", 0, Pins("M21"), IOStandard("LVCMOS33")),
("user_led", 1, Pins("N20"), IOStandard("LVCMOS33")),
("user_led", 2, Pins("L21"), IOStandard("LVCMOS33")),
("serial", 0,
Subsignal("tx", Pins("E14")),
Subsignal("rx", Pins("E13")),
IOStandard("LVCMOS33"),
),
("serial_litescope", 0,
Subsignal("tx", Pins("C18")), # hax 10
Subsignal("rx", Pins("B20")), # hax 12
IOStandard("LVCMOS33")
),
("ddram", 0,
Subsignal("a", Pins(
"U6 V4 W5 V5 AA1 Y2 AB1 AB3",
"AB2 Y3 W6 Y1 V2 AA3"
),
IOStandard("SSTL15")),
Subsignal("ba", Pins("U5 W4 V7"), IOStandard("SSTL15")),
Subsignal("ras_n", Pins("Y9"), IOStandard("SSTL15")),
Subsignal("cas_n", Pins("Y7"), IOStandard("SSTL15")),
Subsignal("we_n", Pins("V8"), IOStandard("SSTL15")),
Subsignal("dm", Pins("G1 H4 M5 L3"), IOStandard("SSTL15")),
Subsignal("dq", Pins(
"C2 F1 B1 F3 A1 D2 B2 E2 "
"J5 H3 K1 H2 J1 G2 H5 G3 "
"N2 M6 P1 N5 P2 N4 R1 P6 "
"K3 M2 K4 M3 J6 L5 J4 K6 "
),
IOStandard("SSTL15"),
Misc("IN_TERM=UNTUNED_SPLIT_50")),
Subsignal("dqs_p", Pins("E1 K2 P5 M1"), IOStandard("DIFF_SSTL15")),
Subsignal("dqs_n", Pins("D1 J2 P4 L1"), IOStandard("DIFF_SSTL15")),
Subsignal("clk_p", Pins("R3"), IOStandard("DIFF_SSTL15")),
Subsignal("clk_n", Pins("R2"), IOStandard("DIFF_SSTL15")),
Subsignal("cke", Pins("Y8"), IOStandard("SSTL15")),
Subsignal("odt", Pins("W9"), IOStandard("SSTL15")),
Subsignal("reset_n", Pins("AB5"), IOStandard("LVCMOS15")),
Subsignal("cs_n", Pins("V9"), IOStandard("SSTL15")),
Misc("SLEW=FAST"),
),
]
class Platform(XilinxPlatform):
def __init__(self, toolchain="vivado", programmer="vivado"):
XilinxPlatform.__init__(self, "xc7a35t-fgg484-2", _io,
toolchain=toolchain)
self.add_platform_command(
"set_property CONFIG_VOLTAGE 3.3 [current_design]")
self.add_platform_command(
"set_property CFGBVS VCCO [current_design]")
self.add_platform_command(
"set_property BITSTREAM.CONFIG.CONFIGRATE 22 [current_design]")
self.add_platform_command(
"set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 1 [current_design]")
self.toolchain.bitstream_commands = [
"set_property CONFIG_VOLTAGE 1.5 [current_design]",
"set_property CFGBVS GND [current_design]",
"set_property BITSTREAM.CONFIG.CONFIGRATE 22 [current_design]",
"set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 1 [current_design]",
]
self.toolchain.additional_commands = \
["write_cfgmem -verbose -force -format bin -interface spix1 -size 64 "
"-loadbit \"up 0x0 {build_name}.bit\" -file {build_name}.bin"]
self.programmer = programmer
self.add_platform_command("""
create_clock -name pcie_phy_clk -period 10.0 [get_pins {{pcie_phy/pcie_support_i/pcie_i/inst/inst/gt_top_i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/gtp_channel.gtpe2_channel_i/TXOUTCLK}}]
""")
def create_programmer(self):
if self.programmer == "vivado":
return VivadoProgrammer(flash_part="n25q128-3.3v-spi-x1_x2_x4")
else:
raise ValueError("{} programmer is not supported"
.format(self.programmer))
def do_finalize(self, fragment):
XilinxPlatform.do_finalize(self, fragment)
def csr_map_update(csr_map, csr_peripherals):
csr_map.update(dict((n, v)
for v, n in enumerate(csr_peripherals, start=max(csr_map.values()) + 1)))
def period_ns(freq):
return 1e9/freq
class CRG(Module):
def __init__(self, platform):
self.clock_domains.cd_sys = ClockDomain()
self.clock_domains.cd_sys4x = ClockDomain(reset_less=True)
self.clock_domains.cd_sys4x_dqs = ClockDomain(reset_less=True)
self.clock_domains.cd_clk200 = ClockDomain()
self.clock_domains.cd_clk100 = ClockDomain()
clk50 = platform.request("clk50")
rst = Signal()
pll_locked = Signal()
pll_fb = Signal()
self.pll_sys = Signal()
pll_sys4x = Signal()
pll_sys4x_dqs = Signal()
pll_clk200 = Signal()
self.specials += [
Instance("PLLE2_BASE",
p_STARTUP_WAIT="FALSE", o_LOCKED=pll_locked,
# VCO @ 1600 MHz
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=20.0,
p_CLKFBOUT_MULT=32, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk50, i_CLKFBIN=pll_fb, o_CLKFBOUT=pll_fb,
# 100 MHz
p_CLKOUT0_DIVIDE=16, p_CLKOUT0_PHASE=0.0,
o_CLKOUT0=self.pll_sys,
# 400 MHz
p_CLKOUT1_DIVIDE=4, p_CLKOUT1_PHASE=0.0,
o_CLKOUT1=pll_sys4x,
# 400 MHz dqs
p_CLKOUT2_DIVIDE=4, p_CLKOUT2_PHASE=90.0,
o_CLKOUT2=pll_sys4x_dqs,
# 200 MHz
p_CLKOUT3_DIVIDE=8, p_CLKOUT3_PHASE=0.0,
o_CLKOUT3=pll_clk200
),
Instance("BUFG", i_I=self.pll_sys, o_O=self.cd_sys.clk),
Instance("BUFG", i_I=self.pll_sys, o_O=self.cd_clk100.clk),
Instance("BUFG", i_I=pll_clk200, o_O=self.cd_clk200.clk),
Instance("BUFG", i_I=pll_sys4x, o_O=self.cd_sys4x.clk),
Instance("BUFG", i_I=pll_sys4x_dqs, o_O=self.cd_sys4x_dqs.clk),
AsyncResetSynchronizer(self.cd_sys, ~pll_locked | rst),
AsyncResetSynchronizer(self.cd_clk200, ~pll_locked | rst),
AsyncResetSynchronizer(self.cd_clk100, ~pll_locked | rst)
]
reset_counter = Signal(4, reset=15)
ic_reset = Signal(reset=1)
self.sync.clk200 += \
If(reset_counter != 0,
reset_counter.eq(reset_counter - 1)
).Else(
ic_reset.eq(0)
)
self.specials += Instance("IDELAYCTRL", i_REFCLK=ClockSignal("clk200"), i_RST=ic_reset)
# Module that turns an LED on and off at some interval (`period` clock cycles),
# with a specific on time (`width` clock cycles).
# i.e. `width/period` is the PWM duty cycle, and `1/period` is the PWM frequency.
# ________ ________
# ___| |_____________________| |_____________________
# <-width->
# <------------period----------->
class BlinkerPwm(Module):
def __init__(self, led, width, period):
# Create a counter to track where we are in the pulse.
counter = Signal(max=period)
self.comb += [
# On until we get to `width`
If(counter < width,
led.eq(1)
).Else(
led.eq(0)
),
]
self.sync += [
If(counter == period - 1,
# Reset the counter when we get to `period-1`
counter.eq(0)
).Else(
# Otherwise increment the counter.
counter.eq(counter + 1)
)
]
# Module that pulses an LED by ramping up and down its brightness, but
# re-using the PWM module for brightness.
# Every `cycles` clock cycles, the PWM width is inc/decreased/ from
# 0% to 100%.
class BlinkerBreathe(BlinkerPwm):
def __init__(self, led, period, cycles):
width = Signal(max=period)
direction = Signal()
super().__init__(led, width, period)
# Create a counter to track cycles until we increment brightness.
counter = Signal(max=cycles)
self.sync += [
# Inc/decrement the brightness.
If((counter == 0) & (direction == 0),
width.eq(width + 1)
).Elif((counter == 0) & (direction == 1),
width.eq(width - 1)
),
If(counter == 0,
# Start counting backwards from `cycles` again.
counter.eq(cycles - 1)
).Else(
# Keep counting backwards...
counter.eq(counter - 1)
),
# Toggle the direction at each end.
If((direction == 0) & (width == period - 1),
direction.eq(1)
).Elif((direction == 1) & (width == 0),
direction.eq(0)
)
]
class Flintstone(Module):
def __init__(self):
self.wilma = Signal(16)
self.sync += [
If( self.wilma >= 65535,
self.wilma.eq(0)
).Else(
self.wilma.eq(self.wilma + 6502)
)
]
class SimpleSync(Module):
def __init__(self, d, q):
self.sync += [
q.eq(d)
]
#questions to resolve:
# signals that are smaller than expected -- alignment?
### answer: it passes the ambguity directly down to verilog :P
# if b is 8 bits and a is 16 bits,
# b = a gets the LSBs of a, e.g. b = a[7:0] if you do b = a
# if b is 32 bits and 1 as 16 bits,
# b = a zero-extends a, eg. b[15:0] = a[15:0] and b[31:16] = 16'b0
# cross-domain clocks
class MicroSoC(SoCCore):
def __init__(self, platform, **kwargs):
clk_freq = int(100e6)
SoCCore.__init__(self, platform, clk_freq,
cpu_type=None,
**kwargs)
self.platform = platform
self.submodules.crg = CRG(platform)
self.crg.cd_sys.clk.attr.add("keep")
self.platform.add_period_constraint(self.crg.cd_sys.clk, period_ns(100e6))
# common led
self.sys_led = Signal()
self.comb += platform.request("user_led", 0).eq(self.sys_led)
self.aux_led = Signal()
self.comb += platform.request("user_led", 1).eq(self.aux_led)
# sys led
sys_counter = Signal(32)
self.sync += sys_counter.eq(sys_counter + 1)
self.comb += self.sys_led.eq(sys_counter[26])
sys_short_test = Signal(16)
self.comb += sys_short_test.eq(sys_counter)
self.comb += self.aux_led.eq(sys_short_test[15])
self.bar_led = platform.request("user_led", 2)
fred = ClockDomainsRenamer("clk100")(Flintstone())
self.submodules += fred ## if this isn't here, fred isn't instantiated
self.dino = Signal(16)
self.yoshi = Signal(8)
self.specials += MultiReg(fred.wilma, self.dino, "clk100")
self.specials += MultiReg(self.dino, self.yoshi, "clk200") # this takes dino into the yoshi clock domain
self.comb += self.bar_led.eq(self.yoshi[7])
# what I'm expecting:
# Fred() makes a counter (called wilma) in the always@clk100 domain
# The instance is called barney.
# Barney's wilma gets retimed into clk200 as the name "dino"
# bar_led gets dino[15]
# what I'm getting:
# wilma is a clk100 counter.
# her output is "retimed" into the clk100 domain through two DFF stages and dumped into dino
# dino is retimed into the clk200 domain via two DFFs
# yoshi is LSB-aligned to dino
# user_led 2 gets yoshi[7] which is dino[7]
# So: ClockDomainsRenamer(domain1)(function1) takes everything inside function1() and puts it in clock domain domain1
# MultiReg(a, b, domain2) takes the signals on b, assigns them to a, retiming into domain2
class MinSoC(SoCCore):
csr_peripherals = {
"dna",
}
csr_map_update(SoCCore.csr_map, csr_peripherals)
def __init__(self, platform, **kwargs):
clk_freq = int(100e6)
SoCCore.__init__(self, platform, clk_freq,
integrated_rom_size=0x6000,
integrated_sram_size=0x4000,
ident="NeTV2 minimum SoC core",
reserve_nmi_interrupt=False,
**kwargs)
self.submodules.crg = CRG(platform)
self.submodules.dna = dna.DNA()
self.crg.cd_sys.clk.attr.add("keep")
self.platform.add_period_constraint(self.crg.cd_sys.clk, period_ns(100e6))
# common led
self.sys_led = Signal()
self.comb += platform.request("user_led", 0).eq(self.sys_led)
# sys led
sys_counter = Signal(32)
self.sync += sys_counter.eq(sys_counter + 1)
self.comb += self.sys_led.eq(sys_counter[26])
class BaseSoC(SoCSDRAM):
csr_peripherals = {
"ddrphy",
"dna",
}
csr_map_update(SoCSDRAM.csr_map, csr_peripherals)
def __init__(self, platform, **kwargs):
clk_freq = int(100e6)
SoCSDRAM.__init__(self, platform, clk_freq,
integrated_rom_size=0x6000,
integrated_sram_size=0x4000,
#shadow_base=0x00000000,
ident="NeTV2 LiteX Reversing SoC",
reserve_nmi_interrupt=False,
**kwargs)
self.submodules.crg = CRG(platform)
self.submodules.dna = dna.DNA()
self.crg.cd_sys.clk.attr.add("keep")
self.platform.add_period_constraint(self.crg.cd_sys.clk, period_ns(100e6))
# sdram
self.submodules.ddrphy = a7ddrphy.A7DDRPHY(platform.request("ddram"))
sdram_module = MT41J128M16(self.clk_freq, "1:4")
self.add_constant("READ_LEVELING_BITSLIP", 3)
self.add_constant("READ_LEVELING_DELAY", 14)
self.register_sdram(self.ddrphy,
sdram_module.geom_settings,
sdram_module.timing_settings,
controller_settings=ControllerSettings(with_bandwidth=True,
cmd_buffer_depth=8,
with_refresh=False))
# common led
self.sys_led = Signal()
self.pcie_led = Signal()
self.comb += platform.request("user_led", 0).eq(self.sys_led ^ self.pcie_led)
# sys led
sys_counter = Signal(32)
self.sync += sys_counter.eq(sys_counter + 1)
self.comb += self.sys_led.eq(sys_counter[26])
class ReverseSoC(BaseSoC):
csr_peripherals = {
"analyzer"
}
csr_map_update(BaseSoC.csr_map, csr_peripherals)
# interrupt_map = {
# "hdmi_in0": 3,
# }
# interrupt_map.update(BaseSoC.interrupt_map)
def __init__(self, platform, *args, **kwargs):
BaseSoC.__init__(self, platform, *args, **kwargs)
# # #
pix_freq = 148.50e6
# analyzer
from litex.soc.cores.uart import UARTWishboneBridge
from litescope import LiteScopeAnalyzer
self.submodules.bridge = UARTWishboneBridge(
platform.request("serial_litescope"), self.clk_freq, baudrate=115200)
self.add_wb_master(self.bridge.wishbone)
analyzer_signals = [
self.sys_led,
]
self.submodules.analyzer = LiteScopeAnalyzer(analyzer_signals, 2048, cd="clk200", cd_ratio=2)
def do_exit(self, vns):
self.analyzer.export_csv(vns, "test/analyzer.csv")
def main():
platform = Platform()
if len(sys.argv) < 2:
print("missing target (base or pcie or video or video_raw_loopback or video_raw_dma_loopback)")
exit()
if sys.argv[1] == "base":
soc = BaseSoC(platform)
elif sys.argv[1] == "reverse":
soc = ReverseSoC(platform)
elif sys.argv[1] == "min":
soc = MinSoC(platform)
elif sys.argv[1] == "micro":
soc=MicroSoC(platform)
if sys.argv[1] == "micro":
soc.cpu_type=None
builder = Builder(soc, output_dir="build")
else:
builder = Builder(soc, output_dir="build", csr_csv="test/csr.csv")
vns = builder.build()
soc.do_exit(vns)
if sys.argv[1] == "pcie":
soc.generate_software_header()
if __name__ == "__main__":
main()