forked from mithro/netv2-soc
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnetv2mvp.py
executable file
·701 lines (590 loc) · 30 KB
/
netv2mvp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
#!/usr/bin/env python3
## IMPORTANT: PYTHONHASHSEED should be set to "0" for best validation match
import sys
import os
from migen import *
from migen.genlib.resetsync import AsyncResetSynchronizer
from litex.build.generic_platform import *
from litex.build.xilinx import XilinxPlatform
from litex.soc.integration.soc_sdram import *
from litex.soc.integration.builder import *
from litex.soc.cores import dna, xadc
from litex.soc.cores.frequency_meter import FrequencyMeter
from litedram.modules import MT41J128M16
from litedram.phy import a7ddrphy
from litedram.core import ControllerSettings
from litevideo.input import HDMIIn
from litevideo.output.hdmi.s7 import S7HDMIOutEncoderSerializer, S7HDMIOutPHY
from litevideo.output.common import *
from litevideo.output.core import VideoOutCore
from litevideo.output.hdmi.encoder import Encoder
from litex.soc.interconnect.csr import *
_io = [
("clk50", 0, Pins("J19"), IOStandard("LVCMOS33")),
("user_led", 0, Pins("M21"), IOStandard("LVCMOS33")),
("user_led", 1, Pins("N20"), IOStandard("LVCMOS33")),
("user_led", 2, Pins("L21"), IOStandard("LVCMOS33")),
("serial", 0,
Subsignal("tx", Pins("E14")),
Subsignal("rx", Pins("E13")),
IOStandard("LVCMOS33"),
),
("serial", 1,
Subsignal("tx", Pins("B18")), # hax 8
Subsignal("rx", Pins("A18")), # hax 14
IOStandard("LVCMOS33")
),
("ddram", 0,
Subsignal("a", Pins(
"U6 V4 W5 V5 AA1 Y2 AB1 AB3",
"AB2 Y3 W6 Y1 V2 AA3"
),
IOStandard("SSTL15")),
Subsignal("ba", Pins("U5 W4 V7"), IOStandard("SSTL15")),
Subsignal("ras_n", Pins("Y9"), IOStandard("SSTL15")),
Subsignal("cas_n", Pins("Y7"), IOStandard("SSTL15")),
Subsignal("we_n", Pins("V8"), IOStandard("SSTL15")),
Subsignal("dm", Pins("G1 H4 M5 L3"), IOStandard("SSTL15")),
Subsignal("dq", Pins(
"C2 F1 B1 F3 A1 D2 B2 E2 "
"J5 H3 K1 H2 J1 G2 H5 G3 "
"N2 M6 P1 N5 P2 N4 R1 P6 "
"K3 M2 K4 M3 J6 L5 J4 K6 "
),
IOStandard("SSTL15"),
Misc("IN_TERM=UNTUNED_SPLIT_50")),
Subsignal("dqs_p", Pins("E1 K2 P5 M1"), IOStandard("DIFF_SSTL15")),
Subsignal("dqs_n", Pins("D1 J2 P4 L1"), IOStandard("DIFF_SSTL15")),
Subsignal("clk_p", Pins("R3"), IOStandard("DIFF_SSTL15")),
Subsignal("clk_n", Pins("R2"), IOStandard("DIFF_SSTL15")),
Subsignal("cke", Pins("Y8"), IOStandard("SSTL15")),
Subsignal("odt", Pins("W9"), IOStandard("SSTL15")),
Subsignal("reset_n", Pins("AB5"), IOStandard("LVCMOS15")),
Subsignal("cs_n", Pins("V9"), IOStandard("SSTL15")),
Misc("SLEW=FAST"),
),
("pcie_x1", 0,
Subsignal("rst_n", Pins("E18"), IOStandard("LVCMOS33")),
Subsignal("clk_p", Pins("F10")),
Subsignal("clk_n", Pins("E10")),
Subsignal("rx_p", Pins("D11")),
Subsignal("rx_n", Pins("C11")),
Subsignal("tx_p", Pins("D5")),
Subsignal("tx_n", Pins("C5"))
),
("pcie_x2", 0,
Subsignal("rst_n", Pins("E18"), IOStandard("LVCMOS33")),
Subsignal("clk_p", Pins("F10")),
Subsignal("clk_n", Pins("E10")),
Subsignal("rx_p", Pins("D11 B10")),
Subsignal("rx_n", Pins("C11 A10")),
Subsignal("tx_p", Pins("D5 B6")),
Subsignal("tx_n", Pins("C5 A6"))
),
("pcie_x4", 0,
Subsignal("rst_n", Pins("E18"), IOStandard("LVCMOS33")),
Subsignal("clk_p", Pins("F10")),
Subsignal("clk_n", Pins("E10")),
Subsignal("rx_p", Pins("D11 B10 D9 B8")),
Subsignal("rx_n", Pins("C11 A10 C9 A8")),
Subsignal("tx_p", Pins("D5 B6 D7 B4")),
Subsignal("tx_n", Pins("C5 A6 C7 A4"))
),
("hdmi_in", 0,
Subsignal("clk_p", Pins("L19"), IOStandard("TMDS_33"), Inverted()),
Subsignal("clk_n", Pins("L20"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data0_p", Pins("K21"), IOStandard("TMDS_33"), Inverted()), # correct by design
Subsignal("data0_n", Pins("K22"), IOStandard("TMDS_33"), Inverted()),
# Subsignal("data2_p", Pins("K21"), IOStandard("TMDS_33"), Inverted()), # incorrect
# Subsignal("data2_n", Pins("K22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data1_p", Pins("J20"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data1_n", Pins("J21"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_p", Pins("J22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_n", Pins("H22"), IOStandard("TMDS_33"), Inverted()),
# Subsignal("data0_p", Pins("J22"), IOStandard("TMDS_33"), Inverted()),
# Subsignal("data0_n", Pins("H22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("scl", Pins("T18"), IOStandard("LVCMOS33")),
Subsignal("sda", Pins("V18"), IOStandard("LVCMOS33")),
),
("hdmi_in", 1,
Subsignal("clk_p", Pins("Y18"), IOStandard("TMDS_33"), Inverted()),
Subsignal("clk_n", Pins("Y19"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data0_p", Pins("AA18"), IOStandard("TMDS_33")),
Subsignal("data0_n", Pins("AB18"), IOStandard("TMDS_33")),
Subsignal("data1_p", Pins("AA19"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data1_n", Pins("AB20"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_p", Pins("AB21"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_n", Pins("AB22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("scl", Pins("W17"), IOStandard("LVCMOS33"), Inverted()),
Subsignal("sda", Pins("R17"), IOStandard("LVCMOS33")),
),
("hdmi_out", 0,
Subsignal("clk_p", Pins("W19"), Inverted(), IOStandard("TMDS_33")),
Subsignal("clk_n", Pins("W20"), Inverted(), IOStandard("TMDS_33")),
Subsignal("data0_p", Pins("W21"), IOStandard("TMDS_33")),
Subsignal("data0_n", Pins("W22"), IOStandard("TMDS_33")),
Subsignal("data1_p", Pins("U20"), IOStandard("TMDS_33")),
Subsignal("data1_n", Pins("V20"), IOStandard("TMDS_33")),
Subsignal("data2_p", Pins("T21"), IOStandard("TMDS_33")),
Subsignal("data2_n", Pins("U21"), IOStandard("TMDS_33"))
),
("hdmi_out", 1,
Subsignal("clk_p", Pins("G21"), IOStandard("TMDS_33"), Inverted()),
Subsignal("clk_n", Pins("G22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data0_p", Pins("E22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data0_n", Pins("D22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data1_p", Pins("C22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data1_n", Pins("B22"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_p", Pins("B21"), IOStandard("TMDS_33"), Inverted()),
Subsignal("data2_n", Pins("A21"), IOStandard("TMDS_33"), Inverted()),
),
("hdmi_sda_over_up", 0, Pins("G20"), IOStandard("LVCMOS33")),
("hdmi_sda_over_dn", 0, Pins("F20"), IOStandard("LVCMOS33")), # must be mutex with the above
("hdmi_rx0_forceunplug", 0, Pins("M22"), IOStandard("LVCMOS33")), # forces an HPD on the RX0/TX0 path
("hdmi_rx0_forceplug", 0, Pins("N22"), IOStandard("LVCMOS33")), # this needs to be mutex with the above
("hdmi_tx1_hpd_n", 0, Pins("U18"), IOStandard("LVCMOS33")), # this is the internal hdmi-D port
("hdmi_tx1_cec", 0, Pins("P17"), IOStandard("LVCMOS33")), # tx1/rx1 path
("hdmi_tx0_cec", 0, Pins("P20"), IOStandard("LVCMOS33")), # tx0/rx0 path
("hdmi_ov0_cec", 0, Pins("P19"), IOStandard("LVCMOS33")), # dedicated to the overlay input
("hdmi_ov0_hpd_n", 0, Pins("V17"), IOStandard("LVCMOS33")), # if the overlay input is plugged in
]
class Platform(XilinxPlatform):
def __init__(self, toolchain="vivado", programmer="vivado"):
XilinxPlatform.__init__(self, "xc7a35t-fgg484-2", _io,
toolchain=toolchain)
self.add_platform_command(
"set_property CONFIG_VOLTAGE 3.3 [current_design]")
self.add_platform_command(
"set_property CFGBVS VCCO [current_design]")
self.add_platform_command(
"set_property BITSTREAM.CONFIG.CONFIGRATE 22 [current_design]")
self.add_platform_command(
"set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 1 [current_design]")
self.toolchain.bitstream_commands = [
"set_property CONFIG_VOLTAGE 1.5 [current_design]",
"set_property CFGBVS GND [current_design]",
"set_property BITSTREAM.CONFIG.CONFIGRATE 22 [current_design]",
"set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 1 [current_design]",
]
self.toolchain.additional_commands = \
["write_cfgmem -verbose -force -format bin -interface spix1 -size 64 "
"-loadbit \"up 0x0 {build_name}.bit\" -file {build_name}.bin"]
self.programmer = programmer
# self.add_platform_command("""
#create_clock -name pcie_phy_clk -period 10.0 [get_pins {{pcie_phy/pcie_support_i/pcie_i/inst/inst/gt_top_i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/gtp_channel.gtpe2_channel_i/TXOUTCLK}}]
#""")
def create_programmer(self):
if self.programmer == "vivado":
return VivadoProgrammer(flash_part="n25q128-3.3v-spi-x1_x2_x4")
else:
raise ValueError("{} programmer is not supported"
.format(self.programmer))
def do_finalize(self, fragment):
XilinxPlatform.do_finalize(self, fragment)
def csr_map_update(csr_map, csr_peripherals):
csr_map.update(dict((n, v)
for v, n in enumerate(csr_peripherals, start=max(csr_map.values()) + 1)))
def period_ns(freq):
return 1e9/freq
class CRG(Module):
def __init__(self, platform):
self.clock_domains.cd_sys = ClockDomain()
self.clock_domains.cd_sys4x = ClockDomain(reset_less=True)
self.clock_domains.cd_sys4x_dqs = ClockDomain(reset_less=True)
self.clock_domains.cd_clk200 = ClockDomain()
self.clock_domains.cd_clk100 = ClockDomain()
clk50 = platform.request("clk50")
rst = Signal()
pll_locked = Signal()
pll_fb = Signal()
self.pll_sys = Signal()
pll_sys4x = Signal()
pll_sys4x_dqs = Signal()
pll_clk200 = Signal()
self.specials += [
Instance("PLLE2_BASE",
p_STARTUP_WAIT="FALSE", o_LOCKED=pll_locked,
# VCO @ 1600 MHz
p_REF_JITTER1=0.01, p_CLKIN1_PERIOD=20.0,
p_CLKFBOUT_MULT=32, p_DIVCLK_DIVIDE=1,
i_CLKIN1=clk50, i_CLKFBIN=pll_fb, o_CLKFBOUT=pll_fb,
# 100 MHz
p_CLKOUT0_DIVIDE=16, p_CLKOUT0_PHASE=0.0,
o_CLKOUT0=self.pll_sys,
# 400 MHz
p_CLKOUT1_DIVIDE=4, p_CLKOUT1_PHASE=0.0,
o_CLKOUT1=pll_sys4x,
# 400 MHz dqs
p_CLKOUT2_DIVIDE=4, p_CLKOUT2_PHASE=90.0,
o_CLKOUT2=pll_sys4x_dqs,
# 200 MHz
p_CLKOUT3_DIVIDE=8, p_CLKOUT3_PHASE=0.0,
o_CLKOUT3=pll_clk200
),
Instance("BUFG", i_I=self.pll_sys, o_O=self.cd_sys.clk),
Instance("BUFG", i_I=self.pll_sys, o_O=self.cd_clk100.clk),
Instance("BUFG", i_I=pll_clk200, o_O=self.cd_clk200.clk),
Instance("BUFG", i_I=pll_sys4x, o_O=self.cd_sys4x.clk),
Instance("BUFG", i_I=pll_sys4x_dqs, o_O=self.cd_sys4x_dqs.clk),
AsyncResetSynchronizer(self.cd_sys, ~pll_locked | rst),
AsyncResetSynchronizer(self.cd_clk200, ~pll_locked | rst),
AsyncResetSynchronizer(self.cd_clk100, ~pll_locked | rst)
]
reset_counter = Signal(4, reset=15)
ic_reset = Signal(reset=1)
self.sync.clk200 += \
If(reset_counter != 0,
reset_counter.eq(reset_counter - 1)
).Else(
ic_reset.eq(0)
)
self.specials += Instance("IDELAYCTRL", i_REFCLK=ClockSignal("clk200"), i_RST=ic_reset)
class BaseSoC(SoCSDRAM):
csr_peripherals = [
"ddrphy",
# "dna",
"xadc",
]
csr_map_update(SoCSDRAM.csr_map, csr_peripherals)
def __init__(self, platform, **kwargs):
clk_freq = int(100e6)
SoCSDRAM.__init__(self, platform, clk_freq,
integrated_rom_size=0x6000,
integrated_sram_size=0x4000,
#shadow_base=0x00000000,
ident="NeTV2 LiteX Base SoC",
reserve_nmi_interrupt=False,
**kwargs)
self.submodules.crg = CRG(platform)
# self.submodules.dna = dna.DNA()
self.submodules.xadc = xadc.XADC()
self.crg.cd_sys.clk.attr.add("keep")
platform.add_period_constraint(self.crg.cd_sys.clk, period_ns(100e6))
# sdram
self.submodules.ddrphy = a7ddrphy.A7DDRPHY(platform.request("ddram"))
sdram_module = MT41J128M16(self.clk_freq, "1:4")
self.add_constant("READ_LEVELING_BITSLIP", 3)
self.add_constant("READ_LEVELING_DELAY", 14)
self.register_sdram(self.ddrphy,
sdram_module.geom_settings,
sdram_module.timing_settings,
controller_settings=ControllerSettings(with_bandwidth=True,
cmd_buffer_depth=8,
with_refresh=False))
# common led
self.sys_led = Signal()
self.pcie_led = Signal()
self.comb += platform.request("user_led", 0).eq(self.sys_led ^ self.pcie_led)
# sys led
sys_counter = Signal(32)
self.sync += sys_counter.eq(sys_counter + 1)
self.comb += self.sys_led.eq(sys_counter[26])
class RectOpening(Module, AutoCSR):
def __init__(self, timing_stream):
self.hrect_start = CSRStorage(12)
self.hrect_end = CSRStorage(12)
self.vrect_start = CSRStorage(12)
self.vrect_end = CSRStorage(12)
self.rect_on = Signal()
# counter for pixel position based on the incoming HDMI0 stream.
# use this instead of programmed values because we want to sync to non-compliant data streams
self.hcounter = hcounter = Signal(hbits)
self.vcounter = vcounter = Signal(vbits)
in0_de = Signal()
in0_de_r = Signal()
in0_vsync = Signal()
in0_vsync_r = Signal()
in0_hsync = Signal()
in0_hsync_r = Signal()
self.sync += [ # rename this to the pix_o domain for the NeTV2 application
in0_de.eq(timing_stream.de),
in0_de_r.eq(in0_de),
in0_vsync.eq(timing_stream.vsync),
in0_vsync_r.eq(in0_vsync),
in0_hsync.eq(timing_stream.hsync),
in0_hsync_r.eq(in0_hsync),
If(in0_vsync & ~in0_vsync_r,
vcounter.eq(0)
).Elif(in0_hsync & ~ in0_hsync_r,
vcounter.eq(vcounter + 1)
),
If(in0_de & ~in0_de_r,
hcounter.eq(0),
).Elif(in0_de,
hcounter.eq(hcounter + 1)
)
]
# self.comb += rect_on.eq(((hcounter_pix_o > 900) & (hcounter_pix_o < 910) & (vcounter_pix_o > 300) & (vcounter_pix_o < 310)) == 1)
self.comb += self.rect_on.eq(((hcounter > self.hrect_start.storage) & (hcounter < self.hrect_end.storage) &
(vcounter > self.vrect_start.storage) & (vcounter < self.vrect_end.storage)) == 1)
rgb_layout = [
("r", 8),
("g", 8),
("b", 8)
]
class TimingDelayRGB(Module):
def __init__(self, latency):
self.sink = stream.Endpoint(rgb_layout)
self.source = stream.Endpoint(rgb_layout)
# # #
for name in list_signals(rgb_layout):
s = getattr(self.sink, name)
for i in range(latency):
next_s = Signal(len(s)) # without len(s), this makes only one-bit wide delay lines
self.sync += next_s.eq(s)
s = next_s
self.comb += getattr(self.source, name).eq(s)
class VideoOverlaySoC(BaseSoC):
csr_peripherals = [
"hdmi_core_out0",
"hdmi_in0",
"hdmi_in0_freq",
"hdmi_in0_edid_mem",
"hdmi_in1",
"hdmi_in1_freq",
"hdmi_in1_edid_mem",
"rectangle",
"analyzer"
]
csr_map_update(BaseSoC.csr_map, csr_peripherals)
interrupt_map = {
"hdmi_in1": 3,
}
interrupt_map.update(BaseSoC.interrupt_map)
def __init__(self, platform, *args, **kwargs):
BaseSoC.__init__(self, platform, *args, **kwargs)
# # #
pix_freq = 148.50e6
########## hdmi in 0 (raw tmds)
hdmi_in0_pads = platform.request("hdmi_in", 0)
self.submodules.hdmi_in0_freq = FrequencyMeter(period=self.clk_freq)
self.submodules.hdmi_in0 = HDMIIn(hdmi_in0_pads, device="xc7", split_mmcm=True, hdmi=True)
self.comb += self.hdmi_in0_freq.clk.eq(self.hdmi_in0.clocking.cd_pix.clk)
# don't add clock timings here, we add a root clock constraint that derives the rest automatically
# define path constraints individually to sysclk to avoid accidentally declaring other inter-clock paths as false paths
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in0.clocking.cd_pix.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in0.clocking.cd_pix1p25x.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in0.clocking.cd_pix5x.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in0.clocking.cd_pix_o.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in0.clocking.cd_pix5x_o.clk
)
hdmi_out0_pads = platform.request("hdmi_out", 0)
self.submodules.hdmi_out0_clk_gen = S7HDMIOutEncoderSerializer(hdmi_out0_pads.clk_p, hdmi_out0_pads.clk_n, bypass_encoder=True)
self.comb += self.hdmi_out0_clk_gen.data.eq(Signal(10, reset=0b0000011111))
self.submodules.hdmi_out0_phy = S7HDMIOutPHY(hdmi_out0_pads, mode="raw")
# hdmi over
self.comb += [
platform.request("hdmi_sda_over_up").eq(0),
platform.request("hdmi_sda_over_dn").eq(0),
]
platform.add_platform_command(
"set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets hdmi_in_ibufds/ob]")
# extract timing info from HDMI input 0, and put it into a stream that we can pass later on as a genlock object
self.hdmi_in0_timing = hdmi_in0_timing = stream.Endpoint(frame_timing_layout)
self.sync.pix_o += [
hdmi_in0_timing.de.eq(self.hdmi_in0.syncpol.de),
hdmi_in0_timing.hsync.eq(self.hdmi_in0.syncpol.hsync),
hdmi_in0_timing.vsync.eq(self.hdmi_in0.syncpol.vsync),
If(self.hdmi_in0.syncpol.valid_o,
hdmi_in0_timing.valid.eq(1),
).Else(
hdmi_in0_timing.valid.eq(0),
)
]
########## hdmi in 1
hdmi_in1_pads = platform.request("hdmi_in", 1)
self.submodules.hdmi_in1_freq = FrequencyMeter(period=self.clk_freq)
self.submodules.hdmi_in1 = HDMIIn(hdmi_in1_pads,
self.sdram.crossbar.get_port(mode="write"),
fifo_depth=1024,
device="xc7",
split_mmcm=False,
mode="rgb"
)
self.comb += self.hdmi_in1_freq.clk.eq(self.hdmi_in1.clocking.cd_pix.clk)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in1.clocking.cd_pix.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in1.clocking.cd_pix1p25x.clk
)
self.platform.add_false_path_constraints(
self.crg.cd_sys.clk,
self.hdmi_in1.clocking.cd_pix5x.clk
)
######## Constraints
# instantiate fundamental clocks -- Vivado will derive the rest via PLL programmings
self.platform.add_platform_command(
"create_clock -name clk50 -period 20.0 [get_nets clk50]")
self.platform.add_platform_command(
"create_clock -name hdmi_in0_clk_p -period 6.734006734006734 [get_nets hdmi_in0_clk_p]")
self.platform.add_platform_command(
"create_clock -name hdmi_in1_clk_p -period 6.734006734006734 [get_nets hdmi_in1_clk_p]")
# exclude all generated clocks from the fundamental HDMI cloks and sys clocks
self.platform.add_platform_command("set_clock_groups -group [get_clocks -include_generated_clocks -of [get_nets sys_clk]] -group [get_clocks -include_generated_clocks -of [get_nets hdmi_in0_clk_p]] -asynchronous")
self.platform.add_platform_command("set_clock_groups -group [get_clocks -include_generated_clocks -of [get_nets sys_clk]] -group [get_clocks -include_generated_clocks -of [get_nets hdmi_in1_clk_p]] -asynchronous")
# make sure derived clocks get named correctly
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in0_pix_clk [get_pins MMCME2_ADV/CLKOUT0]")
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in0_pix1p25x_clk [get_pins MMCME2_ADV/CLKOUT1]")
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in0_pix5x_clk [get_pins MMCME2_ADV/CLKOUT2]")
self.platform.add_platform_command("create_clock_generated_clock -name pix_o_clk [get_pins PLLE2_ADV/CLKOUT0]")
self.platform.add_platform_command("create_clock_generated_clock -name pix5x_o_clk [get_pins PLLE2_ADV/CLKOUT2]")
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in1_pix_clk [get_pins MMCME2_ADV_1/CLKOUT0]")
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in1_pix1p25x_clk [get_pins MMCME2_ADV_1/CLKOUT1]")
self.platform.add_platform_command("create_clock_generated_clock -name hdmi_in1_pix5x_clk [get_pins MMCME2_ADV_1/CLKOUT2]")
# don't time the high-fanout reset paths
self.platform.add_platform_command("set_false_path -through [get_nets hdmi_in1_pix_rst]")
self.platform.add_platform_command("set_false_path -through [get_nets hdmi_in0_pix_rst]")
self.platform.add_platform_command("set_false_path -through [get_nets hdmi_in1_pix1p25x_rst]")
self.platform.add_platform_command("set_false_path -through [get_nets hdmi_in0_pix1p25x_rst]")
self.platform.add_platform_command("set_false_path -through [get_nets pix_o_rst]")
self.platform.add_platform_command("set_false_path -through [get_nets videooverlaysoc_hdmi_out0_clk_gen_ce]") # derived from reset
# gearbox timing is a multi-cycle path: FAST to SLOW synchronous clock domains
self.platform.add_platform_command("set_multicycle_path 2 -setup -start -from [get_clocks videooverlaysoc_hdmi_in0_mmcm_clk1] -to [get_clocks videooverlaysoc_hdmi_in0_mmcm_clk0]")
self.platform.add_platform_command("set_multicycle_path 1 -hold -from [get_clocks videooverlaysoc_hdmi_in0_mmcm_clk1] -to [get_clocks videooverlaysoc_hdmi_in0_mmcm_clk0]")
self.platform.add_platform_command("set_multicycle_path 2 -setup -start -from [get_clocks videooverlaysoc_hdmi_in1_mmcm_clk1] -to [get_clocks videooverlaysoc_hdmi_in1_mmcm_clk0]")
self.platform.add_platform_command("set_multicycle_path 1 -hold -from [get_clocks videooverlaysoc_hdmi_in1_mmcm_clk1] -to [get_clocks videooverlaysoc_hdmi_in1_mmcm_clk0]")
############### hdmi out 1 (overlay rgb)
out_dram_port = self.sdram.crossbar.get_port(mode="read", cd="pix_o", dw=32, reverse=True)
self.submodules.hdmi_core_out0 = VideoOutCore(out_dram_port, mode="rgb", fifo_depth=1024, genlock_stream=hdmi_in0_timing)
core_source_valid_d = Signal()
core_source_data_d = Signal(32)
sync_cd = getattr(self.sync, out_dram_port.cd)
sync_cd += [
core_source_valid_d.eq(self.hdmi_core_out0.source.valid),
core_source_data_d.eq(self.hdmi_core_out0.source.data),
]
timing_rgb_delay = TimingDelayRGB(4) # create the delay element with specified delay...note if you say TimingDelay() the code runs happily with no error, because Python doesn't typecheck
timing_rgb_delay = ClockDomainsRenamer("pix_o")(timing_rgb_delay) # assign a clock domain to the delay element
self.submodules += timing_rgb_delay # DONT FORGET THIS LINE OR ELSE NOTHING HAPPENS....
self.hdmi_out0_rgb = hdmi_out0_rgb = stream.Endpoint(rgb_layout) # instantiate the input record
self.hdmi_out0_rgb_d = hdmi_out0_rgb_d = stream.Endpoint(rgb_layout) # instantiate the output record
self.comb += [
self.hdmi_core_out0.source.ready.eq(1), # don't forget to tell the upstream component that we're ready, or we get a monochrome screen...
hdmi_out0_rgb.b.eq(core_source_data_d[0:8]), # wire up the specific elements of the input record
hdmi_out0_rgb.g.eq(core_source_data_d[8:16]),
hdmi_out0_rgb.r.eq(core_source_data_d[16:24]),
hdmi_out0_rgb.valid.eq(core_source_valid_d), # not used, but hook it up anyways in case we need it later...
timing_rgb_delay.sink.eq(hdmi_out0_rgb), # assign input stream to the delay element
hdmi_out0_rgb_d.eq(timing_rgb_delay.source) # grab output stream from the delay element
# the output records are directly consumed down below
]
self.submodules.encoder_red = encoder_red = ClockDomainsRenamer("pix_o")(Encoder())
self.submodules.encoder_grn = encoder_grn = ClockDomainsRenamer("pix_o")(Encoder())
self.submodules.encoder_blu = encoder_blu = ClockDomainsRenamer("pix_o")(Encoder())
self.comb += [
encoder_red.d.eq(hdmi_out0_rgb.r),
encoder_red.de.eq(1),
encoder_red.c.eq(0), # we promise to use this only during video areas, so "c" is always 0
encoder_grn.d.eq(hdmi_out0_rgb.g),
encoder_grn.de.eq(1),
encoder_grn.c.eq(0),
encoder_blu.d.eq(hdmi_out0_rgb.b),
encoder_blu.de.eq(1),
encoder_blu.c.eq(0),
]
# hdmi in to hdmi out
c0_pix_o = Signal(10)
c1_pix_o = Signal(10)
c2_pix_o = Signal(10)
self.sync.pix_o += [ # extra delay to absorb cross-domain jitter & routing
c0_pix_o.eq(self.hdmi_in0.syncpol.c0),
c1_pix_o.eq(self.hdmi_in0.syncpol.c1),
c2_pix_o.eq(self.hdmi_in0.syncpol.c2)
]
rect_on = Signal()
self.submodules.rectangle = rectangle = ClockDomainsRenamer("pix_o")( RectOpening(hdmi_in0_timing) )
self.comb += rect_on.eq(rectangle.rect_on)
self.sync.pix_o += [
If(rect_on & (hdmi_out0_rgb_d.r >= 128) & (hdmi_out0_rgb_d.g >= 128) & (hdmi_out0_rgb_d.b >= 128),
# If(rect_on,
self.hdmi_out0_phy.sink.c0.eq(encoder_blu.out),
self.hdmi_out0_phy.sink.c1.eq(encoder_grn.out),
self.hdmi_out0_phy.sink.c2.eq(encoder_red.out),
).Else(
self.hdmi_out0_phy.sink.c0.eq(c0_pix_o),
self.hdmi_out0_phy.sink.c1.eq(c1_pix_o),
self.hdmi_out0_phy.sink.c2.eq(c2_pix_o),
)
]
# analyzer
from litex.soc.cores.uart import UARTWishboneBridge
from litescope import LiteScopeAnalyzer
# platform.request("serial",1), self.clk_freq, baudrate=3000000)
self.submodules.bridge = UARTWishboneBridge(
platform.request("serial",1), self.clk_freq, baudrate=115200)
self.add_wb_master(self.bridge.wishbone)
analyzer_signals = [
hdmi_in0_timing,
self.hdmi_in0.syncpol.hsync,
self.hdmi_in0.syncpol.vsync,
self.hdmi_in0.syncpol.de,
self.hdmi_in0.chansync.data_in0.de,
# self.hdmi_in0.decode_terc4.de_o,
self.hdmi_in0.chansync.data_out0,
self.hdmi_in0.data0_decod.output,
]
self.submodules.analyzer = LiteScopeAnalyzer(analyzer_signals, 256, cd="hdmi_in0_pix", cd_ratio=2)
def do_exit(self, vns):
self.analyzer.export_csv(vns, "test/analyzer.csv")
"""
# litescope
litescope_serial = platform.request("serial", 1)
litescope_bus = Signal(128)
litescope_i = Signal(16)
litescope_o = Signal(16)
self.specials += [
Instance("litescope",
i_clock=ClockSignal(),
i_reset=ResetSignal(),
i_serial_rx=litescope_serial.rx,
o_serial_tx=litescope_serial.tx,
i_bus=litescope_bus,
i_i=litescope_i,
o_o=litescope_o
)
]
platform.add_source(os.path.join("litescope", "litescope.v"))
# litescope test
self.comb += [
litescope_bus.eq(0x12345678ABCFEF),
platform.request("user_led", 1).eq(litescope_o[0]),
platform.request("user_led", 2).eq(litescope_o[1]),
litescope_i.eq(0x5AA5)
]
"""
def main():
if os.environ['PYTHONHASHSEED'] != "1":
print( "PYTHONHASHEED must be set to 1 for consistent validation results. Failing to set this results in non-deterministic compilation results")
exit()
platform = Platform()
if len(sys.argv) < 2:
print("missing target (base or pcie or video or video_overlay or video_raw_dma_loopback)")
exit()
if sys.argv[1] == "base":
soc = BaseSoC(platform)
elif sys.argv[1] == "video_overlay":
soc = VideoOverlaySoC(platform)
builder = Builder(soc, output_dir="build", csr_csv="test/csr.csv")
vns = builder.build()
soc.do_exit(vns)
if sys.argv[1] == "pcie":
soc.generate_software_header()
if __name__ == "__main__":
main()