-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodularsystem.py
429 lines (371 loc) · 18.2 KB
/
modularsystem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from module import Module
import itertools
import numpy as np
import networkx as nx # TODO: get rid of this dependency
import pickle
class ModularSystem(object):
"""
A linked meta-process system holds several interlinked meta-processes. It has methods for:
* loading / saving linked meta-process systems
* returning information, e.g. product and process names, the product-process matrix
* determining all alternatives to produce a given functional unit
* calculating LCA results for individual meta-processes
* calculating LCA results for a demand from the linked meta-process system (possibly for all alternatives)
Meta-processes *cannot* contain:
* 2 processes with the same name
* identical names for products and processes (recommendation is to capitalize process names)
Args:
* *mp_list* (``[MetaProcess]``): A list of meta-processes
"""
def __init__(self, mp_list=None):
self.mp_list = []
self.map_name_mp = dict()
self.map_processes_number = dict()
self.map_products_number = dict()
self.map_number_processes = dict()
self.map_number_products = dict()
self.name_map = {} # {activity key: output name}
self.raw_data = []
self.has_multi_output_processes = False
self.has_loops = False
if mp_list:
self.update(mp_list)
def update(self, mp_list):
"""
Updates the linked meta-process system every time processes
are added, modified, or deleted.
Errors are thrown in case of:
* identical names for products and processes
* identical names of different meta-processes
* if the input is not of type MetaProcess()
"""
product_names, process_names = set(), set()
for mp in mp_list:
if not isinstance(mp, Module):
raise ValueError(u"Input must be of MetaProcesses type.")
try:
assert mp.name not in process_names # check if process names are unique
process_names.add(mp.name)
product_names.update(self.get_product_names([mp]))
except AssertionError:
raise ValueError(u'Meta-Process names must be unique.')
for product in product_names:
if product in process_names:
raise ValueError(u'Product and Process names cannot be identical.')
self.mp_list = mp_list
self.map_name_mp = dict([(mp.name, mp) for mp in self.mp_list])
self.map_processes_number = dict(zip(self.processes, itertools.count()))
self.map_products_number = dict(zip(self.products, itertools.count()))
self.map_number_processes = {v: k for k, v in self.map_processes_number.items()}
self.map_number_products = {v: k for k, v in self.map_products_number.items()}
self.update_name_map()
self.raw_data = [mp.mp_data for mp in self.mp_list]
# multi-output
self.has_multi_output_processes = False
for mp in self.mp_list:
if mp.is_multi_output:
self.has_multi_output_processes = True
# check for loops
G = nx.DiGraph()
G.add_edges_from(self.edges())
if [c for c in nx.simple_cycles(G)]:
self.has_loops = True
else:
self.has_loops = False
print '\nMeta-process system with', len(self.products), 'products and', len(self.processes), 'processes.'
print 'Loops:', self.has_loops, ', Multi-output processes:', self.has_multi_output_processes
def update_name_map(self):
"""
Updates the name map, which maps product names (outputs or cuts) to activity keys.
This is used in the Activity Browser to automatically assign a product name to already known activity keys.
"""
for mp in self.mp_list:
for output in mp.outputs:
self.name_map[output[0]] = self.name_map.get(output[0], set())
self.name_map[output[0]].add(output[1])
for cut in mp.cuts:
self.name_map[cut[0]] = self.name_map.get(cut[0], set())
self.name_map[cut[0]].add(cut[2])
# SHORTCUTS
@ property
def processes(self):
"""Returns all process names."""
return sorted([mp.name for mp in self.mp_list])
@ property
def products(self):
"""Returns all product names."""
return sorted(set(itertools.chain(*[[x[0] for x in y.pp
] for y in self.mp_list])))
# DATABASE METHODS (FILE I/O, LMPS MODIFICATION)
def load_from_file(self, filepath, append=False):
"""
Loads a meta-process database, makes a MetaProcess object from each meta-process and
adds them to the linked meta-process system.
Args:
* filepath: file path
* append: adds loaded meta-processes to the existing database if True
"""
try:
with open(filepath, 'r') as infile:
raw_data = pickle.load(infile)
except:
raise IOError(u'Could not load file.')
mp_list = [Module(**mp) for mp in raw_data]
if append:
self.add_mp(mp_list, rename=True)
else:
self.update(mp_list)
def save_to_file(self, filepath):
"""Saves data for each meta-process in the meta-process data format using pickle and updates the linked meta process system."""
with open(filepath, 'w') as outfile:
pickle.dump(self.raw_data, outfile)
def add_mp(self, mp_list, rename=False):
"""
Adds meta-processes to the linked meta-process system.
*mp_list* can contain meta-process objects or the original data format used to initialize meta-processes.
"""
new_mp_list = []
for mp in mp_list:
if not isinstance(mp, Module):
mp = Module(**mp)
new_mp_list.append(mp)
if rename:
for mp in new_mp_list:
if mp.name in self.processes:
mp.name += '__ADDED'
self.update(self.mp_list + new_mp_list)
def remove_mp(self, mp_list):
"""
Remove meta-processes from the linked meta-process system.
*mp_list* can be a list of meta-process objects or meta-process names.
"""
for mp in mp_list:
if not isinstance(mp, Module):
mp = self.get_processes([mp])
self.mp_list.remove(mp[0])
self.update(self.mp_list)
# METHODS THAT RETURN DATA FOR A SUBSET OR THE ENTIRE LMPS
def get_processes(self, mp_list=None):
"""
Returns a list of meta-processes.
*mp_list* can be a list of meta-process objects or meta-process names.
"""
# if empty list return all meta-processes
if not mp_list:
return self.mp_list
else:
# if name list find corresponding meta-processes
if not isinstance(mp_list[0], Module):
return [self.map_name_mp.get(name, None) for name in mp_list if name in self.processes]
else:
return mp_list
def get_process_names(self, mp_list=None):
"""Returns a the names of a list of meta-processes."""
return sorted([mp.name for mp in self.get_processes(mp_list)])
def get_product_names(self, mp_list=None):
"""Returns the output and input product names of a list of meta-processes.
*mp_list* can be a list of meta-process objects or meta-process names.
"""
return sorted(set(itertools.chain(*[[x[0] for x in y.pp
] for y in self.get_processes(mp_list)])))
def get_output_names(self, mp_list=None):
""" Returns output product names for a list of meta-processes."""
return sorted(list(set([name for mp in self.get_processes(mp_list) for name in mp.output_names])))
def get_cut_names(self, mp_list=None):
""" Returns cut/input product names for a list of meta-processes."""
return sorted(list(set([name for mp in self.get_processes(mp_list) for name in mp.cut_names])))
def product_process_dict(self, mp_list=None, process_names=None, product_names=None):
"""
Returns a dictionary that maps meta-processes to produced products (key: product, value: meta-process).
Optional arguments ``mp_list``, ``process_names``, ``product_names`` can used as filters.
"""
if not process_names:
process_names = self.processes
if not product_names:
product_names = self.products
product_processes = {}
for mp in self.get_processes(mp_list):
for output in mp.outputs:
output_name = output[1]
if output_name in product_names and mp.name in process_names:
product_processes[output_name] = product_processes.get(output_name, [])
product_processes[output_name].append(mp.name)
return product_processes
def edges(self, mp_list=None):
"""
Returns an edge list for all edges within the linked meta-process system.
*mp_list* can be a list of meta-process objects or meta-process names.
"""
edges = []
for mp in self.get_processes(mp_list):
for cut in mp.cuts:
edges.append((cut[2], mp.name))
for output in mp.outputs:
edges.append((mp.name, output[1]))
return edges
def get_pp_matrix(self, mp_list=None):
"""
Returns the product-process matrix as well as two dictionaries
that hold row/col values for each product/process.
*mp_list* can be used to limit the scope to the contained processes
"""
mp_list = self.get_processes(mp_list)
matrix = np.zeros((len(self.get_product_names(mp_list)), len(mp_list)))
map_processes_number = dict(zip(self.get_process_names(mp_list), itertools.count()))
map_products_number = dict(zip(self.get_product_names(mp_list), itertools.count()))
for mp in mp_list:
for product, amount in mp.pp:
matrix[map_products_number[product], map_processes_number[mp.name]] += amount
return matrix, map_processes_number, map_products_number
# ALTERNATIVE PATHWAYS
def upstream_products_processes(self, product):
"""Returns all upstream products and processes related to a certain product (functional unit)."""
G = nx.DiGraph()
G.add_edges_from(self.edges())
product_ancestors = nx.ancestors(G, product) # set
product_ancestors.update([product]) # add product (although not an ancestor in a strict sense)
# split up into products and processes
ancestor_processes = [a for a in product_ancestors if a in self.processes]
ancestor_products = [a for a in product_ancestors if a in self.products]
return ancestor_processes, ancestor_products
def all_pathways(self, functional_unit):
"""
Returns all alternative pathways to produce a given functional unit. Data output is a list of lists.
Each sublist contains one path made up of products and processes.
The input Graph may not contain cycles. It may contain multi-output processes.
Args:
* *functional_unit*: output product
"""
def dfs(current_node, visited, parents, direction_up=True):
# print current_node
if direction_up:
visited += [current_node]
if current_node in self.products:
# go up to all processes if none has been visited previously, else go down
upstream_processes = G.predecessors(current_node)
if upstream_processes and not [process for process in upstream_processes if process in visited]:
parents += [current_node]
for process in upstream_processes:
dfs(process, visited[:], parents[:]) # needs a real copy due to mutable / immutable
else: # GO DOWN or finish
if parents:
downstream_process = parents.pop()
dfs(downstream_process, visited, parents, direction_up=False)
else:
results.append(visited)
# print 'Finished'
else: # node = process; upstream = product
# go to one upstream product, if there is one unvisited, else go down
upstream_products = G.predecessors(current_node)
unvisited = [product for product in upstream_products if product not in visited]
#print 'unvisited:', unvisited
if unvisited: # GO UP
parents += [current_node]
dfs(unvisited[0], visited, parents)
else: # GO DOWN or finish
if parents:
downstream_product = parents.pop()
dfs(downstream_product, visited, parents, direction_up=False)
else:
print 'Finished @ process, this should not happen if a product was demanded.'
return results
results = []
G = nx.DiGraph()
G.add_edges_from(self.edges())
return dfs(functional_unit, [], [])
# LCA
def scaling_vector_foreground_demand(self, mp_list, demand):
"""
Returns a scaling dictionary for a given demand and matrix defined by a list of processes (or names).
Keys: process names. Values: scaling vector values.
Args:
* *mp_list*: meta-process objects or names
* *demand* (dict): keys: product names, values: amount
"""
# matrix
matrix, map_processes, map_products = self.get_pp_matrix(mp_list)
try:
# TODO: define conditions that must be met (e.g. square, single-output); Processes can still have multiple outputs (system expansion)
assert matrix.shape[0] == matrix.shape[1] # matrix needs to be square to be invertable!
# demand vector
demand_vector = np.zeros((len(matrix),))
for name, amount in demand.items():
demand_vector[map_products[name]] = amount
# scaling vector
scaling_vector = np.linalg.solve(matrix, demand_vector).tolist()
scaling_dict = dict([(name, scaling_vector[index]) for name, index in map_processes.items()])
# # foreground product demand (can be different from scaling vector if diagonal values are not 1)
# foreground_demand = {}
# for name, amount in scaling_dict.items():
# number_in_matrix = map_processes[name]
# product = [name for name, number in map_products.items() if number == number_in_matrix][0]
# foreground_demand.update({
# product: amount*matrix[number_in_matrix, number_in_matrix]
# })
return scaling_dict # , foreground_demand
except AssertionError:
print "Product-Process Matrix must be square! Currently", matrix.shape[0], 'products and', matrix.shape[1], 'processes.'
def lca_processes(self, method, process_names=None, factorize=False):
"""Returns a dictionary where *keys* = meta-process name, *value* = LCA score
"""
return dict([(mp.name, mp.lca(method, factorize=factorize))
for mp in self.get_processes(process_names)])
def lca_linked_processes(self, method, process_names, demand):
"""
Performs LCA for a given demand from a linked meta-process system.
Works only for square matrices (see scaling_vector_foreground_demand).
Returns a dictionary with the following keys:
* *path*: involved process names
* *demand*: product demand
* *scaling vector*: result of the demand
* *LCIA method*: method used
* *process contribution*: contribution of each process
* *relative process contribution*: relative contribution
* *LCIA score*: LCA result
Args:
* *method*: LCIA method
* *process_names*: selection of processes from the linked meta-process system (that yields a square matrix)
* *demand* (dict): keys: product names, values: amount
"""
scaling_dict = self.scaling_vector_foreground_demand(process_names, demand)
if not scaling_dict:
return
lca_scores = self.lca_processes(method, process_names)
# multiply scaling vector with process LCA scores
path_lca_score = 0.0
process_contribution = {}
for process, amount in scaling_dict.items():
process_contribution.update({process: amount*lca_scores[process]})
path_lca_score = path_lca_score + amount*lca_scores[process]
process_contribution_relative = {}
for process, amount in scaling_dict.items():
process_contribution_relative.update({process: amount*lca_scores[process]/path_lca_score})
output = {
'path': process_names,
'demand': demand,
'scaling vector': scaling_dict,
'LCIA method': method,
'process contribution': process_contribution,
'relative process contribution': process_contribution_relative,
'LCA score': path_lca_score,
}
return output
def lca_alternatives(self, method, demand):
"""
Calculation of LCA results for all alternatives in a linked meta-process system that yield a certain demand.
Results are stored in a list of dictionaries as described in 'lca_linked_processes'.
Args:
* *method*: LCIA method
* *demand* (dict): keys: product names, values: amount
"""
if self.has_multi_output_processes:
print '\nCannot calculate LCAs for alternatives as system contains ' \
'loops (', self.has_loops, ') / multi-output processes (', self.has_multi_output_processes, ').'
else:
# assume that only one product is demanded for now (functional unit)
path_lca_data = []
for path in self.all_pathways(demand.keys()[0]):
path_lca_data.append(self.lca_linked_processes(method, path, demand))
return path_lca_data