-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathflyingChairsWrapFlow_vgg.py
317 lines (270 loc) · 15.4 KB
/
flyingChairsWrapFlow_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
from tensorflow.python.ops import init_ops
import numpy as np
def VGG16(photo_source, photo_target, geo_source, geo_target, loss_weight):
# Add local response normalization (ACROSS_CHANNELS) for computing photometric loss
inputs_norm = tf.nn.local_response_normalization(geo_source, depth_radius=4, beta=0.7)
outputs_norm = tf.nn.local_response_normalization(geo_target, depth_radius=4, beta=0.7)
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer,
biases_regularizer=None,
activation_fn=tf.nn.elu): # original use leaky ReLU, now we use elu
conv1_1 = slim.conv2d(tf.concat(3, [photo_source, photo_target]), 64, [3, 3], scope='conv1_1')
conv1_2 = slim.conv2d(conv1_1, 64, [3, 3], scope='conv1_2')
pool1 = slim.max_pool2d(conv1_2, [2, 2], scope='pool1')
conv2_1 = slim.conv2d(pool1, 128, [3, 3], scope='conv2_1')
conv2_2 = slim.conv2d(conv2_1, 128, [3, 3], scope='conv2_2')
pool2 = slim.max_pool2d(conv2_2, [2, 2], scope='pool2')
conv3_1 = slim.conv2d(pool2, 256, [3, 3], scope='conv3_1')
conv3_2 = slim.conv2d(conv3_1, 256, [3, 3], scope='conv3_2')
conv3_3 = slim.conv2d(conv3_2, 256, [3, 3], scope='conv3_3')
pool3 = slim.max_pool2d(conv3_3, [2, 2], scope='pool3')
conv4_1 = slim.conv2d(pool3, 512, [3, 3], scope='conv4_1')
conv4_2 = slim.conv2d(conv4_1, 512, [3, 3], scope='conv4_2')
conv4_3 = slim.conv2d(conv4_2, 512, [3, 3], scope='conv4_3')
pool4 = slim.max_pool2d(conv4_3, [2, 2], scope='pool4')
conv5_1 = slim.conv2d(pool4, 512, [3, 3], scope='conv5_1')
conv5_2 = slim.conv2d(conv5_1, 512, [3, 3], scope='conv5_2')
conv5_3 = slim.conv2d(conv5_2, 512, [3, 3], scope='conv5_3')
pool5 = slim.max_pool2d(conv5_3, [2, 2], scope='pool5')
# Hyper-params for computing unsupervised loss
epsilon = 0.0001
alpha_c = 0.25
alpha_s = 0.37
lambda_smooth = 1.0
scale = 2 # for deconvolution
deltaWeights = {}
# Calculating flow derivatives
flow_width = tf.constant([[0, 0, 0], [0, 1, -1], [0, 0, 0]], tf.float32)
flow_width_filter = tf.reshape(flow_width, [3, 3, 1, 1])
flow_width_filter = tf.tile(flow_width_filter, [1, 1, 2, 1])
flow_height = tf.constant([[0, 0, 0], [0, 1, 0], [0, -1, 0]], tf.float32)
flow_height_filter = tf.reshape(flow_height, [3, 3, 1, 1])
flow_height_filter = tf.tile(flow_height_filter, [1, 1, 2, 1])
deltaWeights["flow_width_filter"] = flow_width_filter
deltaWeights["flow_height_filter"] = flow_height_filter
needImageGradients = False
deltaWeights["needImageGradients"] = needImageGradients
if needImageGradients:
# Calculating image derivatives
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
sobel_x_filter = tf.reshape(sobel_x, [3, 3, 1, 1])
sobel_y_filter = tf.transpose(sobel_x_filter, [1, 0, 2, 3])
deltaWeights["sobel_x_filter"] = sobel_x_filter
deltaWeights["sobel_y_filter"] = sobel_y_filter
# Expanding part
pr5 = slim.conv2d(pool5, 2, [3, 3], activation_fn=None, scope='pr5')
h5 = pr5.get_shape()[1].value
w5 = pr5.get_shape()[2].value
pr5_input = tf.image.resize_bilinear(inputs_norm, [h5, w5])
pr5_output = tf.image.resize_bilinear(outputs_norm, [h5, w5])
flow_scale_5 = 0.625 # (*20/32)
loss5, _ = loss_interp(pr5, pr5_input, pr5_output, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale_5, deltaWeights)
upconv4 = slim.conv2d_transpose(pool5, 256, [2*scale, 2*scale], stride=scale, scope='upconv4')
pr5to4 = slim.conv2d_transpose(pr5, 2, [2*scale, 2*scale], stride=scale, activation_fn=None, scope='up_pr5to4')
concat4 = tf.concat(3, [pool4, upconv4, pr5to4])
pr4 = slim.conv2d(concat4, 2, [3, 3], activation_fn=None, scope='pr4')
h4 = pr4.get_shape()[1].value
w4 = pr4.get_shape()[2].value
pr4_input = tf.image.resize_bilinear(inputs_norm, [h4, w4])
pr4_output = tf.image.resize_bilinear(outputs_norm, [h4, w4])
flow_scale_4 = 1.25 # (*20/16)
loss4, _ = loss_interp(pr4, pr4_input, pr4_output, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale_4, deltaWeights)
upconv3 = slim.conv2d_transpose(concat4, 128, [2*scale, 2*scale], stride=scale, scope='upconv3')
pr4to3 = slim.conv2d_transpose(pr4, 2, [2*scale, 2*scale], stride=scale, activation_fn=None, scope='up_pr4to3')
concat3 = tf.concat(3, [pool3, upconv3, pr4to3])
pr3 = slim.conv2d(concat3, 2, [3, 3], activation_fn=None, scope='pr3')
h3 = pr3.get_shape()[1].value
w3 = pr3.get_shape()[2].value
pr3_input = tf.image.resize_bilinear(inputs_norm, [h3, w3])
pr3_output = tf.image.resize_bilinear(outputs_norm, [h3, w3])
flow_scale_3 = 2.5 # (*20/8)
loss3, _ = loss_interp(pr3, pr3_input, pr3_output, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale_3, deltaWeights)
upconv2 = slim.conv2d_transpose(concat3, 64, [2*scale, 2*scale], stride=scale, scope='upconv2')
pr3to2 = slim.conv2d_transpose(pr3, 2, [2*scale, 2*scale], stride=scale, activation_fn=None, scope='up_pr3to2')
concat2 = tf.concat(3, [pool2, upconv2, pr3to2])
pr2 = slim.conv2d(concat2, 2, [3, 3], activation_fn=None, scope='pr2')
h2 = pr2.get_shape()[1].value
w2 = pr2.get_shape()[2].value
pr2_input = tf.image.resize_bilinear(inputs_norm, [h2, w2])
pr2_output = tf.image.resize_bilinear(outputs_norm, [h2, w2])
flow_scale_2 = 5.0 # (*20/4)
loss2, _ = loss_interp(pr2, pr2_input, pr2_output, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale_2, deltaWeights)
upconv1 = slim.conv2d_transpose(concat2, 32, [2*scale, 2*scale], stride=scale, scope='upconv1')
pr2to1 = slim.conv2d_transpose(pr2, 2, [2*scale, 2*scale], stride=scale, activation_fn=None, scope='up_pr2to1')
concat1 = tf.concat(3, [pool1, upconv1, pr2to1])
pr1 = slim.conv2d(concat1, 2, [3, 3], activation_fn=None, scope='pr1')
h1 = pr1.get_shape()[1].value
w1 = pr1.get_shape()[2].value
pr1_input = tf.image.resize_bilinear(inputs_norm, [h1, w1])
pr1_output = tf.image.resize_bilinear(outputs_norm, [h1, w1])
flow_scale_1 = 10.0 # (*20/2)
loss1, prev1 = loss_interp(pr1, pr1_input, pr1_output, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale_1, deltaWeights)
# Adding intermediate losses
all_loss = loss_weight[0]*loss1["total"] + loss_weight[1]*loss2["total"] + loss_weight[2]*loss3["total"] + \
loss_weight[3]*loss4["total"] + loss_weight[4]*loss5["total"]
slim.losses.add_loss(all_loss)
losses = [loss1, loss2, loss3, loss4, loss5]
flows_all = [pr1*flow_scale_1, pr2*flow_scale_2, pr3*flow_scale_3, pr4*flow_scale_4, pr5*flow_scale_5]
return losses, flows_all, prev1
def loss_interp(flows, inputs, outputs, epsilon, alpha_c, alpha_s, lambda_smooth, flow_scale, deltaWeights):
shape = inputs.get_shape()
shape = [int(dim) for dim in shape]
num_batch = shape[0]
height = shape[1]
width = shape[2]
channels = shape[3]
flow_channels = channels/3*2
needMask = True
needImageGradients = deltaWeights["needImageGradients"]
# Create border mask for image
border_ratio = 0.1
shortestDim = height
borderWidth = int(np.ceil(shortestDim * border_ratio))
smallerMask = tf.ones([height-2*borderWidth, width-2*borderWidth])
borderMask = tf.pad(smallerMask, [[borderWidth,borderWidth], [borderWidth,borderWidth]], "CONSTANT")
borderMask = tf.tile(tf.expand_dims(borderMask, 0), [num_batch, 1, 1])
borderMaskImg = tf.tile(tf.expand_dims(borderMask, 3), [1, 1, 1, channels])
borderMaskFlow = tf.tile(tf.expand_dims(borderMask, 3), [1, 1, 1, flow_channels])
# Create smoothness border mask for optical flow
smallerSmoothMaskx = tf.ones([height-1, width])
smallerSmoothMasky = tf.ones([height, width-1])
smoothnessMaskx = tf.pad(smallerSmoothMaskx, [[0,1], [0,0]], "CONSTANT") # vertical
smoothnessMasky = tf.pad(smallerSmoothMasky, [[0,0], [0,1]], "CONSTANT") # horizontal
smoothnessMask = tf.pack([smoothnessMasky, smoothnessMaskx], axis=2)
smoothnessMask = tf.tile(tf.expand_dims(smoothnessMask, 0), [num_batch, 1, 1, 1])
inputs_flat = tf.reshape(inputs, [num_batch, -1, channels])
outputs_flat = tf.reshape(outputs, [num_batch, -1, channels])
borderMask_flat = tf.reshape(borderMaskImg, [num_batch, -1, channels])
scaled_flows = tf.mul(flows, flow_scale)
flows_flat = tf.reshape(scaled_flows, [num_batch, -1, flow_channels])
floor_flows = tf.to_int32(tf.floor(flows_flat))
weights_flows = flows_flat - tf.floor(flows_flat)
# Construct the grids
pos_x = tf.range(height)
pos_x = tf.tile(tf.expand_dims(pos_x, 1), [1, width])
pos_x = tf.reshape(pos_x, [-1])
pos_y = tf.range(width)
pos_y = tf.tile(tf.expand_dims(pos_y, 0), [height, 1])
pos_y = tf.reshape(pos_y, [-1])
zero = tf.zeros([], dtype='int32')
# Warp two images based on optical flow
batch = []
for b in range(num_batch):
channel = []
x = floor_flows[b, :, 0] # U, horizontal displacement
y = floor_flows[b, :, 1] # V, vertical displacement
xw = weights_flows[b, :, 0]
yw = weights_flows[b, :, 1]
for c in range(channels):
x0 = pos_y + x
x1 = x0 + 1
y0 = pos_x + y
y1 = y0 + 1
x0 = tf.clip_by_value(x0, zero, width-1)
x1 = tf.clip_by_value(x1, zero, width-1)
y0 = tf.clip_by_value(y0, zero, height-1)
y1 = tf.clip_by_value(y1, zero, height-1)
idx_a = y0 * width + x0
idx_b = y1 * width + x0
idx_c = y0 * width + x1
idx_d = y1 * width + x1
Ia = tf.gather(outputs_flat[b, :, c], idx_a)
Ib = tf.gather(outputs_flat[b, :, c], idx_b)
Ic = tf.gather(outputs_flat[b, :, c], idx_c)
Id = tf.gather(outputs_flat[b, :, c], idx_d)
wa = (1-xw) * (1-yw)
wb = (1-xw) * yw
wc = xw * (1-yw)
wd = xw * yw
img = tf.mul(Ia, wa) + tf.mul(Ib, wb) + tf.mul(Ic, wc) + tf.mul(Id, wd)
channel.append(img)
batch.append(tf.pack(channel, axis=1))
reconstructs = tf.pack(batch)
# result = []
# Calculating image gradients
if needImageGradients:
rgb_images_list = []
for b_idx in xrange(num_batch):
image_idx = inputs[b_idx,:,:,:]
max_value = tf.reduce_max(image_idx)
min_value = tf.reduce_min(image_idx)
intensity_range = max_value - min_value
image_idx = tf.truediv(tf.scalar_mul(255.0, tf.sub(image_idx, min_value)), intensity_range)
image_idx_clip = tf.clip_by_value(tf.to_int32(image_idx), zero, 255)
rgb_images_list.append(image_idx_clip)
rgb_images = tf.pack(rgb_images_list, axis=0)
# result.append(rgb_images)
inputs_gray = tf.to_float(tf.image.rgb_to_grayscale(rgb_images))
# result.append(inputs_gray)
img_gradients_horizontal = tf.nn.depthwise_conv2d(inputs_gray, deltaWeights["sobel_x_filter"], [1,1,1,1], padding="SAME")
img_gradients_vertical = tf.nn.depthwise_conv2d(inputs_gray, deltaWeights["sobel_y_filter"], [1,1,1,1], padding="SAME")
gradientsMag = tf.sqrt(tf.pow(img_gradients_horizontal, 2) + tf.pow(img_gradients_vertical, 2))
# result.append(gradientsMag)
gradients_list = []
for b_idx in xrange(num_batch):
grad_idx = gradientsMag[b_idx,:,:,:]
max_value = tf.reduce_max(grad_idx)
min_value = tf.reduce_min(grad_idx)
intensity_range_grad = max_value - min_value
grad_idx = tf.truediv(tf.scalar_mul(1.0, tf.sub(grad_idx, min_value)), intensity_range_grad)
grad_idx_clip = tf.clip_by_value(grad_idx, 0.0, 1.0)
gradients_list.append(grad_idx_clip)
gradientsMask = tf.pack(gradients_list, axis=0)
gradientsMask_rgb = tf.tile(gradientsMask, [1,1,1,3])
gradientsMask_flat = tf.reshape(gradientsMask_rgb, [num_batch, -1, channels])
gradientsMaskFlow = tf.sub(1.0, gradientsMask)
gradientsMask_flow = tf.tile(gradientsMaskFlow, [1,1,1,2])
# result.append(gradientsMask_rgb)
# Recostruction loss
diff_reconstruct = tf.scalar_mul(255.0, tf.sub(reconstructs, inputs_flat))
eleWiseLoss = tf.pow(tf.square(diff_reconstruct) + tf.square(epsilon), alpha_c)
Charbonnier_reconstruct = 0.0
numValidPixels = 0.0
if needMask:
eleWiseLoss = tf.mul(borderMask_flat, eleWiseLoss)
if needImageGradients:
eleWiseLoss = tf.mul(gradientsMask_flat, eleWiseLoss)
validPixels = tf.equal(borderMask_flat, tf.ones_like(borderMask_flat))
numValidPixels = tf.to_float(tf.reduce_sum(tf.to_int32(validPixels)))
Charbonnier_reconstruct = tf.reduce_sum(eleWiseLoss) / numValidPixels
else:
Charbonnier_reconstruct = tf.reduce_mean(eleWiseLoss)
# Smoothness loss
horizontal_gradients = tf.nn.depthwise_conv2d(flows, deltaWeights["flow_width_filter"], [1,1,1,1], padding="SAME")
vertical_gradients = tf.nn.depthwise_conv2d(flows, deltaWeights["flow_height_filter"], [1,1,1,1], padding="SAME")
U_delta = tf.pack([horizontal_gradients[:,:,:,0], vertical_gradients[:,:,:,0]], axis=3)
V_delta = tf.pack([horizontal_gradients[:,:,:,1], vertical_gradients[:,:,:,1]], axis=3)
U_loss = 0.0
V_loss = 0.0
numValidFlows = numValidPixels/3*2
if needMask:
U_delta_clean = tf.mul(U_delta, smoothnessMask)
V_delta_clean = tf.mul(V_delta, smoothnessMask)
eleWiseULoss = tf.pow(tf.square(U_delta_clean) + tf.square(epsilon), alpha_s)
if needImageGradients:
eleWiseULoss = tf.mul(gradientsMask_flow, eleWiseULoss)
eleWiseULoss = tf.mul(borderMaskFlow, eleWiseULoss)
U_loss = tf.reduce_sum(eleWiseULoss) / numValidFlows
eleWiseVLoss = tf.pow(tf.square(V_delta_clean) + tf.square(epsilon), alpha_s)
if needImageGradients:
eleWiseVLoss = tf.mul(gradientsMask_flow, eleWiseVLoss)
eleWiseVLoss = tf.mul(borderMaskFlow, eleWiseVLoss)
V_loss = tf.reduce_sum(eleWiseVLoss) / numValidFlows
else:
U_loss = tf.reduce_mean(tf.pow(tf.square(U_delta) + tf.square(epsilon), alpha_s))
V_loss = tf.reduce_mean(tf.pow(tf.square(V_delta) + tf.square(epsilon), alpha_s))
loss_smooth = U_loss + V_loss
total_loss = Charbonnier_reconstruct + lambda_smooth * loss_smooth
# Define a loss structure
lossDict = {}
lossDict["total"] = total_loss
lossDict["Charbonnier_reconstruct"] = Charbonnier_reconstruct
lossDict["U_loss"] = U_loss
lossDict["V_loss"] = V_loss
# lossDict["result"] = result
return lossDict, tf.reshape(reconstructs, [num_batch, height, width, 3])