-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathflyingChairsUtils.py
438 lines (371 loc) · 14.7 KB
/
flyingChairsUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os, sys
import numpy as np
import cv2
def readFlow(fn):
""" Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
with open(fn, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print 'Magic number incorrect. Invalid .flo file'
return None
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
#print 'Reading %d x %d flo file' % (w, h)
data = np.fromfile(f, np.float32, count=2*w*h)
# Reshape data into 3D array (columns, rows, bands)
return np.resize(data, (h, w, 2))
def writeFlow(filename,uv,v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def norm(arr, axis=-1):
return np.sqrt(np.sum(arr**2, axis=axis))
def div_nonz(a,b):
anz = a[b != 0]
bnz = b[b != 0]
result = np.zeros_like(a)
result[b != 0] = anz / bnz
return result
def flow_ee(f1, f2, mask=None):
ee_tot = np.sqrt((f1[:,:,:,0] - f2[:,:,:,0])**2 + (f1[:,:,:,1] - f2[:,:,:,1])**2)
aee = np.mean(ee_tot, axis=None)
# return ee_tot, aee
return aee
def flow_ae(f1, f2, mask=None):
u = f1[:,:,:,0]
u_GT = f2[:,:,:,0]
v = f1[:,:,:,1]
v_GT = f2[:,:,:,1]
numerator = 1 + u * u_GT + v * v_GT
denominator = np.sqrt(1 + u**2 + v**2) * np.sqrt(1 + u_GT**2 + v_GT**2)
ae_tot = np.arccos(np.clip(numerator / denominator, -1, 1))
aae = np.mean(ae_tot, axis=None)
# return ae_tot, aae
return aae
def geoAugmentation(source, target):
"""
Includes random flip, translation, scale, rotation
"""
img0List = []
img1List = []
batch_size = source.shape[0]
height = source.shape[1]
width = source.shape[2]
for batch_idx in xrange(batch_size):
img0 = source[batch_idx,:,:,:]
img1 = target[batch_idx,:,:,:]
# translation
translate_x = np.random.uniform(low=-0.2, high=0.2, size=1)
translate_y = np.random.uniform(low=-0.2, high=0.2, size=1)
x_move = int(translate_x * width)
y_move = int(translate_y * height)
translation_matrix = np.float32([ [1,0,x_move], [0,1,y_move] ])
img0_translation = cv2.warpAffine(img0, translation_matrix, (width, height))
img1_translation = cv2.warpAffine(img1, translation_matrix, (width, height))
# img0List.append(np.expand_dims(img0_translation, 0))
# img1List.append(np.expand_dims(img1_translation, 0))
# print img0_translation.shape
# print img1_translation.shape
# rotation
rotation_ratio = np.random.uniform(low=-17, high=17, size=1)
center = (width / 2, height / 2)
M = cv2.getRotationMatrix2D(center, rotation_ratio, 1.0)
rotated_img0 = cv2.warpAffine(img0_translation, M, (width, height))
rotated_img1 = cv2.warpAffine(img1_translation, M, (width, height))
# img0List.append(np.expand_dims(rotated_img0, 0))
# img1List.append(np.expand_dims(rotated_img1, 0))
# print rotated_img0.shape
# print rotated_img1.shape
# scale
scale_ratio = np.random.uniform(low=0.9, high=2.0, size=1)
scaled_width = int(width * scale_ratio)
scaled_height = int(height * scale_ratio)
img0_scale = 0
img1_scale = 0
left_move, right_move, up_move, down_move = 0, 0, 0, 0
if scale_ratio > 1.0:
img0_scale = cv2.resize(rotated_img0, (scaled_width, scaled_height))
img1_scale = cv2.resize(rotated_img1, (scaled_width, scaled_height))
if (scaled_width - width) % 2 == 0:
left_move = (scaled_width - width) / 2
right_move = left_move
else:
left_move = (scaled_width - width - 1) / 2
right_move = left_move + 1
if (scaled_height - height) % 2 == 0:
up_move = (scaled_height - height) / 2
down_move = up_move
else:
up_move = (scaled_height - height - 1) / 2
down_move = up_move + 1
# print up_move, down_move, left_move, right_move
cond1 = (up_move == 0 and down_move == 0)
cond2 = (left_move == 0 and right_move == 0)
if cond1 and cond2:
img0_scale = img0_scale[:, :, :]
img1_scale = img1_scale[:, :, :]
elif cond1 and not cond2:
img0_scale = img0_scale[:, left_move:-right_move, :]
img1_scale = img1_scale[:, left_move:-right_move, :]
elif not cond1 and cond2:
img0_scale = img0_scale[up_move:-down_move, :, :]
img1_scale = img1_scale[up_move:-down_move, :, :]
else:
img0_scale = img0_scale[up_move:-down_move, left_move:-right_move, :]
img1_scale = img1_scale[up_move:-down_move, left_move:-right_move, :]
# print "cropping"
# print img0_scale.shape
# print img1_scale.shape
# img0List.append(np.expand_dims(img0_scale, 0))
# img1List.append(np.expand_dims(img1_scale, 0))
elif scale_ratio < 1.0:
img0_scale = cv2.resize(rotated_img0, (scaled_width, scaled_height))
img1_scale = cv2.resize(rotated_img1, (scaled_width, scaled_height))
if (width - scaled_width) % 2 == 0:
left_move = (width - scaled_width) / 2
right_move = left_move
else:
left_move = (width - scaled_width - 1) / 2
right_move = left_move + 1
if (height - scaled_height) % 2 == 0:
up_move = (height - scaled_height) / 2
down_move = up_move
else:
up_move = (height - scaled_height - 1) / 2
down_move = up_move + 1
img0_scale = cv2.copyMakeBorder(img0_scale,up_move,down_move,left_move,right_move,cv2.BORDER_CONSTANT,value=0) # top, bottom, left, right
img1_scale = cv2.copyMakeBorder(img1_scale,up_move,down_move,left_move,right_move,cv2.BORDER_CONSTANT,value=0)
# print "padding"
# print img0_scale.shape
# print img1_scale.shape
# img0List.append(np.expand_dims(img0_scale, 0))
# img1List.append(np.expand_dims(img1_scale, 0))
else:
img0_scale = rotated_img0
img1_scale = rotated_img1
# img0List.append(np.expand_dims(img0, 0))
# img1List.append(np.expand_dims(img1, 0))
# random flip
flip_prob = np.random.uniform(low=0.0, high=1.0, size=1)
img0_flip = 0
img1_flip = 0
if flip_prob >= 0.5:
img0_flip = np.fliplr(img0_scale)
img1_flip = np.fliplr(img1_scale)
# img0List.append(np.expand_dims(np.fliplr(img0), 0))
# img1List.append(np.expand_dims(np.fliplr(img1), 0))
# print np.fliplr(img0).shape
else:
img0_flip = img0_scale
img1_flip = img1_scale
# img0List.append(np.expand_dims(img0, 0))
# img1List.append(np.expand_dims(img1, 0))
# print img0.shape
img0List.append(np.expand_dims(img0_flip, 0))
img1List.append(np.expand_dims(img1_flip, 0))
return np.concatenate(img0List, axis=0), np.concatenate(img1List, axis=0)
def photoAugmentation(source, target, mean):
"""
Includes additive gaussian noise, changes in brightness, contrast, gamma and color
"""
img0List = []
img1List = []
batch_size = source.shape[0]
height = source.shape[1]
width = source.shape[2]
for batch_idx in xrange(batch_size):
img0 = source[batch_idx,:,:,:]
img1 = target[batch_idx,:,:,:]
# print "origin"
# print np.max(img0), np.min(img1)
# contrast and brightness change
contrast = np.random.uniform(low=-0.8, high=0.4, size=1)
bright_sigma = np.random.uniform(low=0, high=0.2, size=1)
brightnessImage = np.random.normal(0, bright_sigma, ([height,width,3]))
img0_contrast = contrast * img0 + brightnessImage
img1_contrast = contrast * img1 + brightnessImage
# print "contrast"
# print np.max(img0_contrast), np.min(img1_contrast)
# color change
color_changes = np.random.uniform(low=0.5, high=2, size=3)
color_change_B = color_changes[0]
color_change_G = color_changes[1]
color_change_R = color_changes[2]
img0_color_B = img0_contrast[:,:,0] * color_change_B
img0_color_G = img0_contrast[:,:,1] * color_change_G
img0_color_R = img0_contrast[:,:,2] * color_change_R
img0_color = np.stack([img0_color_B, img0_color_G, img0_color_R], axis=-1)
img1_color_B = img1_contrast[:,:,0] * color_change_B
img1_color_G = img1_contrast[:,:,1] * color_change_G
img1_color_R = img1_contrast[:,:,2] * color_change_R
img1_color = np.stack([img1_color_B, img1_color_G, img1_color_R], axis=-1)
# print "color"
# print np.max(img0_color), np.min(img0_color)
# clip value
img0_color = np.clip(img0_color, 0, 1)
img1_color = np.clip(img1_color, 0, 1)
# gamma
gamma = np.random.uniform(low=0.7, high=1.5, size=1)
gamma_inv = 1 / gamma
img0_gamma = np.power(img0_color, gamma_inv)
img1_gamma = np.power(img1_color, gamma_inv)
# print "gamma"
# print np.max(img0_gamma), np.min(img0_gamma)
# additive gaussian noise
sigma = np.random.uniform(low=0, high=0.04, size=1)
noiseImage = np.random.normal(0, sigma, ([height,width,3]))
img0_noise = img0_gamma + noiseImage
img1_noise = img1_gamma + noiseImage
# print "noise"
# print np.max(img0_noise), np.min(img0_noise)
# subtract mean
img0_noise[:,:,0] = img0_noise[:,:,0] - mean[0]/255.0
img0_noise[:,:,1] = img0_noise[:,:,1] - mean[1]/255.0
img0_noise[:,:,2] = img0_noise[:,:,2] - mean[2]/255.0
img1_noise[:,:,0] = img1_noise[:,:,0] - mean[0]/255.0
img1_noise[:,:,1] = img1_noise[:,:,1] - mean[1]/255.0
img1_noise[:,:,2] = img1_noise[:,:,2] - mean[2]/255.0
# print "mean"
# print np.max(img0_noise), np.min(img0_noise)
img0List.append(np.expand_dims(img0_noise, 0))
img1List.append(np.expand_dims(img1_noise, 0))
# print "one sample done"
return np.concatenate(img0List, axis=0), np.concatenate(img1List, axis=0)
def flowToColor(flow):
UNKNOWN_FLOW_THRESH = 1e9;
UNKNOWN_FLOW = 1e10;
height, width, nBands = flow.shape
if nBands != 2:
print('flowToColor: flow image must have two bands')
u = flow[:,:,0]
v = flow[:,:,1]
maxu = -999
maxv = -999
minu = 999
minv = 999
maxrad = -1
# fix unknown flow
idxUnknown = (abs(u)> UNKNOWN_FLOW_THRESH) | (abs(v)> UNKNOWN_FLOW_THRESH)
u[idxUnknown] = 0
v[idxUnknown] = 0
maxu = np.maximum(maxu, np.amax(u, axis=None))
minu = np.minimum(minu, np.amin(u, axis=None))
maxv = np.maximum(maxv, np.amax(v, axis=None))
minv = np.minimum(minv, np.amin(v, axis=None))
rad = np.sqrt(u**2 + v**2)
maxrad = np.maximum(maxrad, np.amax(rad, axis=None))
# fprintf('max flow: %.4f flow range: u = %.3f .. %.3f; v = %.3f .. %.3f\n', maxrad, minu, maxu, minv, maxv);
# if isempty(varargin) == 0:
# maxFlow = varargin{1};
# if maxFlow > 0
# maxrad = maxFlow;
# end;
# end;
eps = 2.22e-16
u = u / (maxrad + eps)
v = v / (maxrad + eps)
# compute color
img = computeColor(u, v)
return img
# % unknown flow
# IDX = repmat(idxUnknown, [1 1 3]);
# img(IDX) = 0;
def computeColor(u,v,logscale=False,scaledown=1,output=False):
"""
topleft is zero, u is horiz, v is vertical
red is 3 o'clock, yellow is 6, light blue is 9, blue/purple is 12
"""
colorwheel = makecolorwheel()
ncols = colorwheel.shape[0]
radius = np.sqrt(u**2 + v**2)
if output:
print("Maximum flow magnitude: %04f" % np.max(radius))
if logscale:
radius = np.log(radius + 1)
if output:
print("Maximum flow magnitude (after log): %0.4f" % np.max(radius))
radius = radius / scaledown
if output:
print("Maximum flow magnitude (after scaledown): %0.4f" % np.max(radius))
rot = np.arctan2(-v, -u) / np.pi
fk = (rot+1)/2 * (ncols-1) # -1~1 maped to 0~ncols
k0 = fk.astype(np.uint8) # 0, 1, 2, ..., ncols
k1 = k0+1
k1[k1 == ncols] = 0
f = fk - k0
ncolors = colorwheel.shape[1]
img = np.zeros(u.shape+(ncolors,))
for i in range(ncolors):
tmp = colorwheel[:,i]
col0 = tmp[k0]
col1 = tmp[k1]
col = (1-f)*col0 + f*col1
idx = radius <= 1
# increase saturation with radius
col[idx] = 1 - radius[idx]*(1-col[idx])
# out of range
col[~idx] *= 0.75
img[:,:,i] = np.floor(255*col).astype(np.uint8)
return img.astype(np.uint8)
def makecolorwheel():
# Create a colorwheel for visualization
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols,3))
col = 0
# RY
colorwheel[0:RY,0] = 1
colorwheel[0:RY,1] = np.arange(0,1,1./RY)
col += RY
# YG
colorwheel[col:col+YG,0] = np.arange(1,0,-1./YG)
colorwheel[col:col+YG,1] = 1
col += YG
# GC
colorwheel[col:col+GC,1] = 1
colorwheel[col:col+GC,2] = np.arange(0,1,1./GC)
col += GC
# CB
colorwheel[col:col+CB,1] = np.arange(1,0,-1./CB)
colorwheel[col:col+CB,2] = 1
col += CB
# BM
colorwheel[col:col+BM,2] = 1
colorwheel[col:col+BM,0] = np.arange(0,1,1./BM)
col += BM
# MR
colorwheel[col:col+MR,2] = np.arange(1,0,-1./MR)
colorwheel[col:col+MR,0] = 1
return colorwheel