-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathecobee_csv.py
296 lines (264 loc) · 10.8 KB
/
ecobee_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from argparse import ArgumentParser
import datetime
from io import StringIO
import logging
import os
from pandas import DataFrame
import pandas as pd
import requests
from ecobee_config import EcobeeConfig, DEFAULT_CONFIG_FILENAME
from ecobee_setup import EcobeeSetup
# First values here are Ecobee's request column names, second are readable names used for the CSV file header
REQUEST_COLUMNS = (
("auxHeat1", "Aux Heat (sec)"),
("auxHeat2", "Aux Heat Stage 2 (sec)"),
("auxHeat3", "Aux Heat Stage 3 (sec)"),
("compCool1", "Cool Stage 1 (sec)"),
("compCool2", "Cool Stage 2 (sec)"),
("compHeat1", "Heat Stage 1 (sec)"),
("compHeat2", "Heat Stage 2 (sec)"),
("dehumidifier", "Dehumidifier (sec)"),
("dmOffset", "Demand Mgmt Offset (F)"),
("economizer", "Economizer Runtime (sec)"),
("fan", "Fan (sec)"),
("humidifier", "Humidifier (sec)"),
("hvacMode", "HVAC Mode"),
("outdoorHumidity", "Outdoor Humidity (%)"),
("outdoorTemp", "Outdoor Temp (F)"),
("sky", "Sky Cover"),
("ventilator", "Ventilator (sec)"),
("wind", "Wind Speed (km/h)"),
("zoneAveTemp", "Indoor Temp Avg (F)"),
("zoneCalendarEvent", "Override Event"),
("zoneClimate", "Climate Mode"),
("zoneCoolTemp", "Zone Cool Temp"),
("zoneHeatTemp", "Zone Heat Temp"),
("zoneHumidity", "Humidity Avg (%)"),
("zoneHumidityHigh", "Humidity High (%)"),
("zoneHumidityLow", "Humidity Low (%)"),
("zoneHvacMode", "HVAC System Mode"),
("zoneOccupancy", "Zone Occupancy"),
)
THERMOSTAT_ID_COLUMN = "Thermostat ID"
ALL_COLUMNS = [THERMOSTAT_ID_COLUMN, "Date", "Time"] + [column[1] for column in REQUEST_COLUMNS]
CSV_HEADER_ROW = ",".join(ALL_COLUMNS)
class EcobeeCSV:
def __init__(self, config):
self.config = config
# Fetch history at given days and save to CSV, overwriting previous fetched data for range
def update(self, days_ago_start, days_ago_end):
self.__refresh_tokens()
self.__fetch_thermostats()
existing_df = self.__read_csv()
new_data_rows = self.__fetch_data(
days_ago_start=days_ago_start, days_ago_end=days_ago_end
)
new_df = pd.read_csv(StringIO("\n".join(new_data_rows)), names=ALL_COLUMNS)
updated_df = EcobeeCSV.update_data(existing_df, new_df)
updated_df.to_csv(self.config.csv_location)
# Fetch all history and save to CSV, overwriting all
def update_all_history(self):
choice = input(
"This will overwrite any existing file at "
+ self.config.csv_location
+ ", continue? (y/n) "
)
if choice.lower() != "y":
return
self.__refresh_tokens()
self.__fetch_thermostats()
# Already provided as CSV, write directly
csv_lines = self.__fetch_all_data()
with open(self.config.csv_location, "w") as csv_file:
csv_file.write(CSV_HEADER_ROW + "\n")
for line in csv_lines:
csv_file.write(line + "\n")
# Refresh access and refresh tokens
def __refresh_tokens(self):
logging.info("***Refreshing tokens***")
refresh_req_data = {
"grant_type": "refresh_token",
"code": self.config.refresh_token,
"client_id": self.config.api_key,
}
response = requests.post("https://api.ecobee.com/token", data=refresh_req_data)
refresh_json = response.json()
logging.debug(f"Refresh token JSON: {refresh_json}")
self.config.access_token = refresh_json["access_token"]
self.config.refresh_token = refresh_json["refresh_token"]
self.config.save()
# Fetch list of thermostats and store ids
def __fetch_thermostats(self):
logging.info("***Fetching thermostats***")
url = (
'https://api.ecobee.com/1/thermostat?format=json&body={"selection":{"selectionType":"registered",'
'"selectionMatch":""}} '
)
response = requests.get(url, headers=self.config.auth_header())
thermostat_json = response.json()
logging.debug(f"Thermostat JSON: {thermostat_json}")
thermostat_ids = []
for thermostat in thermostat_json["thermostatList"]:
thermostat_ids.append(thermostat["identifier"])
self.config.thermostat_ids = thermostat_ids
self.config.save()
# Fetch historical data for first thermostat
def __fetch_data(self, days_ago_start, days_ago_end) -> DataFrame:
if days_ago_start <= days_ago_end:
raise ValueError("Days ago start must be greater than days ago end!")
if days_ago_end - days_ago_start > 30:
raise ValueError("Range to fetch must not exceed 30 days!")
start_date = date_string(days_ago=days_ago_start)
end_date = date_string(days_ago=days_ago_end)
logging.info("***Fetching data from " + start_date + " to " + end_date + "***")
columns_csv = ",".join([column[0] for column in REQUEST_COLUMNS])
url = (
'https://api.ecobee.com/1/runtimeReport?format=json&body={"startDate":"'
+ start_date
+ '"'
+ ',"endDate":"'
+ end_date
+ '"'
+ ',"columns":"'
+ columns_csv
+ '"'
+ ',"selection":{"selectionType":"thermostats","selectionMatch":"'
+ ",".join(self.config.thermostat_ids)
+ '"}}'
)
logging.debug(f"Data fetch URL: {url}")
response = requests.get(url, headers=self.config.auth_header())
report_json = response.json()
# Flattened rows of data with initial thermostat id column
data = []
for report in report_json["reportList"]:
row_list = report.get("rowList")
thermostat_id = report.get("thermostatIdentifier")
for row in row_list:
data.append(f"{thermostat_id},{row}")
logging.debug(f"Report had {len(data)} rows")
return data
# Find earliest month with data and then download all data from that point until now
def __fetch_all_data(self) -> DataFrame:
logging.info("***Fetching all data***")
history_days_ago = 30
logging.info("Attempting to find when thermostat history began")
# Keep looking for data until we hit two years max or break because we found data start
while history_days_ago < 730:
# Fetch only one day's worth of data per month to move fast
sample_month_data = self.__fetch_data(
days_ago_start=history_days_ago, days_ago_end=history_days_ago - 1
)
start_index = actual_data_start_index(data=sample_month_data)
if start_index == -1:
break
history_days_ago += 30
# Should now have max number of days to fetch. Start from history_days_ago, subtract 30 and fetch until we hit 0
all_data = []
is_first = True
logging.info(
"Downloading history starting " + str(history_days_ago) + " days ago"
)
while history_days_ago > 0:
month_data = self.__fetch_data(
days_ago_start=history_days_ago, days_ago_end=history_days_ago - 30
)
# First month fetched will have garbage data, remove it
if is_first:
month_data = month_data[actual_data_start_index(data=month_data) :]
is_first = False
all_data.extend(month_data)
history_days_ago = history_days_ago - 30
return all_data
# Read existing CSV data if exists
def __read_csv(self) -> DataFrame:
logging.info("***Reading CSV from " + self.config.csv_location + "***")
if not os.path.exists(self.config.csv_location):
return DataFrame()
return pd.read_csv(self.config.csv_location)
# Override any old data with new data, sort it and return it
@staticmethod
def update_data(existing_df: DataFrame, new_df: DataFrame) -> DataFrame:
if THERMOSTAT_ID_COLUMN not in existing_df.columns:
existing_df.insert(0, THERMOSTAT_ID_COLUMN, 0)
if THERMOSTAT_ID_COLUMN not in new_df.columns:
new_df.insert(0, THERMOSTAT_ID_COLUMN, 0)
indices = [THERMOSTAT_ID_COLUMN, "Date", "Time"]
existing_df = existing_df.reset_index(drop=True).set_index(indices)
new_df = new_df.reset_index(drop=True).set_index(indices)
existing_df.update(new_df)
return existing_df.combine_first(new_df)
# Converts days ago int to date string like 2017-08-07
def date_string(days_ago):
today = datetime.date.today()
day = today - datetime.timedelta(days=days_ago)
return day.strftime("%Y-%m-%d")
# Returns index of first row when "actual" thermostat data exists (not just weather)
def actual_data_start_index(data):
start_index = -1
current_index = 0
for row in data:
if is_actual_data_row(row=row):
start_index = current_index
break
current_index = current_index + 1
return start_index
# If row has actual thermostat data and not just weather data
def is_actual_data_row(row):
columns = row.split(",")
non_empty_count = columns.count("")
# Arbitrary number of "empty" columns to look for, may need to change this.
# Current data shows only these consistently empty columns: dmOffset,skyCover,zoneCalendarEvent
return non_empty_count < 5
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"-d1",
"--days-ago-start",
type=int,
default=1,
help="Days ago to start history fetch (max 30 days total length)",
)
parser.add_argument(
"-d2",
"--days-ago-end",
type=int,
default=0,
help="Days ago to end history fetch (max 30 days total length)",
)
parser.add_argument(
"--all-time",
action="store_true",
help="Download all data 30 days at a time and save to file",
)
parser.add_argument(
"-d",
"--debug",
help="Debug output",
action="store_const",
dest="loglevel",
const=logging.DEBUG,
default=logging.INFO,
)
parser.add_argument(
"-c",
"--config",
help="Config JSON location",
type=str,
default=DEFAULT_CONFIG_FILENAME,
)
parser.add_argument("--setup", action="store_true", help="Setup ecobee connection")
args = parser.parse_args()
logging.basicConfig(level=args.loglevel, format="%(message)s")
config = EcobeeConfig(config_location=args.config)
if args.setup:
EcobeeSetup(config).setup()
else:
config.load()
ecobee = EcobeeCSV(config)
if args.all_time:
ecobee.update_all_history()
else:
ecobee.update(
days_ago_start=args.days_ago_start, days_ago_end=args.days_ago_end
)