-
Notifications
You must be signed in to change notification settings - Fork 789
/
Copy pathViewGraphExample.cpp
136 lines (109 loc) · 4.95 KB
/
ViewGraphExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ViewGraphExample.cpp
* @brief View-graph calibration on a simulated dataset, a la Sweeney 2015
* @author Frank Dellaert
* @date October 2024
*/
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/EdgeKey.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/TransferFactor.h>
#include <vector>
#include "SFMdata.h"
#include "gtsam/inference/Key.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2 cal(50.0, 50.0, 0.0, 50.0, 50.0);
// Create the set of 8 ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of 4 ground-truth poses
vector<Pose3> poses = posesOnCircle(4, 30);
// Calculate ground truth fundamental matrices, 1 and 2 poses apart
auto F1 = FundamentalMatrix(cal.K(), poses[0].between(poses[1]), cal.K());
auto F2 = FundamentalMatrix(cal.K(), poses[0].between(poses[2]), cal.K());
// Simulate measurements from each camera pose
std::array<std::array<Point2, 8>, 4> p;
for (size_t i = 0; i < 4; ++i) {
PinholeCamera<Cal3_S2> camera(poses[i], cal);
for (size_t j = 0; j < 8; ++j) {
p[i][j] = camera.project(points[j]);
}
}
// This section of the code is inspired by the work of Sweeney et al.
// [link](sites.cs.ucsb.edu/~holl/pubs/Sweeney-2015-ICCV.pdf) on view-graph
// calibration. The graph is made up of transfer factors that enforce the
// epipolar constraint between corresponding points across three views, as
// described in the paper. Rather than adding one ternary error term per point
// in a triplet, we add three binary factors for sparsity during optimization.
// In this version, we only include triplets between 3 successive cameras.
NonlinearFactorGraph graph;
using Factor = TransferFactor<FundamentalMatrix>;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
// Vectors to collect tuples for each factor
std::vector<std::tuple<Point2, Point2, Point2>> tuples1, tuples2, tuples3;
// Collect data for the three factors
for (size_t j = 0; j < 8; ++j) {
tuples1.emplace_back(p[a][j], p[b][j], p[c][j]);
tuples2.emplace_back(p[a][j], p[c][j], p[b][j]);
tuples3.emplace_back(p[c][j], p[b][j], p[a][j]);
}
// Add transfer factors between views a, b, and c. Note that the EdgeKeys
// are crucial in performing the transfer in the right direction. We use
// exactly 8 unique EdgeKeys, corresponding to 8 unknown fundamental
// matrices we will optimize for.
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), tuples1);
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), tuples2);
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(a, b), tuples3);
}
auto formatter = [](Key key) {
EdgeKey edge(key);
return (std::string)edge;
};
graph.print("Factor Graph:\n", formatter);
// Create a delta vector to perturb the ground truth
// We can't really go far before convergence becomes problematic :-(
Vector7 delta;
delta << 1, 2, 3, 4, 5, 6, 7;
delta *= 1e-5;
// Create the data structure to hold the initial estimate to the solution
Values initialEstimate;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
initialEstimate.insert(EdgeKey(a, b), F1.retract(delta));
initialEstimate.insert(EdgeKey(a, c), F2.retract(delta));
}
initialEstimate.print("Initial Estimates:\n", formatter);
graph.printErrors(initialEstimate, "errors: ", formatter);
/* Optimize the graph and print results */
LevenbergMarquardtParams params;
params.setlambdaInitial(1000.0); // Initialize lambda to a high value
params.setVerbosityLM("SUMMARY");
Values result =
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
cout << "initial error = " << graph.error(initialEstimate) << endl;
cout << "final error = " << graph.error(result) << endl;
result.print("Final results:\n", formatter);
cout << "Ground Truth F1:\n" << F1.matrix() << endl;
cout << "Ground Truth F2:\n" << F2.matrix() << endl;
return 0;
}
/* ************************************************************************* */