-
Notifications
You must be signed in to change notification settings - Fork 789
/
Copy pathSFMdata.h
104 lines (83 loc) · 3.37 KB
/
SFMdata.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMdata.h
* @brief Simple example for the structure-from-motion problems
* @author Duy-Nguyen Ta
*/
/**
* A structure-from-motion example with landmarks, default arguments give:
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
* Passing function argument allows to specify an initial position, a pose
* increment and step count.
*/
#pragma once
// As this is a full 3D problem, we will use Pose3 variables to represent the
// camera positions and Point3 variables (x, y, z) to represent the landmark
// coordinates. Camera observations of landmarks (i.e. pixel coordinates) will
// be stored as Point2 (x, y).
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
// We will also need a camera object to hold calibration information and perform
// projections.
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
namespace gtsam {
/// Create a set of ground-truth landmarks
std::vector<Point3> createPoints() {
std::vector<Point3> points;
points.push_back(Point3(10.0, 10.0, 10.0));
points.push_back(Point3(-10.0, 10.0, 10.0));
points.push_back(Point3(-10.0, -10.0, 10.0));
points.push_back(Point3(10.0, -10.0, 10.0));
points.push_back(Point3(10.0, 10.0, -10.0));
points.push_back(Point3(-10.0, 10.0, -10.0));
points.push_back(Point3(-10.0, -10.0, -10.0));
points.push_back(Point3(10.0, -10.0, -10.0));
return points;
}
/**
* Create a set of ground-truth poses
* Default values give a circular trajectory, radius 30 at pi/4 intervals,
* always facing the circle center
*/
std::vector<Pose3> createPoses(
const Pose3& init = Pose3(Rot3::Ypr(M_PI_2, 0, -M_PI_2), {30, 0, 0}),
const Pose3& delta = Pose3(Rot3::Ypr(0, -M_PI_4, 0),
{sin(M_PI_4) * 30, 0, 30 * (1 - sin(M_PI_4))}),
int steps = 8) {
std::vector<Pose3> poses;
poses.reserve(steps);
poses.push_back(init);
for (int i = 1; i < steps; ++i) {
poses.push_back(poses[i - 1].compose(delta));
}
return poses;
}
/**
* Create regularly spaced poses with specified radius and number of cameras
*/
std::vector<Pose3> posesOnCircle(int num_cameras = 8, double R = 30) {
const double theta = 2 * M_PI / num_cameras;
// Initial pose at angle 0, position (R, 0, 0), facing the center with Y-axis
// pointing down
const Pose3 init(Rot3::Ypr(M_PI_2, 0, -M_PI_2), {R, 0, 0});
// Delta rotation: rotate by -theta around Z-axis (counterclockwise movement)
Rot3 delta_rotation = Rot3::Ypr(0, -theta, 0);
// Delta translation in world frame
Vector3 delta_translation_world(R * (cos(theta) - 1), R * sin(theta), 0);
// Transform delta translation to local frame of the camera
Vector3 delta_translation_local =
init.rotation().inverse() * delta_translation_world;
// Define delta pose
const Pose3 delta(delta_rotation, delta_translation_local);
// Generate poses using createPoses
return createPoses(init, delta, num_cameras);
}
} // namespace gtsam