forked from filippolipparini/ddPCM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjacobi_diis.f90
439 lines (434 loc) · 11 KB
/
jacobi_diis.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
!---------------------------------------------------------------------------------------------
! Purpose : Jacobi/DIIS solver
!
! variables:
!
! n : integer, input, size of the matrix
!
! lprint : integer, input, printing flag.
!
! diis_max : integer, input, number of points to be used for diis extrapolation
!
! if diis_max = 0, this is just a Jacobi solver.
!
! norm : integer, input, norm to be used to evaluate convergence
! 1: max |x_new - x|
! 2: rms (x_new - x)
! 3: rms (x_new - x) and max |x_new - x|
! 4: norm computed by the user-provided function u_norm(n,x)
!
! tol : real, input, convergence criterion. if norm = 3, convergence is
! achieved when rms (x_new - x) < tol and max |x_new - x| < 10*tol.
!
! rhs : real, dimension(n), input, right-hand side of the linear system
!
! x : real, dimension(n). In input, a guess of the solution (can be zero).
! In output, the solution
!
! n_iter : integer, in input, the maximum number of iterations. In output,
! the number of iterations needed to converge.
!
! ok : logical, output, T if the solver converged, false otherwise.
!
! matvec : external, subroutine to compute the required matrix-vector multiplication
! format: subroutine matvec(n,x,y)
!
! dm1vec : external, subroutine to apply the inverse diagonal matrix to a vector.
! format: subroutine dm1vec(n,x,y)
!
! u_norm : external, optional function to compute the norm of a vector.
! format: real*8 function u_norm(n,x)
!
!---------------------------------------------------------------------------------------------
subroutine jacobi_diis( n, lprint, diis_max, norm, tol, rhs, x, n_iter, ok, matvec, &
dm1vec, u_norm)
!
implicit none
integer, intent(in) :: n, diis_max, norm, lprint
real*8, intent(in) :: tol
real*8, dimension(n), intent(in) :: rhs
real*8, dimension(n), intent(inout) :: x
integer, intent(inout) :: n_iter
logical, intent(inout) :: ok
external :: matvec, dm1vec
real*8, optional :: u_norm
external :: u_norm
!
integer :: it, nmat, istatus, lenb
real*8 :: rms_norm, max_norm, tol_max
logical :: dodiis
!
real*8, allocatable :: x_new(:), y(:), x_diis(:,:), e_diis(:,:), bmat(:,:)
!
!---------------------------------------------------------------------------------------------
!
! check inputs
if ( (norm.eq.4) .and. (.not.present(u_norm)) ) then
write(6,*) ' must provide a function norm(n,x) to evaluate the norm of the increment'
stop
endif
!
! DIIS extrapolation flag
dodiis = (diis_max.ne.0)
!
! set tolerance
tol_max = 10.0d0 * tol
!
! extrapolation required
if (dodiis) then
!
! allocate workspaces
lenb = diis_max + 1
allocate( x_diis(n,diis_max), e_diis(n,diis_max), bmat(lenb,lenb) , stat=istatus )
if (istatus .ne. 0) then
write(*,*) ' jacobi_diis: [1] failed allocation (diis)'
stop
endif
!
! an enigmatic constant
nmat = 1
!
endif
!
! allocate workspaces
allocate( x_new(n), y(n) , stat=istatus )
if (istatus .ne. 0) then
write(*,*) ' jacobi_diis: [2] failed allocation (scratch)'
stop
endif
!
! Jacobi iterations
! =================
do it = 1, n_iter
!
! y = rhs - O x
call matvec( n, x, y )
y = rhs - y
!
! x_new = D^-1 y
call dm1vec(n,y,x_new)
!
! DIIS extrapolation
! ==================
if (dodiis) then
!
x_diis(:,nmat) = x_new
e_diis(:,nmat) = x_new - x
!
call diis(n,nmat,diis_max,x_diis,e_diis,bmat,x_new)
!
endif
!
! increment
x = x_new - x
!
! rms/max norm of increment
if ( norm.le.3 ) then
!
! compute norm
call rmsvec( n, x, rms_norm, max_norm )
!
! check norm
if ( norm.eq.1 ) then
!
ok = (rms_norm.lt.tol)
elseif ( norm.eq.2 ) then
!
ok = (max_norm.lt.tol)
!
else
ok = (rms_norm.lt.tol) .and. (max_norm.lt.tol_max)
!
endif
!
! user-provided norm of increment
elseif ( norm.eq.4 ) then
!
! just a placeholder for printing
max_norm = -1.d0
!
! compute norm
rms_norm = u_norm( n, x )
!
! check norm
ok = (rms_norm.lt.tol)
!
endif
!
! printing
if ( lprint.gt.0 ) then
if (norm.eq.1) then
write(*,110) it, 'max', max_norm
else if (norm.eq.2) then
write(*,110) it, 'rms', rms_norm
else if (norm.eq.3) then
write(*,100) it, rms_norm, max_norm
else if (norm.eq.4) then
write(*,120) it, rms_norm
end if
end if
100 format(t3,'iter=',i4,' residual norm (rms,max): ', 2d14.4 )
110 format(t3,'iter=',i4,' residual norm (',a,'): ', d14.4 )
120 format(t3,'iter=',i4,' residual norm: ', d14.4 )
!
! update
x = x_new
!
! EXIT Jacobi loop here
! =====================
if (ok) exit
!
enddo
!
! record number of Jacobi iterations
n_iter = it
!
return
!
!
endsubroutine jacobi_diis
!---------------------------------------------------------------------------------------------
!
!
!
!---------------------------------------------------------------------------------------------
!
subroutine diis(n,nmat,ndiis,x,e,b,xnew)
implicit none
integer, intent(in) :: n, ndiis
integer, intent(inout) :: nmat
real*8, dimension(n,ndiis), intent(inout) :: x, e
real*8, dimension(ndiis+1,ndiis+1), intent(inout) :: b
real*8, dimension(n), intent(inout) :: xnew
!
integer :: nmat1, i, istatus
integer :: j, k
logical :: ok
!
real*8, allocatable :: bloc(:,:), cex(:)
!
real*8, parameter :: zero = 0.0d0, one = 1.0d0
!
!------------------------------------------------------------------------------
!
if (nmat.ge.ndiis) then
do j = 2, nmat - 10
do k = 2, nmat - 10
b(j,k) = b(j+10,k+10)
end do
end do
do j = 1, nmat - 10
x(:,j) = x(:,j+10)
e(:,j) = e(:,j+10)
end do
nmat = nmat - 10
end if
nmat1 = nmat + 1
allocate (bloc(nmat1,nmat1),cex(nmat1) , stat=istatus)
if ( istatus.ne.0 ) then
write(*,*) 'diis: allocation failed!'
stop
endif
call makeb(n,nmat,ndiis,e,b)
bloc = b(1:nmat1,1:nmat1)
cex = zero
cex(1) = one
call gjinv(nmat1,1,bloc,cex,ok)
if (.not. ok) then
nmat = 1
return
end if
xnew = zero
do i = 1, nmat
xnew = xnew + cex(i+1)*x(:,i)
end do
nmat = nmat + 1
deallocate (bloc,cex , stat=istatus)
if ( istatus.ne.0 ) then
write(*,*) 'diis: deallocation failed!'
stop
endif
!
return
end subroutine diis
!
subroutine makeb(n,nmat,ndiis,e,b)
implicit none
integer, intent(in) :: n, nmat, ndiis
real*8, dimension(n,ndiis), intent(in) :: e
real*8, dimension(ndiis+1,ndiis+1), intent(inout) :: b
!
integer :: i
real*8 :: bij
real*8, parameter :: zero = 0.0d0, one = 1.0d0
! 1st built
if (nmat.eq.1) then
!
! [ 0 | 1 ]
! b = [ --+---- ]
! [ 1 | e*e ]
!
b(1,1) = zero
b(1,2) = one
b(2,1) = one
b(2,2) = dot_product(e(:,1),e(:,1))
!
! subsequent builts
else
!
! first, update the lagrangian line:
b(nmat+1,1) = one
b(1,nmat+1) = one
!
! now, compute the new matrix elements:
do i = 1, nmat - 1
bij = dot_product(e(:,i),e(:,nmat))
b(nmat+1,i+1) = bij
b(i+1,nmat+1) = bij
end do
b(nmat+1,nmat+1) = dot_product(e(:,nmat),e(:,nmat))
end if
!
return
end subroutine makeb
!
subroutine gjinv(n,nrhs,a,b,ok)
implicit none
!
integer, intent(in) :: n, nrhs
logical, intent(inout) :: ok
real*8, dimension(n,n), intent(inout) :: a
real*8, dimension(n,nrhs), intent(inout) :: b
!
integer :: i, j, k, irow, icol, istatus
real*8 :: big, dum, pinv
real*8, parameter :: zero = 0.0d0, one = 1.0d0
!
integer, allocatable :: indxc(:), indxr(:), piv(:)
real*8, allocatable :: scr(:)
!
allocate (indxc(n), indxr(n), piv(n) , stat=istatus)
if ( istatus.ne.0 ) then
write(*,*)'gjinv: allocation failed! [1]'
stop
endif
allocate (scr(n) , stat=istatus)
if ( istatus.ne.0 ) then
write(*,*)'gjinv: allocation failed! [2]'
stop
endif
!
ok = .false.
piv = 0
!
irow = 0
icol = 0
do i = 1, n
big = zero
do j = 1, n
if (piv(j).ne.1) then
do k = 1, n
if (piv(k).eq.0) then
if (abs(a(j,k)).gt.big) then
big = abs(a(j,k))
irow = j
icol = k
end if
end if
end do
end if
end do
!
piv(icol) = piv(icol) + 1
if (piv(icol) .gt. 1) then
write(*,1000)
return
end if
if (irow.ne.icol) then
scr = a(irow,:)
a(irow,:) = a(icol,:)
a(icol,:) = scr
scr(1:nrhs) = b(irow,:)
b(irow,:) = b(icol,:)
b(icol,:) = scr(1:nrhs)
end if
!
indxr(i) = irow
indxc(i) = icol
!
if (a(icol,icol) .eq. zero) then
write(*,1000)
return
end if
!
pinv = one/a(icol,icol)
a(icol,icol) = one
a(icol,:) = a(icol,:)*pinv
b(icol,:) = b(icol,:)*pinv
!
do j = 1, n
if (j.ne.icol) then
dum = a(j,icol)
a(j,icol) = zero
a(j,:) = a(j,:) - a(icol,:)*dum
b(j,:) = b(j,:) - b(icol,:)*dum
end if
end do
end do
!
do j = n, 1, -1
if (indxr(j) .ne. indxc(j)) then
scr = a(:,indxr(j))
a(:,indxr(j)) = a(:,indxc(j))
a(:,indxc(j)) = scr
end if
end do
!
ok = .true.
deallocate (indxr,indxc,piv,scr , stat=istatus)
if ( istatus.ne.0 ) then
write(*,*)'gjinv: deallocation failed! [1]'
stop
endif
return
1000 format (' warning: singular matrix in gjinv!')
end subroutine gjinv
!
!------------------------------------------------------------------------------
! Purpose : compute root-mean-square and max norm
!------------------------------------------------------------------------------
subroutine rmsvec( n, v, vrms, vmax )
!
implicit none
integer, intent(in) :: n
real*8, dimension(n), intent(in) :: v
real*8, intent(inout) :: vrms, vmax
!
integer :: i
real*8, parameter :: zero=0.0d0
!
!------------------------------------------------------------------------------
!
! initialize
vrms = zero
vmax = zero
!
! loop over entries
do i = 1,n
!
! max norm
vmax = max(vmax,abs(v(i)))
!
! rms norm
vrms = vrms + v(i)*v(i)
!
enddo
!
! the much neglected square root
vrms = sqrt(vrms/dble(n))
!
return
!
!
endsubroutine rmsvec
!------------------------------------------------------------------------------