-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
96 lines (78 loc) · 3.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
from dataclasses import dataclass, field
from datetime import datetime
from typing import List, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments, set_seed
import evaluation.tasks # noqa: F401
from evaluation.tasks.auto_task import AutoTask
from evaluation.utils.log import get_logger
@dataclass
class EvaluationArguments:
"""
Arguments for any adjustable params in this evaluation script
"""
model_name_or_path: str = field(
metadata={"help": "The model checkpoint that we want to evaluate, could be name or the path."}
)
eval_tasks: List[str] = field(metadata={"help": "A list of tasks to run the evaluation on, e.g. tydiqa_secondary"})
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name."}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name."}
)
tag: Optional[str] = field(default=None, metadata={"help": "Identifier for the evaluation run."})
english_only: Optional[bool] = field(default=True, metadata={"help": "Whether to run evaluation in English only."})
data_dir: Optional[str] = field(default=None, metadata={"help": "Path to the local dataset folder"})
def main():
parser = HfArgumentParser((EvaluationArguments, TrainingArguments))
eval_args, train_args = parser.parse_args_into_dataclasses()
if not eval_args.eval_tasks:
raise ValueError("Must provide at least one eval task!")
if "jigsaw_toxicity_pred" in eval_args.eval_tasks:
if eval_args.data_dir is None:
raise ValueError(
"Must provide data path for jigsaw_toxicity_pred. Data needs to be \
downloaded manually from Kaggle and saved into a local directory."
)
if not os.path.exists(eval_args.data_dir):
raise ValueError(
"Data path for jigsaw_toxicity_pred does not exist. Data needs to be \
downloaded manually from Kaggle and saved into a local directory."
)
# initialize device
device = torch.device(train_args.device)
logger = get_logger()
logger.info(f"Beginning evaluation on device {train_args.device}")
# Load model & tokenizer
logger.info("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(eval_args.tokenizer_name or eval_args.model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(
eval_args.model_name_or_path,
pad_token_id=tokenizer.eos_token,
)
model.config.pad_token_id = model.config.eos_token_id
model.resize_token_embeddings(len(tokenizer))
model.to(device)
# Exporting results
tag = eval_args.tag or datetime.now().strftime("%y%m%d_%H%M%S")
output_dir = os.path.join(train_args.output_dir, tag)
os.makedirs(output_dir, exist_ok=True)
for eval_task in eval_args.eval_tasks:
logger.info(f"Benchmarking {eval_task}...")
task = AutoTask.from_task_name(
eval_task,
model=model,
tokenizer=tokenizer,
device=device,
english_only=eval_args.english_only,
data_dir=eval_args.data_dir,
)
set_seed(train_args.seed)
task.evaluate()
task.save_metrics(output_dir, logger)
if __name__ == "__main__":
main()