diff --git a/docs/src/simplehopf.md b/docs/src/simplehopf.md index 79dd7c75..7e87850c 100644 --- a/docs/src/simplehopf.md +++ b/docs/src/simplehopf.md @@ -18,7 +18,7 @@ More precisely, if $\mathbf{J} \equiv d\mathbf{F}(x_0,p_0)$, then we have $\math ### Expression of the coefficients -The coefficients $a,b$ above are computed as follows[^Haragus]: +The coefficients $a,l_1$ above are computed as follows[^Haragus]: $$a=\left\langle\mathbf{F}_{11}(\zeta)+2 \mathbf{F}_{20}\left(\zeta, \Psi_{001}\right), \zeta^{*}\right\rangle,$$ diff --git a/docs/src/tutorials/ode/lorenz84-PO.md b/docs/src/tutorials/ode/lorenz84-PO.md index 06c867bc..829646c4 100644 --- a/docs/src/tutorials/ode/lorenz84-PO.md +++ b/docs/src/tutorials/ode/lorenz84-PO.md @@ -45,7 +45,7 @@ parlor = (α = 1//4, β = 1., G = .25, δ = 1.04, γ = 0.987, F = 1.762053287963 z0 = [2.9787004394953343, -0.03868302503393752, 0.058232737694740085, -0.02105288273117459] -recordFromSolutionLor(x, p; k...) = (u = BK.getVec(x);(X = u[1], Y = u[2], Z = u[3], U = u[4])) +recordFromSolutionLor(x, p; k...) = (u = BK.getvec(x);(X = u[1], Y = u[2], Z = u[3], U = u[4])) prob = BK.BifurcationProblem(Lor, z0, parlor, (@optic _.F); record_from_solution = (x, p; k...) -> (X = x[1], Y = x[2], Z = x[3], U = x[4]),)