-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMergeFace.py
executable file
·173 lines (110 loc) · 4.05 KB
/
MergeFace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 29 18:16:02 2021
@author: wuzongze
"""
def PadBE(imgs,num_extreme):
b=np.repeat(imgs[:1],num_extreme,axis=0)
e=np.repeat(imgs[-1:],num_extreme,axis=0)
tmp=[b,imgs,e,imgs[::-1],b]
tmp1=np.concatenate(tmp)
return tmp1
from dnnlib import tflib
import numpy as np
import pickle
import imageio
import argparse
def LoadModel(model_path):
# Initialize TensorFlow.
tflib.init_tf()
with open(model_path, 'rb') as f:
_, _, Gs = pickle.load(f)
Gs.print_layers()
return Gs
def lerp(a,b,t):
return a + (b - a) * t
def Truncation(src_dlatents,dlatent_avg,truncation_psi,truncation_cutoff):
layer_idx = np.arange(src_dlatents.shape[1])[np.newaxis, :, np.newaxis]
ones = np.ones(layer_idx.shape, dtype=np.float32)
if truncation_cutoff is None:
coefs = ones*truncation_psi
else:
coefs = np.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
src_dlatents_np=lerp(dlatent_avg, src_dlatents, coefs)
return src_dlatents_np
class MergeFace():
def __init__(self,source_pkl,target_pkl,source_latent,target_latent,target_is_z):
self.Gs=LoadModel(source_pkl)
self.Gs1=LoadModel(source_pkl)
self.Gs2=LoadModel(target_pkl)
self.w_plus1=np.load(source_latent)
if target_is_z:
z=np.load(target_latent)['dlatents']
w_plus2= self.Gs2.components.mapping.run(z, None)
dlatent_avg=self.Gs2.get_var('dlatent_avg')
truncation_psi=0.5 #default value of StyleGAN2
truncation_cutoff=None #default value of StyleGAN2
self.w_plus2 =Truncation(w_plus2,dlatent_avg,truncation_psi,truncation_cutoff)
else:
self.w_plus2=np.load(target_latent)
self.GetWeightName()
self.fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
def GetWeightName(self):
#merge two network
vars1=self.Gs1.vars
vars2=self.Gs2.vars
names=list(vars2.keys())
self.wnames=[]
for name in names:
if 'G_synthesis' in name:
self.wnames.append(name)
d1={}
for name in self.wnames:
tmp=vars1[name]
d1[name]=tmp
self.d1=tflib.run(d1)
d2={}
for name in self.wnames:
tmp=vars2[name]
d2[name]=tmp
self.d2=tflib.run(d2)
def merge(self,ts1,ts2,M):
full_out=[]
for i in range(len(ts1)):
t=ts1[i]
w_plus=lerp(self.w_plus1,self.w_plus2,t)
t=ts2[i]
d={}
for name in self.wnames:
tmp=self.Gs.vars[name]
a=self.d1[name]
b=self.d2[name]
tmp1=lerp(a,b,t)
d[tmp]=tmp1
tflib.set_vars(d)
out = self.Gs.components.synthesis.run(w_plus,output_transform=self.fmt)
full_out.append(out)
full_out=np.concatenate(full_out[1:])
return full_out
def main():
parser = argparse.ArgumentParser(
description='combine proj latent codes',
)
parser.add_argument('--source_pkl', help='', required=True)
parser.add_argument('--target_pkl', help='', required=True)
parser.add_argument('--source_latent', help='', required=True)
parser.add_argument('--target_latent', help='', required=True)
parser.add_argument('--target_is_z', action='store_true', )
M=MergeFace(**vars(parser.parse_args()))
num_step=110
ts1=[0]+list(np.linspace(0,1,num_step))
ts2=ts1
full_out=M.merge(ts1,ts2,M)
print('full_out:', full_out.shape)
duration=8
fps=int(len(full_out)/duration)
imageio.mimwrite('./morphing.mp4', full_out , fps = fps)
#%%
if __name__ == "__main__":
main()