-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathCumulativeDistributionFunction.cpp
156 lines (118 loc) · 3.54 KB
/
CumulativeDistributionFunction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include "CumulativeDistributionFunction.hpp"
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <stdexcept>
CumulativeDistributionFunction::CumulativeDistributionFunction()
: _vM1()
, _vY1()
, _vX1()
, _vM2()
, _vY2()
, _vX2()
, _fMin()
, _fMax()
, _nSteps()
, _I0()
, _k()
, _a()
, _RBulge()
{}
void CumulativeDistributionFunction::SetupRealistic(double I0, double k, double a, double RBulge, double min, double max, int nSteps)
{
_fMin = min;
_fMax = max;
_nSteps = nSteps;
_I0 = I0;
_k = k;
_a = a;
_RBulge = RBulge;
BuildCDF(_nSteps);
}
void CumulativeDistributionFunction::BuildCDF(int nSteps)
{
double h = (_fMax - _fMin) / nSteps;
double x = 0, y = 0;
_vX1.clear();
_vY1.clear();
_vX2.clear();
_vY2.clear();
_vM1.clear();
_vM2.clear();
// Simpson rule for integration of the distribution function
_vY1.push_back(0.0);
_vX1.push_back(0.0);
for (int i = 0; i < nSteps; i += 2)
{
x = h * (i + 2);
y += h / 3 * (Intensity(_fMin + i * h) + 4 * Intensity(_fMin + (i + 1) * h) + Intensity(_fMin + (i + 2) * h));
_vM1.push_back((y - _vY1.back()) / (2 * h));
_vX1.push_back(x);
_vY1.push_back(y);
// printf("%2.2f, %2.2f, %2.2f\n", m_fMin + (i+2) * h, v, h);
}
_vM1.push_back(0.0);
// all arrays must have the same length
if (_vM1.size() != _vX1.size() || _vM1.size() != _vY1.size())
throw std::runtime_error("CumulativeDistributionFunction::BuildCDF: array size mismatch (1)!");
// normieren
for (std::size_t i = 0; i < _vY1.size(); ++i)
{
_vY1[i] /= _vY1.back();
_vM1[i] /= _vY1.back();
}
_vX2.push_back(0.0);
_vY2.push_back(0.0);
double p = 0;
h = 1.0 / nSteps;
for (int i = 1, k = 0; i < nSteps; ++i)
{
p = (double)i * h;
for (; _vY1[k + 1] <= p; ++k)
{
}
y = _vX1[k] + (p - _vY1[k]) / _vM1[k];
// printf("%2.4f, %2.4f, k=%d, %2.4f, %2.4f\n", p, y, k, m_vY1[k], m_vM1[k]);
_vM2.push_back((y - _vY2.back()) / h);
_vX2.push_back(p);
_vY2.push_back(y);
}
_vM2.push_back(0.0);
// all arrays must have the same length
if (_vM2.size() != _vX2.size() || _vM2.size() != _vY2.size())
throw std::runtime_error("CumulativeDistributionFunction::BuildCDF: array size mismatch (1)!");
}
double CumulativeDistributionFunction::ProbFromVal(double fVal)
{
if (fVal<_fMin || fVal>_fMax)
throw std::runtime_error("out of range");
double h = 2 * ((_fMax - _fMin) / _nSteps);
int i = (int)((fVal - _fMin) / h);
double remainder = fVal - i * h;
// printf("fVal=%2.2f; h=%2.2f; i=%d; m_vVal[i]=%2.2f; m_vAsc[i]=%2.2f;\n", fVal, h, i, m_vVal[i], m_vAsc[i]);
assert(i >= 0 && i < (int)_vM1.size());
return (_vY1[i] + _vM1[i] * remainder) /* / m_vVal.back()*/;
}
double CumulativeDistributionFunction::ValFromProb(double fVal)
{
if (fVal < 0 || fVal>1)
throw std::runtime_error("out of range");
double h = 1.0 / (_vY2.size() - 1);
int i = (int)(fVal / h);
double remainder = fVal - i * h;
assert(i >= 0 && i < (int)_vM2.size());
return (_vY2[i] + _vM2[i] * remainder) /* / m_vVal.back()*/;
}
double CumulativeDistributionFunction::IntensityBulge(double R, double I0, double k)
{
return I0 * exp(-k * pow(R, 0.25));
}
double CumulativeDistributionFunction::IntensityDisc(double R, double I0, double a)
{
return I0 * exp(-R / a);
}
double CumulativeDistributionFunction::Intensity(double x)
{
return (x < _RBulge) ? IntensityBulge(x, _I0, _k) : IntensityDisc(x - _RBulge, IntensityBulge(_RBulge, _I0, _k), _a);
}