forked from qidiso/mxnet-retrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.sh
268 lines (238 loc) · 10.9 KB
/
finetune.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env bash
set -u
CUR_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
source "$CUR_DIR/functions"
CONFIG_FILE="./config/config.yml"
python -c 'import sys, yaml, json; json.dump(yaml.safe_load(sys.stdin), sys.stdout, indent=2)' < $CONFIG_FILE > config.json
config=$(jq -Mc '.' config.json)
TRAIN="./images/train"
VALID="./images/valid"
DATA_TRAIN="./data/train"
DATA_VALID="./data/valid"
DATA_NTHREADS=$(get_conf "$config" ".common.num_threads" "4")
GPUS=$(get_conf "$config" ".common.gpus" "")
if [[ ! $GPUS = "" ]]; then
GPU_OPTION="--gpus $GPUS"
else
GPU_OPTION=""
fi
echo "GPU_OPTION=$GPU_OPTION"
MODELS=$(get_conf_array "$config" ".finetune.models" "")
if [[ "$MODELS" = "" ]]; then
MODELS=$(get_conf_array "$config" ".finetune.pretrained_models" "imagenet1k-nin")
fi
echo "MODELS=$MODELS"
OPTIMIZERS=$(get_conf_array "$config" ".finetune.optimizers" "sgd")
echo "OPTIMIZERS=$OPTIMIZERS"
NUM_EPOCHS=$(get_conf "$config" ".finetune.num_epochs" "10")
LOAD_EPOCH=$(get_conf "$config" ".finetune.load_epoch" "0")
if [[ ! $NUM_EPOCHS -gt $LOAD_EPOCH ]]; then
echo 'Error: num_epochs must be bigger than load_epoch' 1>&2
exit 1
fi
if [[ ! $LOAD_EPOCH = "0" ]]; then
LOAD_EPOCH_OPTION="--load-epoch $LOAD_EPOCH"
else
LOAD_EPOCH_OPTION=""
fi
echo "LOAD_EPOCH_OPTION=$LOAD_EPOCH_OPTION"
LR=$(get_conf "$config" ".finetune.lr" "0.00001")
LR_FACTOR=$(get_conf "$config" ".finetune.lr_factor" "0.1")
LR_STEP_EPOCHS=$(get_conf "$config" ".finetune.lr_step_epochs" "10")
MOM=$(get_conf "$config" ".finetune.mom" "0.9")
WD=$(get_conf "$config" ".finetune.wd" "0.00001")
BATCH_SIZE=$(get_conf "$config" ".finetune.batch_size" "16")
DISP_BATCHES=$(get_conf "$config" ".finetune.disp_batches" "20")
TOP_K=$(get_conf "$config" ".finetune.top_k" "0")
DATA_AUG_LEVEL=$(get_conf "$config" ".finetune.data_aug_level" "0")
RANDOM_CROP=$(get_conf "$config" ".finetune.random_crop" "0")
RANDOM_MIRROR=$(get_conf "$config" ".finetune.random_mirror" "0")
MAX_RANDOM_H=$(get_conf "$config" ".finetune.max_random_h" "0")
MAX_RANDOM_S=$(get_conf "$config" ".finetune.max_random_s" "0")
MAX_RANDOM_L=$(get_conf "$config" ".finetune.max_random_l" "0")
MAX_RANDOM_ASPECT_RATIO=$(get_conf "$config" ".finetune.max_random_aspect_ratio" "0")
MAX_RANDOM_ROTATE_ANGLE=$(get_conf "$config" ".finetune.max_random_rotate_angle" "0")
MAX_RANDOM_SHEAR_RATIO=$(get_conf "$config" ".finetune.max_random_shear_ratio" "0")
MAX_RANDOM_SCALE=$(get_conf "$config" ".finetune.max_random_scale" "1")
MIN_RANDOM_SCALE=$(get_conf "$config" ".finetune.min_random_scale" "1")
RGB_MEAN=$(get_conf "$config" ".finetune.rgb_mean" "123.68,116.779,103.939")
MONITOR=$(get_conf "$config" ".finetune.monitor" "0")
PAD_SIZE=$(get_conf "$config" ".finetune.pad_size" "0")
NUM_ACTIVE_LAYERS=$(get_conf "$config" ".finetune.num_active_layers" "0")
AUTO_TEST=$(get_conf "$config" ".finetune.auto_test" "1")
TRAIN_ACCURACY_GRAPH_OUTPUT=$(get_conf "$config" ".finetune.train_accuracy_graph_output" "1")
TRAIN_SLACK_UPLOAD=$(get_conf "$config" ".finetune.train_accuracy_graph_slack_upload" "0")
TRAIN_SLACK_CHANNELS=$(get_conf_array "$config" ".finetune.train_accuracy_graph_slack_channels" "general")
CONFUSION_MATRIX_OUTPUT=$(get_conf "$config" ".test.confusion_matrix_output" "1")
TEST_SLACK_UPLOAD=$(get_conf "$config" ".test.confusion_matrix_slack_upload" "0")
TEST_SLACK_CHANNELS=$(get_conf_array "$config" ".test.confusion_matrix_slack_channels" "general")
CLASSIFICATION_REPORT_OUTPUT=$(get_conf "$config" ".test.classification_report_output" "1")
# data_aug_level
echo "DATA_AUG_LEVEL=$DATA_AUG_LEVEL"
if [[ $DATA_AUG_LEVEL -ge 1 ]]; then
RANDOM_CROP="1"
RANDOM_MIRROR="1"
fi
if [[ $DATA_AUG_LEVEL -ge 2 ]]; then
MAX_RANDOM_H="36"
MAX_RANDOM_S="50"
MAX_RANDOM_L="50"
fi
if [[ $DATA_AUG_LEVEL -ge 3 ]]; then
MAX_RANDOM_ASPECT_RATIO="0.25"
MAX_RANDOM_ROTATE_ANGLE="10"
MAX_RANDOM_SHEAR_RATIO="0.1"
fi
for MODEL in $MODELS; do
# Determine IMAGE_SIZE
IMAGE_SIZE=$(get_conf "$config" ".data.resize_short" "0")
MODEL_IMAGE_SIZE=$(get_image_size "$MODEL")
if [[ $IMAGE_SIZE -eq 0 ]]; then
IMAGE_SIZE=$MODEL_IMAGE_SIZE
fi
if [[ $IMAGE_SIZE -lt $MODEL_IMAGE_SIZE ]]; then
echo 'Error: The shorter edge after resizing must be grater than or equal to the input size of the model.' 1>&2
echo 'Check data.resize_short at config.yml.' 1>&2
echo "When using $MODEL model, data.resize_short must be $MODEL_IMAGE_SIZE or more."
exit 1
fi
IMAGE_SHAPE="3,$MODEL_IMAGE_SIZE,$MODEL_IMAGE_SIZE"
# Construct train commnd
if [[ $(check_from_scratch "$MODEL") -eq 0 ]]; then
# from scratch
echo "Training from scratch $MODEL"
MODEL=$(trim_scratch "$MODEL")
NUM_LAYERS=$(get_num_layers "$MODEL")
if [[ "$NUM_LAYERS" = 'null' ]]; then
# do not have num-layers
TRAIN_COMMAND="python train_imagenet.py --network $MODEL"
else
# num-layers
TRIMED_MODEL=$(trim_num_layers "$MODEL")
TRAIN_COMMAND="python train_imagenet.py --network $TRIMED_MODEL --num-layers $NUM_LAYERS"
fi
else
# fine-tuning
# Determine LAYER_BEFORE_FULLC and IMAGE_SIZE
LAYER_BEFORE_FULLC=$(get_layer_before_fullc "$MODEL")
TRAIN_COMMAND="python fine-tune.py --pretrained-model $MODEL --layer-before-fullc $LAYER_BEFORE_FULLC --num-active-layers $NUM_ACTIVE_LAYERS"
fi
echo "TRAIN_COMMAND=$TRAIN_COMMAND"
# If necessary image records do not exist, they are generated.
if [ "$DATA_TRAIN/images-train-$IMAGE_SIZE.rec" -ot "$TRAIN" ]; then
echo "$DATA_TRAIN/images-train-$IMAGE_SIZE.rec does not exist or is outdated." 1>&2
echo 'Generate image records for fine-tuning.' 1>&2
sh $CUR_DIR/gen_train.sh "$CONFIG_FILE" "$IMAGE_SIZE" || exit 1
fi
if [ "$DATA_VALID/images-valid-$IMAGE_SIZE.rec" -ot "$VALID" ]; then
echo "$DATA_VALID/images-valid-$IMAGE_SIZE.rec does not exist or is outdated." 1>&2
echo 'Generate validation image records for fine-tuning.' 1>&2
sh $CUR_DIR/gen_train.sh "$CONFIG_FILE" "$IMAGE_SIZE" || exit 1
fi
if [ "$DATA_VALID/images-valid-$MODEL_IMAGE_SIZE.rec" -ot "$VALID" ]; then
echo "$DATA_VALID/images-valid-$MODEL_IMAGE_SIZE.rec does not exist or is outdated." 1>&2
echo 'Generate validation image records for fine-tuning.' 1>&2
sh $CUR_DIR/gen_train.sh "$CONFIG_FILE" "$MODEL_IMAGE_SIZE" || exit 1
fi
# Check the number of image files. If it is different from previous one, regenerate images records
echo "$DATA_VALID/images-valid-$MODEL_IMAGE_SIZE.rec is outdated." 1>&2
echo 'Generate validation image records for fine-tuning.' 1>&2
sh $CUR_DIR/gen_train.sh "$CONFIG_FILE" "$MODEL_IMAGE_SIZE" || exit 1
LABELS_TRAIN="$DATA_TRAIN/labels.txt"
LABELS_VALID="$DATA_VALID/labels.txt"
diff --brief "$LABELS_TRAIN" "$LABELS_VALID" > /dev/null
if [ "$?" -eq 1 ]; then
echo 'Error: The directory structure of images/train and images/valid is different.' 1>&2
echo 'Check your train and validation images.' 1>&2
exit 1
fi
NUM_CLASSES=$(echo $(cat "$DATA_TRAIN/labels.txt" | wc -l))
NUM_EXAMPLES=$(echo $(cat "$DATA_TRAIN/images-train-$IMAGE_SIZE.lst" | wc -l))
for OPTIMIZER in $OPTIMIZERS; do
MODEL_PREFIX="$(date +%Y%m%d%H%M%S)-$MODEL-$OPTIMIZER"
LOGS="logs/$MODEL_PREFIX.log"
CONFIG_LOG="logs/$MODEL_PREFIX-config.yml"
# save config.yml
cp "$CONFIG_FILE" "$CONFIG_LOG"
# copy labels.txt
LABELS="model/$MODEL_PREFIX-labels.txt"
cp "$DATA_TRAIN/labels.txt" "$LABELS"
$TRAIN_COMMAND \
--data-train "$DATA_TRAIN/images-train-${IMAGE_SIZE}.rec" \
--data-val "$DATA_VALID/images-valid-${IMAGE_SIZE}.rec" \
$GPU_OPTION \
--num-epochs "$NUM_EPOCHS" \
$LOAD_EPOCH_OPTION \
--lr "$LR" \
--lr-factor "$LR_FACTOR" \
--lr-step-epochs "$LR_STEP_EPOCHS" \
--optimizer "$OPTIMIZER" \
--mom "$MOM" --wd "$WD" \
--batch-size "$BATCH_SIZE" \
--disp-batches "$DISP_BATCHES" \
--top-k "$TOP_K" \
--data-nthreads "$DATA_NTHREADS" \
--random-crop "$RANDOM_CROP" \
--random-mirror "$RANDOM_MIRROR" \
--max-random-h "$MAX_RANDOM_H" \
--max-random-s "$MAX_RANDOM_S" \
--max-random-l "$MAX_RANDOM_L" \
--max-random-aspect-ratio "$MAX_RANDOM_ASPECT_RATIO" \
--max-random-rotate-angle "$MAX_RANDOM_ROTATE_ANGLE" \
--max-random-shear-ratio "$MAX_RANDOM_SHEAR_RATIO" \
--max-random-scale "$MAX_RANDOM_SCALE" \
--min-random-scale "$MIN_RANDOM_SCALE" \
--rgb-mean "$RGB_MEAN" \
--monitor "$MONITOR" \
--pad-size "$PAD_SIZE" \
--image-shape "$IMAGE_SHAPE" \
--num-classes "$NUM_CLASSES" \
--num-examples "$NUM_EXAMPLES" \
--model-prefix "model/$MODEL_PREFIX" 2>&1 | tee "$LOGS"
if [ "${PIPESTATUS[0]}" -eq 0 ]; then
# Record model_prefix and best validation accuracy epoch
echo "$MODEL_PREFIX" > logs/latest_result.txt
COUNT=$(grep 'Validation-acc' "logs/$MODEL_PREFIX.log" | sort -t'=' -k2 | tail -n 1 | cut -d'[' -f2 | cut -d']' -f1)
MODEL_EPOCH=$((COUNT + 1))
echo "$MODEL_EPOCH" >> logs/latest_result.txt
if [[ $TRAIN_ACCURACY_GRAPH_OUTPUT = 1 ]]; then
IMAGE="logs/$MODEL_PREFIX-train_accuracy.png"
python train_accuracy.py "$CONFIG_FILE" "$IMAGE" "$LOGS"
if [[ $TRAIN_SLACK_UPLOAD = 1 ]]; then
python slack_file_upload.py "$TRAIN_SLACK_CHANNELS" "$IMAGE"
fi
fi
if [[ $AUTO_TEST = 1 ]]; then
echo 'Start auto test using fine-tuned model with validation data'
LABELS="model/$MODEL_PREFIX-labels.txt"
python predict.py "$CONFIG_FILE" "$MODEL_IMAGE_SIZE" "valid" "$MODEL_PREFIX" "$MODEL_EPOCH"
# save config.yml
CONFIG_LOG="logs/$MODEL_PREFIX-$(printf "%04d" $MODEL_EPOCH)-valid-config.yml"
cp "$CONFIG_FILE" "$CONFIG_LOG" \
&& echo "Saved config file to \"$CONFIG_LOG\"" 1>&2
# Make a confusion matrix from prediction results.
if [[ $CONFUSION_MATRIX_OUTPUT = 1 ]]; then
PREDICT_RESULTS_LOG="logs/$MODEL_PREFIX-$(printf "%04d" $MODEL_EPOCH)-valid-results.txt"
IMAGE="logs/$MODEL_PREFIX-$(printf "%04d" $MODEL_EPOCH)-valid-confusion_matrix.png"
python confusion_matrix.py "$CONFIG_FILE" "$LABELS" "$IMAGE" "$PREDICT_RESULTS_LOG"
if [[ $TEST_SLACK_UPLOAD = 1 ]]; then
python slack_file_upload.py "$TEST_SLACK_CHANNELS" "$IMAGE"
fi
fi
# Make a classification report from prediction results.
if [[ $CLASSIFICATION_REPORT_OUTPUT = 1 ]]; then
PREDICT_RESULTS_LOG="logs/$MODEL_PREFIX-$(printf "%04d" $MODEL_EPOCH)-valid-results.txt"
REPORT="logs/$MODEL_PREFIX-$(printf "%04d" $MODEL_EPOCH)-valid-classification_report.txt"
python classification_report.py "$CONFIG_FILE" "$LABELS" "$PREDICT_RESULTS_LOG" "$REPORT"
if [[ -e "$REPORT" ]]; then
print_classification_report "$REPORT"
else
echo 'Error: classification report does not exist.' 1>&2
fi
fi
fi
else
echo "Error(Exit code ${PIPESTATUS[0]}): Failed to fine-tune: $MODEL_PREFIX" 1>&2
fi
done
done