-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath-460-real-numbers.tex
367 lines (260 loc) · 11 KB
/
math-460-real-numbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
%\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
%\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\rational}{\mathbf{Q}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{myfakeproof}{Fake Proof}
\newtheorem{mybadformproof}{Bad Form Proof}
\newtheorem{hurestic}{Hurestic}
\newtheorem{prop}{Proposition}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
\vspace{-0.0in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\newenvironment{snowflakelist}{
\vspace{-0.4in}
\begin{enumerate}[\textleaf]
\addtolength{\itemsep}{-1.2\itemsep}}
{\end{enumerate}}
\newenvironment{checklist}{
\begin{enumerate}[\ding{52}]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\usepackage{array}
\newcolumntype{C}{>$c<$}
\newcommand{\llnot}{\lnot \,} % is accepted
\DeclareMathOperator{\3F2}{{}_3 F_2}
\newcommand\pochhammer[2]{\left[\genfrac..{0pt}{}{#1}{#2}\right]}
\newmuskip\pFqmuskip
\newcommand*\pFq[6][8]{%
\begingroup % only local assignments
\pFqmuskip=#1mu\relax
% make the comma math active
% \mathcode`\,=\string"8000
% and define it to be \pFqcomma
\begingroup\lccode`\~=`\,
\lowercase{\endgroup\let~}\pFqcomma
% typeset the formula
{}_{#2}\!\F_{#3}{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]} %\F{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]} %alt: {}_{#2}\F_{#3}{\left[\genfrac..{0pt}{}{#4}{#5};#6\right]}
\endgroup
}
\newcommand{\pFqcomma}{\mskip \pFqmuskip}
\newcommand{\mydash}{\text{--}}
%------------------
%\subtitle{Lesson 11}
\title{\textbf{Real numbers}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
% \date{}
\usepackage{courier}
%\lstset{basicstyle=\ttfamily\footnotesize,breaklines=true}
%\lstset{framextopmargin=50pt,frame=bottomline}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{Binary operator}
\begin{mydef} A \emph{binary operator} on a set \(S\) is a function from \(S \times S\) to \(S\). A binary operator \(F\) is commutative provided
\[
(\forall a,b \in S)(F(a,b) = F(b,a)).
\]
It is associative provided
\[
(\forall a,b,c \in S)(F(a,F(b,c)) = F(F(a,b),c)).
\]
It has a \emph{left identity element} provided
\[
(\exists\,\, \theta \in S)((\forall a \in S)(F(\theta,a) = a).
\]
And it has a \emph{right identity element} provided
\[
(\exists\,\, \theta \in S)((\forall a \in S)(F(a, \theta) = a).
\]
\end{mydef}
\end{frame}
\begin{frame}
\begin{enumerate}
\item Addition and multiplication of real numbers are examples of binary operators;
these operators are commutative and associative.
\item In this context, binary means that the function takes \emph{two} members of
the same set; the use of binary has nothing to do with base two representation of
a number.
\item Usually binary operators are expressed in \emph{infix notation}; that is,
the operator is in between its arguments.
\item For example, we write \(1 + 107 = 108\), not \(+(1,107) = 108\).
\item For a commutative binary operator, every right identity element is a
left identity element; so we'll call them collectively an identity element.
\end{enumerate}
\end{frame}
\begin{frame}{Examples}
\begin{alphalist}
\item Addition \(+\) is a binary operator on \(\reals\). Since \(x +0 = x\) for
all real \(x\), the identity element for addition is zero. Further we know that
addition is commutative and associative.
\item Function composition \(\circ \) is a binary operator on the set of functions
from \(\reals\) to \(\reals\). The function \(x \in \reals \mapsto x\) is the
identity element for function composition. Function composition is associative,
but not commutative.
\end{alphalist}
\end{frame}
\begin{frame}{Unique elements}
\begin{myth} Let \( S \) be a set and let \(F\) be a commutative binary operator
on \(S\). Then \(F\) has at most one identity element.
\end{myth}
\begin{myproof} Let \(\theta\) and \(\theta^\prime\) be identity elements for \(F\).
We'll show that \(\theta = \theta^\prime\). We have
\begin{align*}
\theta &= F(\theta^\prime, \theta), &\mbox{(because } \theta \mbox{ is an identity element.}) \\
&= F(\theta, \theta^\prime), &\mbox{(because } F \mbox{ is commutative})\\
&= \theta^\prime. &\mbox{(because } \theta^\prime \mbox{ is an identity element.})
\end{align*}
So \(\theta = \theta^\prime\).
\end{myproof}
\end{frame}
\begin{frame}{Fields}
We would like to capture the important features of the real numbers and give all
such structures a name. This object is a \emph{field}.
\begin{mydef}A field is an ordered triple \(({\mathcal F}, +, \times)\)
where \({\mathcal F} \) is a set and both \(+\) and \(\times\) are commutative
and associative binary operators on \({\mathcal F}\) that have identity elements;
the identity element for \(+\) is 0 and the identity element for \(\times\) is 1.
\begin{enumerate}
\item For all \(a,b,c \in {\mathcal F}\), we have \(a \times (b + c) = a \times b + a \times c\).
\item For all \(a \in {\mathcal F}\) there is \(-a \in {\mathcal F} \) such that \(a + -a = 0\).
\item For all \(a \in {\mathcal F}_{\neq 0}\) there is \(a^{-1} \in {\mathcal F} \) such that \(a a^{-1} = 1\).
\end{enumerate}
\end{mydef}
\begin{enumerate}
\item We say that \(-a\) is an additive inverse of \(a\).
\item We say that \(a^{-1}\) is a multiplicative inverse of \(a\).
\end{enumerate}
\end{frame}
\begin{frame}{Unique inverses}
\begin{myth} Let \(({\mathcal F}, +, \times)\) be a field. The additive and multiplicative inverses are unique. \end{myth}
\begin{myproof} Let \(a \in {\mathcal F}\) and suppose \(a+b = 0\) and \(a + b^\prime = 0\). We'll show that \( b = b^\prime\). We have
\begin{align*}
b &= b+ 0, \\
&= b + (a + b^\prime), \\
&= (b + a) + b^\prime, \\
&= (a+b) + b^\prime,\\
&= 0 + b^\prime,\\
&= b^\prime.
\end{align*}
The proof for the multiplicative inverse is similar and left as an exercise for the willing.
\end{myproof}
\end{frame}
\begin{frame}{Famous fields}
Let \(+\) and \(\times\) be ordinary number addition and multiplication, respectively. Then
\begin{alphalist}
\item \((\reals, +, \times)\) is the real field.
\item \((\rational, +, \times)\) is the rational field.
Certainly the sum and product of rational numbers is a rational number so indeed, \(+ : \rational \times \rational \to \rational\) and
similarly for \(\times\). The other required conditions are ``inherited'' from the properties of the real field.
\item \((\integers, +, \times)\) isn't a field because, for example, there is no \(x \in \integers\) such that \(2 x = 1\).
\end{alphalist}
\end{frame}
\begin{frame}{It's true: $x \times \theta = \theta$}
\begin{prop} Let $(\mathcal{F},+, \times)$ be a field and let $\theta$
be its additive identity. Then
\begin{equation}
\left(\forall a \in \mathcal F\right) \left (a \times \theta = \theta \right)
\end{equation}
\end{prop}
\begin{proof} Let $x \in \mathcal{F}$. We have $x + \theta = x$. Multiplying this by $x$ and using
the distributive property, we have $x^2 + x \theta = x^2$. Adding $-x^2$ to this yields $x \times \theta = \theta$.
\end{proof}
\end{frame}
\begin{frame}{It's true: $a \times (-b) = - (a \times b)$}
\begin{prop} Let $(\mathcal{F},+, \times)$ be a field and let $\mathcal O$
be its additive identity. Then
\begin{equation}
\left(\forall a,b \in \mathcal F\right) \left (a \times (-b) = - (a \times b) \right).
\end{equation}
\end{prop}
\begin{proof} Let $a,b \in \mathcal{F}$. We have
\begin{equation*}
\theta = a \times \theta = a \times (b + -b) = a \times b + a \times (-b).
\end{equation*}
So $-(a \times b) = a \times (-b)$
\end{proof}
\end{frame}
\begin{frame}{Something for nothing}
We know that $-(a \times b) = a \times (-b)$ is an identity. Replacing the silent variable $a$ by $-a$ gives
an syntactically different but semantically equal identity
\begin{equation*}
-((-a) \times b) = (-a) \times (-b)
\end{equation*}
But $((-a) \times b) = b \times (-a) = - (a \times b)$. That tells gives us the famous result that
\begin{equation*}
(a \times b) = (-a) \times (-b).
\end{equation*}
Let's \textbf{not} confuse this mathematical fact with \textbf{rubbish} such as ``Morwenna deposits -\$10 a total of -5 times. What is Morwenna's account value?''
\end{frame}
\begin{frame}{Ordered Fields}
\begin{mydef} A field \(({\mathcal F}, +, \times)\) is ordered provided there is a subset \(P\) of \({\mathcal F}\) such that
\begin{alphalist}
\item If \(a,b \in P\), we have \(a+b \in P\),
\item If \(a,b \in P\), we have \(a \times b \in P\),
\item For all \(a \in {\mathcal F}\) exactly one of the following is true: (i) \(a \in P\), (ii) \(-a \in P\), (iii) \(a = 0\).
\end{alphalist}
\end{mydef}
\end{frame}
\end{document}
We will assume that there is a set \(\reals\) with members called \emph{real numbers} along with functions \(+ : \reals \times \reals \to \reals\) and \(\times : \reals \times \reals \to \reals\)
such that