-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis-quick-reference.tex
452 lines (403 loc) · 17.3 KB
/
analysis-quick-reference.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
\documentclass[letterpaper,landscape,9pt,fleqn]{extarticle}
%\usepackage[utf8]{inputenc}
%\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{tikz}
\usepackage{url}
\usepackage{qrcode}
%\usetikzlibrary{shapes.geometric}
%\usetikzlibrary{calc}
%\usepackage{fourier}
\usepackage{graphicx,nicefrac}
\usepackage{isomath,upgreek,xcolor,comment}
\usepackage{pdfpages}
%\usepackage{tkz-euclide}
%\usetkzobj{all}
\pagestyle{empty}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,factor=1100,stretch=10,shrink=10]{microtype}
\usepackage[american]{babel}
\usepackage{centernot}
\usepackage{amstext} % for \text macro
\usepackage{array} % for \newcolumntype macro
\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newcommand{\dom}{\mathrm{dom}}
\newcommand{\range}{\mathrm{range}}
\newcommand{\codom}{\mathrm{codom}}
\newcommand{\zero}{\mathrm{zero}}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\ball}{\mathrm{ball}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\ssep}{\mid}
\newcommand{\arcsec}{\mathrm{arcsec}}
\newcommand{\arccsc}{\mathrm{arccsc}}
\newcommand{\arccot}{\mathrm{arccot}}
\newcommand{\glb}{\mathrm{glb}}
\newcommand{\lub}{\mathrm{lub}}
\newcommand{\length}{\mathrm{length}}
\usepackage{mathtools}
\DeclarePairedDelimiter{\parens}{\lparen}{\rparen}
\usepackage{amsmath,amssymb,textcomp}
\everymath{\displaystyle}
%\usepackage{times}
%\renewcommand\familydefault{\sfdefault}
%\usepackage{tgheros}
%\usepackage[defaultmono,scale=0.85]{droidmono}
%\usepackage{fourier}
\usepackage{multicol}
\setlength{\columnseprule}{0pt}
\setlength{\columnsep}{20.0pt}
\usepackage[]{enumerate}
\usepackage{expdlist}
\newenvironment{alphalist}{
\begin{enumerate}[(a)]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\usepackage{geometry}
\geometry{letterpaper,left=0.4in,right=0.4in,top=0.4in,bottom=0.4in}
%\linespread{1.3}
% custom title
\makeatletter
\renewcommand*{\maketitle}{%
\noindent
\begin{minipage}{0.4\textwidth}
\begin{tikzpicture}
\node[rectangle,rounded corners=6pt,inner sep=10pt,fill=blue!50!black,text width= 0.95\textwidth] {\color{white}\Huge \@title};
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.55\textwidth}
\begin{tikzpicture}
\node[rectangle,rounded corners=3pt,inner sep=10pt,draw=blue!50!black,text width= 0.95\textwidth] {\LARGE \@author};
\end{tikzpicture}
\end{minipage}
\bigskip\bigskip
}%
\makeatother
% custom section
\usepackage[explicit]{titlesec}
\newcommand*\sectionlabel{}
\titleformat{\section}
{\gdef\sectionlabel{}
\normalfont\sffamily\Large\bfseries\scshape}
{\gdef\sectionlabel{\thesection\ }}{0pt}
{
\noindent
\begin{tikzpicture}
\node[rectangle,rounded corners=3pt,inner sep=4pt,fill=blue!50!black,text width= 0.95\columnwidth] {\color{white}\sectionlabel#1};
\end{tikzpicture}
}
\titlespacing*{\section}{0pt}{15pt}{10pt}
% custom footer
%\usepackage{fancyhdr}
%\makeatletter
%\pagestyle{fancy}
%\fancyhead{}
%\fancyfoot[C]{\footnotesize \textcopyright\ \@date\ \ \@author}
%\renewcommand{\headrulewidth}{0pt}
%\renewcommand{\footrulewidth}{0pt}
%\makeatother
\raggedbottom
\raggedright
%\usepackage{tikz-3dplot}
\begin{document}
%\maketitle
\begin{multicols*}{3}
\section*{Greek characters}
\begin{tabular}{|L | L| L|} \hline
\mbox{Name} & \mbox{Symbol} & \mbox{Typical use(s)} \\ \hline
\mathrm{alpha} & \alpha & \mbox{angle, constant} \\
\mathrm{beta} & \beta & \mbox{angle, constant} \\
\mathrm{gamma} & \gamma & \mbox{angle, constant} \\
\mathrm{delta} & \delta & \mbox{limit definition}\\
\mathrm{epsilon} & \epsilon \mbox{ or } \varepsilon & \mbox{limit definition} \\
\mathrm{theta} & \theta \mbox{ or } \vartheta &\mbox{angle}\\
\mathrm{pi} & \pi \mbox{ or } \uppi & \mbox{circular constant} \\
\mathrm{phi} & \phi \mbox{ or } \varphi & \mbox{angle, constant} \\
\hline
\end{tabular}
\section*{Named sets}
\begin{minipage}[l]{0.15\textwidth}
\begin{tabular}{|L | L |} \hline
\mathrm{empty\,\, set} & \varnothing \\
\mathrm{real\,\, numbers} & \mathbf{R} \\
\mathrm{ordered \, \, pairs } & \mathbf{R}^2 \\
\hline
\end{tabular}
\end{minipage}
\begin{minipage}[l]{0.15\textwidth}
\begin{tabular}{|L | L |} \hline
\mathrm{integers } & \mathbf{Z} \\
\mathrm{positive \,\, integers } & \mathbf{Z}_{>0} \\
\mathrm{positive \,\, reals} & \mathbf{R}_{>0} \\
\hline
\end{tabular}
\end{minipage}
\section*{Set symbols}
\begin{minipage}[l]{0.15\textwidth}
\begin{tabular}{|L | L|} \hline
\mbox{Meaning} & \mbox{Symbol} \\ \hline
\mathrm{is \,\, a \,\, member} & \in \\
\mathrm{subset} & \subset \\
\mathrm{intersection} & \cap \\ \hline
\end{tabular}
\end{minipage}
\begin{minipage}[l]{0.15\textwidth}
\begin{tabular}{|L | L|} \hline
\mbox{Meaning} & \mbox{Symbol} \\ \hline
\mathrm{union} & \cup \\
\mathrm{complement} & \mbox{superscript}^\mathrm{C} \\
\mathrm{set \,\, minus} & \setminus \\ \hline
\end{tabular}
\end{minipage}
\section*{Intervals}
\begin{minipage}[c]{0.333\textwidth}
For numbers \(a\) and \(b\), we define the intervals:
\begin{align*}
(a,b) &= \left\{x \in \reals \ssep a < x < b \right\} \\
[a,b) &= \{x \in \reals \ssep a \leq x < b \} \\
(a,b] &= \{x \in \reals \ssep a < x \leq b \} \\
[a,b] &= \{x \in \reals \ssep a \leq x \leq b \} \\
% (-\infty, a) &= \{x \mid x < a \} \\
% (-\infty, a] &= \{x \mid x \leq a \} \\
% (a, \infty) &= \{x \mid a < x \} \\
% [a, \infty) &= \{x \mid a \leq x \} \\
\end{align*}
\end{minipage}
\section*{Logic symbols}
\begin{minipage}[l]{0.15\textwidth}
\begin{tabular}{|L | L|} \hline
\mbox{Meaning} & \mbox{Symbol} \\ \hline
\mathrm{negation} & \lnot \\
\mathrm{and} & \land \\
\mathrm{or} & \lor \\
\mathrm{implies} & \implies \\ \hline
\end{tabular}
\end{minipage}
\begin{minipage}[c]{0.15\textwidth}
\begin{tabular}{|L | L|} \hline
\mbox{Meaning} & \mbox{Symbol} \\ \hline
\mbox{equivalent} & \equiv \\
\mbox{iff} & \iff \\
\mbox{for all} & \forall \\
\mbox{there exists} & \exists \\ \hline
\end{tabular}
\end{minipage}
\begin{minipage}[t]{0.3333\textwidth}
\section*{Tautologies}
\vspace{-0.1in}
\begin{alignat*}{1}
&\lnot \parens*{P \land Q} \equiv \lnot P \lor \lnot Q \\
& \parens*{P \implies Q} \equiv \parens*{\lnot Q \implies \lnot P}\\
&P \centernot \implies Q \equiv P \land \lnot Q \\
& \parens*{\parens*{P \implies Q} \land \parens*{Q \implies R}} \implies \parens*{P \implies R} \\
&\parens*{P \iff Q} \equiv \parens*{\parens*{P \implies Q} \land \parens*{Q \implies P}} \\
&\lnot \parens*{\forall \, x \in A}\parens*{P(x)} \equiv \parens*{\exists \, x \in A}\parens*{\lnot P \parens*{x}} \\
&\lnot \parens*{\exists \, x \in A} \parens*{P \parens*{x}} \equiv \parens*{\forall \, x \in A} \parens*{\lnot P \parens{x}}
\end{alignat*}
\end{minipage}
\section*{Function notation}
\begin{tabular}{|L | L|} \hline
\dom(F) & \mbox{domain of function } F \\
\range(F) & \mbox{range of function } F \\
\mathrm{C}_{A} & \mbox{ set of continuous functions on set } A \\
\mathrm{C}_{A}^1 & \mbox{ set of differentiable functions on set } A \\
A \to B & \mbox{set of functions from } A \mbox { to } B \\ \hline
\end{tabular}
\section*{Generalized set operators}
Each member of a set $\mathcal{C}$ is a set:
\begin{alignat*}{1}
&\underset{A \in \mathcal{C}}{\bigcup} A = \left \{z \mid \parens*{\exists \, B \in \mathcal{C} }\parens{z \in B} \right \}\\
&\underset{A \in \mathcal{C}}{\bigcap} A = \left \{z \mid \parens*{\forall \, B \in \mathcal{C}}\parens{z \in B} \right \}
\end{alignat*}
Theorem: \(\underset{A \in \mathcal{C}}{\bigcup} A^\mathrm{C} = \parens*{\underset{A \in \mathcal{C}}{\bigcap} A}^\mathrm{C} \)
\section*{Functions applied to sets}
Let $A \subset \dom(F)$ and $B \subset \range(F)$:
\begin{alignat*}{1}
F(A) &= \{F(x) \mid x \in A \} \\
F^{-1}(B) &= \{x \in \dom(F) \mid F(x) \in B \}
\end{alignat*}
\section*{Triangle inequalities}
For all $x,y \in \reals$, we have
\begin{alignat*}{1}
|x+y| &\leq |x| + |y| \\
\big | |x| - |y| \big | &\leq |x-y|
\end{alignat*}
\section*{Floor and ceiling}
\vspace{-0.1in}
\noindent Definitions:
\begin{align*}
\lfloor x \rfloor = \max \{k \in \integers \mid k \leq x \} \\
\lceil x \rceil = \min \{k \in \integers \mid k \geq x \}
\end{align*}
\noindent Properties:
\begin{align*}
% &\parens*{\forall x \in \reals} \parens*{\lfloor x \rfloor \leq x} \\
% &\parens*{\forall x \in \reals} \parens*{\lceil x \rceil \geq x} \\
& \parens*{\forall x \in \reals, n \in \integers} \parens*{x < n \iff \lfloor x \rfloor < n}\\
& \parens*{\forall x \in \reals, n \in \integers} \parens*{n < x \iff n < \lceil x \rceil}\\
\end{align*}
\vspace{-0.51in}
\section*{Bounded sets}
\begin{description}[\itemsep=0em]
\item[Bounded below] A set $A$ is \emph{bounded below} provided\\
\((\exists \, M \in \reals)(\forall \, x \in A)(M \leq x)\).
\item[Bounded above] The set $A$ is \emph{bounded above} provided\\
\((\exists \, M \in \reals)(\forall \, x \in A)(x \leq M ) \).
\item[Bounded] A set is \emph{bounded} if it is bounded below and bounded above.
\end{description}
\section*{Elementary function properties}
\begin{description}[\itemsep=0em]
\item[Increasing] \( \parens*{\forall \, x,y \in A} \parens*{x < y \implies F(x) \leq F(y)} \).
For strictly increasing, replace $F(x) \leq F(y)$ with $F(x) < F(y)$.
\item[Decreasing] \( \parens*{\forall \, x,y \in A} \parens*{x < y \implies F(x) \geq F(y)} \)
For strictly decreasing, replace $F(x) \geq F(y)$ with $F(x) > F(y)$.
\item[One-to-one] \( \parens*{\forall \, x,y \in \dom(F)} \parens*{F(x) = F(y) \implies x = y} \)
\item[Subadditive] \( \parens*{\forall \, x,y \in \dom(F)} \parens*{F(x+y) \leq F(x) + F(y)} \)
\item[Bounded above] \( \parens*{\exists \, M \in \reals} \parens*{\forall x \in \dom(F)} \parens*{F(x) \leq M} \)
\item[Bounded below] \(\parens*{\exists \, M \in \reals} \parens*{\forall x \in \dom(F)} \parens*{M \leq F(x)}\)
\end{description}
\section*{Topology}
\begin{description}[\itemsep=0em]
\item[Open ball] $\ball(a, r) = \{x \in \reals \ssep -r + a< x < r+a \}$
\item[Punctured ball] $\ball^\prime(a, r) = \ball(a, r) \setminus \{a\}$
\item[Open set] A subset $A$ of $\reals$ is \emph{open} provided
\[\left(\forall x \in A \right) \left (\exists \, r \in \reals_{>0})(\ball(x,r) \subset A \right).\]
\item[Closed set] A subset $A$ of $\reals$ is \emph{closed} provided \(\reals \setminus A\) is open.
\item[Limit point] A number $a$ is a \emph{limit point} of a set $A$ provided
\( \parens*{\forall \, r \in \reals_{>0}} \parens*{\ball^\prime(a, r) \cap A \neq \varnothing} \).
\item[Boundary point] A number $a$ is a \emph{boundary point} of a set $A$ provided
\[ \parens*{\forall \, r \in \reals_{>0}} \parens*{\ball(a, r) \cap A \neq \varnothing \land
\ball(a, r) \cap A^{\mathrm{C}} \neq \varnothing }. \]
\item[Set closure] $\overline{A} = A \cup \mathrm{LP}(A)$, were $\mathrm{LP}(A)$ is the
set of limit points of $A$.
\item[Open cover] A set $\mathcal{C}$ is an open cover of a set $A$ provided
\begin{alphalist}
\item every member of $\mathcal{C}$ is an open set
\item $A \subset \underset{B \in \mathcal{C}}{\bigcup} B $
\end{alphalist}
\item[Compact] A set $A$ is compact provided for every
open cover $\mathcal{C}$ of $A$, there is a finite
subset $\mathcal{C}^\prime$ of $\mathcal{C}$ such that
$\mathcal{C}^\prime$ is an open cover of $A$.
\end{description}
\section*{Least and greatest bounds}
For any subset $A$ of $\reals$:
\begin{description}[\itemsep=0em]
\item[glb] $z = \glb(A)$ provided
\begin{alphalist}
\item $z$ is an lower bound for $A$
\item if $x$ is a lower bound for $A$ then $x \leq z$
\end{alphalist}
\item[lub] $z = \lub(A)$ provided
\vspace{-0.1in}
\begin{alphalist}
\item $z$ is an upper bound for $A$
\item if $x$ is an upper bound for $A$ then $z \leq x$
\end{alphalist}
\end{description}
\section*{Sequences}
\begin{description}[\itemsep=0em]
\item[Bounded] A sequence $F$ is bounded if $\range(F)$ bounded.
\item[Monotone] A sequence is monotone if it either increases or
decreases.
\item[Cauchy] A sequence $F$ is Cauchy provided
\vspace{-0.1in}
\begin{alphalist}
\item for every $\varepsilon \in \reals_{>0}$
\item there is $n \in \integers$
\item such that for all $k,\ell \in \integers_{>n}$
\item $|F_k - F_\ell| < \varepsilon$
\end{alphalist}
\item[Converges] A sequence $F$ converges provided
\vspace{-0.1in}
\begin{alphalist}
\item there is $L \in \reals$
\item and $n \in \integers$
\item such that for all $k \in \integers_{>n}$
\item $|F_k - L | < \varepsilon$.
\end{alphalist}
\end{description}
\section*{Functions}
\begin{description}[\itemsep=0em]
\item[Continuous] A function $F$ is continuous at $a$ provided
\begin{alphalist}
\item $a \in \dom(F)$ and
\item for every $\varepsilon \in \reals_{>0}$
\item there is $\delta \in \reals_{>0}$
\item such that for all $x \in \ball(a,\delta) \cap \dom(F)$
\item we have $F(x) \in \ball(F(a), \epsilon)$.
\end{alphalist}
\item[Uniformly continuous] A function $F$ is uniformly continuous on a set $A$ provided
\begin{alphalist}
\item $A \subset \dom(F)$; and
\item for every $\varepsilon \in \reals_{>0}$
\item there is $\delta \in \reals_{>0}$
\item such that for all $x,y \in A$ and $ |x-y| < \delta$
\item we have $|F(x) - F(y)| < \epsilon$.
\end{alphalist}
\item[Limit] A function $F$ has a limit toward $a$ provided
\begin{alphalist}
\item $a$ is a limit point of $\dom(F)$; and
\item there is $L \in \reals$
\item such that for every $\varepsilon \in \reals_{>0}$
\item there is $\delta \in \reals_{>0}$
\item such that for all $x \in \ball^\prime(a,\delta)$
\item we have $F(x) \in \ball(L, \epsilon)$.
\end{alphalist}
\item[Differentiable] A function $F$ is differentiable at $a$ provided
\begin{alphalist}
\item $a \in \dom(F)$; and
\item there is $\phi \in \dom(F) \to \reals$
\item such that $\phi$ is continuous at $a$ and
\item $(\forall x \in \dom(F))(F(x) = F(a) + (x-a) \phi(x))$.
\end{alphalist}
\end{description}
\section*{Riemann sums}
\begin{description}[\itemsep=0em]
\item[Partition] A set $\mathcal{P}$ is a partition of an
interval $[a,b]$ provided
\begin{alphalist}
\item the set $\mathcal{P}$ is finite
\item every member of $\mathcal{P}$ is an open interval
\item the members of $\mathcal{P}$ are pairwise disjoint
\item $\underset{I \in \mathcal{P}} \bigcup \overline{I} = [a,b]$
\end{alphalist}
\end{description}
Let $F$ be a bounded function on an interval $[a,b]$ and let
$\mathcal{P}$ be a partition of $[a,b]$.
\begin{description}[\itemsep=0em]
\item[Lower sum] $\underline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \glb \parens*{F \parens*{\overline{I}}} \times \length(I)$
\item[Upper sum] $\overline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \lub \parens*{F \parens*{\overline{I}}} \times \length(I)$
\item[Riemann sum] $\sum_{I \in \mathcal{P}, x^\star \in \overline{I}} F \parens*{x^\star} \times \length(I)$
\end{description}
\section*{Axioms}
\begin{description}
\item[Completeness] Every nonempty subset $A$ of $\reals$ that is
bounded above has a least upper bound.
\item[Well-ordering] Every nonempty set of positive integers
contains a least element.
\item[Induction] $\parens*{\forall n \in \integers_{\geq 0}}(P(n))$ if and only if
$ P(0) \land \parens*{\forall n \in
\integers_{\geq 0}} \parens*{P(n) \implies P(n+1)}$.
\end{description}
\section*{Named theorems}
\begin{description}[\itemsep=0em]
\item[Archimedean] \(\parens*{\forall x \in \reals}
\parens*{\exists n \in \integers}(n > x) \equiv \mbox{true}\).
\item[Bolzano–Weirstrass] Every bounded real valued sequence has a convergent subsequence.
\item[Heine–Borel] A subset of $\reals$ is compact iff it is closed and bounded.
\item[Cauchy completeness] Every Cauchy sequence in \(\reals\) converges.
\item[Monotone convergence] Every bounded monotone sequence converges.
\item[ Intermediate value theorem ] If $F \in \mathrm{C}_{[a,b]}$, then
for all $y \in [\min(F(a),F(b)), \max(F(a),F(b))]$ there is
$x \in [a,b]$ such that $F(x)=y$.
\item[Mean Value] If $F \in \mathrm{C}_{[a,b]} \cap \mathrm{C}_{(a,b)}^1$,
there is $\xi \in (a,b) $ such that $(b-a) F^\prime(\xi) = F(b) - F(a)$.
\end{description}
\vfill
\noindent {Revised \today. Barton Willis is the author of this work. This work is
licensed under Attribution 4.0 International (CC BY 4.0) \, \qrcode[height=0.15in]{https://creativecommons.org/licenses/by/4.0/}. For the current version of
this document, visit \, \qrcode[height=0.15in]{https://github.com/barton-willis/Math-100-200-level}}
\end{multicols*}%{3}
\end{document}