forked from skezle/continual-dreamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_minihack.py
221 lines (197 loc) · 7.12 KB
/
train_minihack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import shutil
import wandb
import gym
import minihack
import numpy as np
import dreamerv2.api as dv2
import wandb
from input_args import parse_minihack_args
import ast
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
class MiniHackObsWrapper(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
self.observation_space = gym.spaces.Box(low=0, high=255, dtype=np.uint8, shape=(84, 84, 3))
def observation(self, obs):
obs = obs["pixel_crop"]
obs = np.pad(obs, [(2, 2), (2, 2), (0, 0)])
return obs
# from https://github.com/MiniHackPlanet/MiniHack/blob/e9c8c20fb2449d1f87163314f9b3617cf4f0e088/minihack/scripts/venv_demo.py#L28
class MiniHackMakeVecSafeWrapper(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
self.basedir = os.getcwd()
def step(self, action: int):
os.chdir(self.env.env._vardir)
x = self.env.step(action)
os.chdir(self.basedir)
return x
def reset(self):
os.chdir(self.env.env._vardir)
x = self.env.reset()
os.chdir(self.basedir)
return x
def close(self):
os.chdir(self.env.env._vardir)
self.env.close()
os.chdir(self.basedir)
def seed(self, core=None, disp=None, reseed=False):
os.chdir(self.env.env._vardir)
self.env.seed(core, disp, reseed)
os.chdir(self.basedir)
def make_minihack(
env_name,
observation_keys=["pixel_crop", "pixel", "glyphs"],
reward_win=1,
reward_lose=0,
penalty_time=0.0,
penalty_step=-0.001, # MiniHack uses different than -0.01 default of NLE
penalty_mode="constant",
character="mon-hum-neu-mal",
savedir=None,
# save_tty=False -> savedir=None, see https://github.com/MiniHackPlanet/MiniHack/blob/e124ae4c98936d0c0b3135bf5f202039d9074508/minihack/agent/common/envs/tasks.py#L168
**kwargs,
):
env = gym.make(
f"MiniHack-{env_name}",
observation_keys=observation_keys,
reward_win=reward_win,
reward_lose=reward_lose,
penalty_time=penalty_time,
penalty_step=penalty_step,
penalty_mode=penalty_mode,
character=character,
savedir=savedir,
**kwargs,
) # each env specifies its own self._max_episode_steps
env = MiniHackMakeVecSafeWrapper(env)
env = MiniHackObsWrapper(env)
return env
def run_minihack(args):
config = dv2.defaults
config = config.update(dv2.configs['crafter'])
tag = args.tag + str(args.seed)
config = config.update({
'logdir': '{0}/minihack_{1}'.format(args.logdir, tag),
'log_every': 1e3,
'log_every_video': 2e5,
'train_every': args.train_every,
'time_limit': 100,
'prefill': 1e4,
# 'actor_ent': args.eta,
'loss_scales.kl': args.beta,
'steps': args.steps,
"unbalanced_steps": args.unbalanced_steps,
'cl': args.cl,
'cl_small': args.cl_small,
'num_tasks': args.num_tasks,
'num_task_repeats': args.num_task_repeats,
'seed': args.seed,
'eval_every': 5e4,
'eval_steps': 1e3,
'tag': tag,
"dataset.batch": args.batch_size,
'replay.capacity': args.replay_capacity,
'replay.reservoir_sampling': args.reservoir_sampling,
"replay.uncertainty_sampling": args.uncertainty_sampling,
'replay.recent_past_sampl_thres': args.recent_past_sampl_thres,
'replay.reward_sampling': args.reward_sampling,
'replay.coverage_sampling': args.coverage_sampling,
'replay.coverage_sampling_args': args.coverage_sampling_args,
'replay.minlen': args.minlen,
'sep_exp_eval_policies': args.sep_exp_eval_policies,
"rssm.stoch": args.rssm_stoch,
"rssm.discrete": args.rssm_discrete,
"actor_ent": args.actor_ent,
"discount": args.discount,
'wandb.group': args.wandb_group,
'wandb.name': f"{dv2.defaults.expl_behavior}_cl-small={args.cl_small}_{tag}" if args.cl else f"{dv2.defaults.expl_behavior}_single-env={args.env}_{tag}",
'wandb.project': args.wandb_proj_name,
}).parse_flags()
# from https://github.com/danijar/crafter-baselines/blob/main/plan2explore/main.py
if args.plan2explore:
config = config.update({
'expl_behavior': 'Plan2Explore',
'pred_discount': args.rssm_full_recon,
'grad_heads': ['decoder', 'reward', 'discount'] if args.rssm_full_recon else ['decoder'],
'expl_intr_scale': args.expl_intr_scale,
'expl_extr_scale': args.expl_extr_scale,
'discount': 0.99,
'wandb.name': f"Plan2Explore_cl-small={args.cl_small}_{tag}" if args.cl else f"Plan2Explore_single-env={args.env}_{tag}",
}).parse_flags()
unbalanced_steps = ast.literal_eval(config.unbalanced_steps)
if config.cl:
if config.cl_small:
env_names = [
"Room-Random-15x15-v0",
"Room-Trap-15x15-v0",
"River-Narrow-v0",
"River-Monster-v0",
]
elif unbalanced_steps is not None:
env_names = [
"Room-Random-15x15-v0",
"River-Narrow-v0",
]
else:
env_names = [
"Room-Random-15x15-v0", # |A|=8 consider replacing with "Room-Ultimate-5x5-v0",
"Room-Monster-15x15-v0", # |A|=8
"Room-Trap-15x15-v0", # |A|=8
"Room-Ultimate-15x15-v0", # |A|=8
"River-Narrow-v0",
"River-v0",
"River-Monster-v0",
"HideNSeek-v0",
]
wandb.init(
config=config,
reinit=True,
resume=False,
sync_tensorboard=True,
**config.wandb,
)
envs = []
for i in range(config.num_tasks):
name = env_names[i]
env = make_minihack(name)
print("env {0}, action space: {1}".format(name, env.action_space.n))
envs.append(env)
dv2.cl_train_loop(envs, config)
else:
envs = [
"Room-Random-15x15-v0",
"Room-Monster-15x15-v0",
"Room-Trap-15x15-v0",
"Room-Ultimate-15x15-v0",
"River-Narrow-v0",
"River-v0",
"River-Monster-v0",
"HideNSeek-v0",
"CorridorBattle-v0",
"River-Lava-v0",
"River-MonsterLava-v0",
]
config = config.update({
'tag': tag + envs[args.env],
}).parse_flags()
wandb.init(
config=config,
reinit=True,
resume=False,
sync_tensorboard=True,
**config.wandb,
)
env = make_minihack(envs[args.env])
dv2.train(env, config)
if args.del_exp_replay:
shutil.rmtree(os.path.join(config['logdir'], 'train_episodes'))
wandb.finish()
if __name__ == "__main__":
args = parse_minihack_args()
run_minihack(args)