-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathchip_classification.py
149 lines (128 loc) · 5.88 KB
/
chip_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
from os.path import join
import rastervision as rv
from examples.utils import get_scene_info, str_to_bool, save_image_crop
aoi_path = 'AOIs/AOI_1_Rio/srcData/buildingLabels/Rio_OUTLINE_Public_AOI.geojson'
class ChipClassificationExperiments(rv.ExperimentSet):
def exp_main(self, raw_uri, processed_uri, root_uri, test=False, use_tf=False):
"""Chip classification experiment on Spacenet Rio dataset.
Run the data prep notebook before running this experiment. Note all URIs can be
local or remote.
Args:
raw_uri: (str) directory of raw data
processed_uri: (str) directory of processed data
root_uri: (str) root directory for experiment output
test: (bool) if True, run a very small experiment as a test and generate
debug output
use_tf: (bool) if True, use Tensorflow Deeplab backend
"""
test = str_to_bool(test)
use_tf = str_to_bool(use_tf)
exp_id = 'spacenet-rio-chip-classification'
debug = False
train_scene_info = get_scene_info(join(processed_uri, 'train-scenes.csv'))
val_scene_info = get_scene_info(join(processed_uri, 'val-scenes.csv'))
if test:
exp_id += '-test'
debug = True
train_scene_info = train_scene_info[0:1]
val_scene_info = val_scene_info[0:1]
task = rv.TaskConfig.builder(rv.CHIP_CLASSIFICATION) \
.with_chip_size(200) \
.with_classes({
'building': (1, 'red'),
'no_building': (2, 'black')
}) \
.build()
if use_tf:
num_epochs = 20
batch_size = 32
if test:
num_epochs = 1
batch_size = 1
backend = rv.BackendConfig.builder(rv.KERAS_CLASSIFICATION) \
.with_task(task) \
.with_model_defaults(rv.RESNET50_IMAGENET) \
.with_debug(debug) \
.with_batch_size(batch_size) \
.with_num_epochs(num_epochs) \
.with_config({
'trainer': {
'options': {
'saveBest': True,
'lrSchedule': [
{
'epoch': 0,
'lr': 0.0005
},
{
'epoch': 10,
'lr': 0.0001
},
{
'epoch': 15,
'lr': 0.00001
}
]
}
}
}, set_missing_keys=True) \
.build()
else:
num_epochs = 20
batch_size = 32
if test:
num_epochs = 1
batch_size = 2
backend = rv.BackendConfig.builder(rv.PYTORCH_CHIP_CLASSIFICATION) \
.with_task(task) \
.with_train_options(
lr=1e-4,
batch_size=batch_size,
num_epochs=num_epochs,
model_arch='resnet50',
debug=debug) \
.build()
def make_scene(scene_info):
(raster_uri, label_uri) = scene_info
raster_uri = join(raw_uri, raster_uri)
label_uri = join(processed_uri, label_uri)
aoi_uri = join(raw_uri, aoi_path)
if test:
crop_uri = join(
processed_uri, 'crops', os.path.basename(raster_uri))
save_image_crop(raster_uri, crop_uri, label_uri=label_uri,
size=600, min_features=20)
raster_uri = crop_uri
id = os.path.splitext(os.path.basename(raster_uri))[0]
label_source = rv.LabelSourceConfig.builder(rv.CHIP_CLASSIFICATION) \
.with_uri(label_uri) \
.with_ioa_thresh(0.5) \
.with_use_intersection_over_cell(False) \
.with_pick_min_class_id(True) \
.with_background_class_id(2) \
.with_infer_cells(True) \
.build()
return rv.SceneConfig.builder() \
.with_task(task) \
.with_id(id) \
.with_raster_source(raster_uri) \
.with_label_source(label_source) \
.with_aoi_uri(aoi_uri) \
.build()
train_scenes = [make_scene(info) for info in train_scene_info]
val_scenes = [make_scene(info) for info in val_scene_info]
dataset = rv.DatasetConfig.builder() \
.with_train_scenes(train_scenes) \
.with_validation_scenes(val_scenes) \
.build()
experiment = rv.ExperimentConfig.builder() \
.with_id(exp_id) \
.with_root_uri(root_uri) \
.with_task(task) \
.with_backend(backend) \
.with_dataset(dataset) \
.build()
return experiment
if __name__ == '__main__':
rv.main()