From 50d46b2294a77cfd1604d41da9ba12463772badc Mon Sep 17 00:00:00 2001 From: Konstantin Malanchev Date: Thu, 31 Oct 2024 14:12:29 -0400 Subject: [PATCH 1/4] Add ZTF alerts notebook --- docs/tutorials.rst | 1 + .../pre_executed/ztf-alerts-sne.ipynb | 2202 +++++++++++++++++ 2 files changed, 2203 insertions(+) create mode 100644 docs/tutorials/pre_executed/ztf-alerts-sne.ipynb diff --git a/docs/tutorials.rst b/docs/tutorials.rst index 7b116f9e..4cadb922 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -44,3 +44,4 @@ Notebooks going over some more scientific example use cases Science Notebook: Cross-match ZTF BTS and NGC Science Notebook: Import and cross-match DES and Gaia + Science Notebook: Search for Supernovae in ZTF alerts diff --git a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb new file mode 100644 index 00000000..4d6b7eac --- /dev/null +++ b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb @@ -0,0 +1,2202 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fc1a0e0de461de1", + "metadata": {}, + "source": [ + "# Search for SN-like light curves in ZTF alerts\n", + "\n", + "We will use lsdb package to load a Hats catalog with [ZTF](https://www.ztf.caltech.edu) alerts.\n", + "The dataset contains all alerts sent from the beginning of the survey until 2023-09-13 corresponding to objects having at least 20 detections.\n", + "\n", + "The dataset is provided by the [ALeRCE](https://alerce.science) broker team.\n", + "\n", + "The goal is to find supernova (SN) candidates in this dataset using the goodness of the Bazin ([Bazin+2009](https://doi.org/10.1051/0004-6361/200911847)) function fit – a simple parametric model for SN light curves.\n", + "\n", + "The pipeline will be as follows:\n", + "1. Load the dataset with LSDB\n", + "2. Convert it to a nested format with `nested-dask` package\n", + "3. Fit Bazin function and extract some other light-curve features with `light-curve` package\n", + "4. Filter data and plot few light curves" + ] + }, + { + "cell_type": "markdown", + "id": "f651517e16ce4bdb", + "metadata": {}, + "source": [ + "### Install and import required packages\n", + "\n", + "We need LSDB for data loading and analysis (includes [`dask`](https://dask.org), [`nested-pandas`](https://nested-pandas.readthedocs.org) and [`nested-dask`](https://nested-dask.readthedocs.org)) and [`light-curve`](https://github.com/light-curve/light-curve-python) package for feature extraction." + ] + }, + { + "cell_type": "code", + "id": "0e5c43c5", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:13:45.038972Z", + "start_time": "2024-10-31T16:13:40.538905Z" + } + }, + "source": [ + "%pip install lsdb\n", + "# This --only-binary flag is required to avoid installation errors on some systems\n", + "%pip install --only-binary=light-curve light-curve" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: lsdb in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (0.4.1.dev16+g3203fb91.d20241028)\r\n", + "Requirement already satisfied: dask[complete] in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (2024.7.1)\r\n", + "Requirement already satisfied: deprecated in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (1.2.14)\r\n", + "Requirement already satisfied: hats>=0.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.4.2.dev34+g1710fd7)\r\n", + "Requirement already satisfied: lsst-sphgeom in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (27.2024.2600)\r\n", + "Requirement already satisfied: nested-dask in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.2.1)\r\n", + "Requirement already satisfied: nested-pandas in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.2.2)\r\n", + "Requirement already satisfied: pyarrow in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (16.1.0)\r\n", + "Requirement already satisfied: scipy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (1.14.0)\r\n", + "Requirement already satisfied: aiohttp in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (3.9.5)\r\n", + "Requirement already satisfied: astropy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (6.0.1)\r\n", + "Requirement already satisfied: fsspec>=2023.10.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2024.6.1)\r\n", + "Requirement already satisfied: healpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (1.17.3)\r\n", + "Requirement already satisfied: jproperties in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.1.2)\r\n", + "Requirement already satisfied: matplotlib<3.9,>=3.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (3.8.4)\r\n", + "Requirement already satisfied: mocpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.16.1)\r\n", + "Requirement already satisfied: numba>=0.58 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.60.0)\r\n", + "Requirement already satisfied: numpy<3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (1.26.4)\r\n", + "Requirement already satisfied: pandas in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.2.3)\r\n", + "Requirement already satisfied: pydantic in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.9.2)\r\n", + "Requirement already satisfied: typing-extensions>=4.3.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (4.12.2)\r\n", + "Requirement already satisfied: universal-pathlib in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.2.5)\r\n", + "Requirement already satisfied: click>=8.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (8.1.7)\r\n", + "Requirement already satisfied: cloudpickle>=1.5.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (3.0.0)\r\n", + "Requirement already satisfied: packaging>=20.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (24.1)\r\n", + "Requirement already satisfied: partd>=1.4.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (1.4.2)\r\n", + "Requirement already satisfied: pyyaml>=5.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (6.0.1)\r\n", + "Requirement already satisfied: toolz>=0.10.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (0.12.1)\r\n", + "Requirement already satisfied: pyarrow-hotfix in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (0.6)\r\n", + "Requirement already satisfied: lz4>=4.3.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (4.3.3)\r\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from deprecated->lsdb) (1.16.0)\r\n", + "Requirement already satisfied: hpgeom>=0.8.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsst-sphgeom->lsdb) (1.3.2)\r\n", + "Requirement already satisfied: dask-expr in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from nested-dask->lsdb) (1.1.9)\r\n", + "Requirement already satisfied: distributed==2024.7.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (2024.7.1)\r\n", + "Requirement already satisfied: jinja2>=2.10.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.1.4)\r\n", + "Requirement already satisfied: locket>=1.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (1.0.0)\r\n", + "Requirement already satisfied: msgpack>=1.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (1.0.8)\r\n", + "Requirement already satisfied: psutil>=5.7.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (6.0.0)\r\n", + "Requirement already satisfied: sortedcontainers>=2.0.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (2.4.0)\r\n", + "Requirement already satisfied: tblib>=1.6.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.0.0)\r\n", + "Requirement already satisfied: tornado>=6.0.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (6.4.1)\r\n", + "Requirement already satisfied: urllib3>=1.24.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (2.2.2)\r\n", + "Requirement already satisfied: zict>=3.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.0.0)\r\n", + "Requirement already satisfied: contourpy>=1.0.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (1.2.1)\r\n", + "Requirement already satisfied: cycler>=0.10 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (0.12.1)\r\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (4.53.1)\r\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (1.4.5)\r\n", + "Requirement already satisfied: pillow>=8 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (10.4.0)\r\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (3.1.2)\r\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (2.9.0.post0)\r\n", + "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from numba>=0.58->hats>=0.4->lsdb) (0.43.0)\r\n", + "Requirement already satisfied: pytz>=2020.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pandas->hats>=0.4->lsdb) (2024.1)\r\n", + "Requirement already satisfied: tzdata>=2022.7 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pandas->hats>=0.4->lsdb) (2024.1)\r\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.3.1)\r\n", + "Requirement already satisfied: attrs>=17.3.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (23.2.0)\r\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.4.1)\r\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (6.0.5)\r\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.9.4)\r\n", + "Requirement already satisfied: pyerfa>=2.0.1.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from astropy->hats>=0.4->lsdb) (2.0.1.4)\r\n", + "Requirement already satisfied: astropy-iers-data>=0.2024.2.26.0.28.55 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from astropy->hats>=0.4->lsdb) (0.2024.7.22.0.34.13)\r\n", + "Requirement already satisfied: bokeh>=2.4.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (3.5.0)\r\n", + "Requirement already satisfied: six~=1.13 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from jproperties->hats>=0.4->lsdb) (1.16.0)\r\n", + "Requirement already satisfied: cdshealpix>=0.6.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from mocpy->hats>=0.4->lsdb) (0.6.5)\r\n", + "Requirement already satisfied: networkx>=2.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from mocpy->hats>=0.4->lsdb) (3.3)\r\n", + "Requirement already satisfied: annotated-types>=0.6.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pydantic->hats>=0.4->lsdb) (0.7.0)\r\n", + "Requirement already satisfied: pydantic-core==2.23.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pydantic->hats>=0.4->lsdb) (2.23.4)\r\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from bokeh>=2.4.2->dask[complete]->lsdb) (2024.6.0)\r\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from jinja2>=2.10.3->distributed==2024.7.1->dask[complete]->lsdb) (2.1.5)\r\n", + "Requirement already satisfied: idna>=2.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from yarl<2.0,>=1.0->aiohttp->hats>=0.4->lsdb) (3.7)\r\n", + "\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: light-curve in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (0.9.6)\r\n", + "Requirement already satisfied: numpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from light-curve) (1.26.4)\r\n", + "\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "execution_count": 1 + }, + { + "cell_type": "code", + "id": "af5fdfe0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:14:01.879589Z", + "start_time": "2024-10-31T16:13:59.192844Z" + } + }, + "source": [ + "import light_curve as licu\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from dask.distributed import Client\n", + "from lsdb import read_hats" + ], + "outputs": [], + "execution_count": 2 + }, + { + "cell_type": "markdown", + "id": "ccfb5d53-6229-400c-8dfc-b2972de158ec", + "metadata": {}, + "source": [ + "### Helper function for light-curve plotting\n", + "\n", + "The function accepts a pandas data frame and plot a light curve." + ] + }, + { + "cell_type": "code", + "id": "bde20aba", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:15:03.695967Z", + "start_time": "2024-10-31T16:15:03.692865Z" + } + }, + "source": [ + "def plot_lc(lc, nondet, title=None):\n", + " \"\"\"Plot light curve with non-detections.\"\"\"\n", + " for fid, band in zip([1, 2], \"gr\"):\n", + " idx = lc[\"lc_fid\"] == fid\n", + " plt.scatter(lc[\"lc_mjd\"][idx], lc[\"lc_magpsf\"][idx], label=band, color=band, marker=\"x\", s=10)\n", + " plt.errorbar(lc[\"lc_mjd\"][idx], lc[\"lc_magpsf\"][idx], lc[\"lc_sigmapsf\"][idx], color=band, ls=\"\")\n", + "\n", + " idx = nondet[\"nondet_fid\"] == fid\n", + " plt.plot(nondet[\"nondet_mjd\"][idx], nondet[\"nondet_diffmaglim\"][idx], \"v\", color=band, alpha=0.25)\n", + "\n", + " plt.legend()\n", + " plt.title(title)\n", + " plt.xlabel(\"MJD\")\n", + " plt.ylabel(\"mag\")\n", + " plt.gca().invert_yaxis()" + ], + "outputs": [], + "execution_count": 3 + }, + { + "cell_type": "markdown", + "id": "dde7cda2-4e05-493f-9940-75424c3e31b8", + "metadata": {}, + "source": [ + "### Load catalog structure and \"nest\" columns\n", + "\n", + "Here we load the catalog structure and transform list-columns to a compact representation.\n", + "These transformed columns are \"nested data frames\", so each item could be represented by a small pandas dataframe.\n", + "We are going to have three nested columns:\n", + "\n", + "1. \"lc\", for light curves, each point corrersponds to some alert (detection)\n", + "2. \"nondet\", for non-detections (upper limits)\n", + "3. \"ref\", for ZTF reference objects associated with alerts\n", + "\n", + "Here we do not download any data yet, all data access and analysis happens only after `.compute()` is called.\n", + "\n", + "Here we display two versions of the catalog: the first one is the raw catalog with nested lists, and the second one is the catalog with nested columns." + ] + }, + { + "cell_type": "code", + "id": "7c7010f6", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:16:09.566339Z", + "start_time": "2024-10-31T16:16:07.219879Z" + } + }, + "source": [ + "ZTF_ALERTS = \"https://data.lsdb.io/hats/alerce/\"\n", + "\n", + "# Load catalog with nested lists\n", + "raw_catalog = read_hats(\n", + " ZTF_ALERTS,\n", + ")\n", + "display(raw_catalog)\n", + "\n", + "# Pack all list-columns into single column\n", + "catalog_with_lc = raw_catalog.nest_lists(\n", + " base_columns=[col for col in raw_catalog.columns if not col.startswith(\"lc_\")],\n", + " name=\"lc\",\n", + ")\n", + "\n", + "# Pack non-detections\n", + "catalog_with_nondet = catalog_with_lc.nest_lists(\n", + " base_columns=[col for col in catalog_with_lc.columns if not col.startswith(\"nondet_\")],\n", + " name=\"nondet\",\n", + ")\n", + "\n", + "# Pack ZTF references\n", + "catalog = catalog_with_nondet.nest_lists(\n", + " base_columns=[col for col in catalog_with_nondet.columns if not col.startswith(\"ref_\")],\n", + " name=\"ref\",\n", + ")\n", + "\n", + "catalog" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "Dask NestedFrame Structure:\n", + " oid mean_ra mean_dec lc_ra lc_dec lc_candid lc_mjd lc_fid lc_pid lc_diffmaglim lc_isdiffpos lc_nid lc_magpsf lc_sigmapsf lc_magap lc_sigmagap lc_distnr lc_rb lc_rbversion lc_drb lc_drbversion lc_magapbig lc_sigmagapbig lc_rfid lc_magpsf_corr lc_sigmapsf_corr lc_sigmapsf_corr_ext lc_corrected lc_dubious lc_parent_candid lc_has_stamp lc_step_id_corr nondet_mjd nondet_fid nondet_diffmaglim ref_rfid ref_candid ref_fid ref_rcid ref_field ref_magnr ref_sigmagnr ref_chinr ref_sharpnr ref_ranr ref_decnr ref_mjdstartref ref_mjdendref ref_nframesref Norder Dir Npix\n", + "npartitions=113 \n", + "0 string[pyarrow] double[pyarrow] double[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] int8[pyarrow] int64[pyarrow] int64[pyarrow]\n", + "72057594037927936 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "3170534137668829184 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "3458764513820540928 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "Dask Name: nestedframe, 3 expressions\n", + "Expr=MapPartitions(NestedFrame)" + ], + "text/html": [ + "
lsdb Catalog alerce_nested:
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oidmean_ramean_declc_ralc_declc_candidlc_mjdlc_fidlc_pidlc_diffmaglimlc_isdiffposlc_nidlc_magpsflc_sigmapsflc_magaplc_sigmagaplc_distnrlc_rblc_rbversionlc_drblc_drbversionlc_magapbiglc_sigmagapbiglc_rfidlc_magpsf_corrlc_sigmapsf_corrlc_sigmapsf_corr_extlc_correctedlc_dubiouslc_parent_candidlc_has_stamplc_step_id_corrnondet_mjdnondet_fidnondet_diffmaglimref_rfidref_candidref_fidref_rcidref_fieldref_magnrref_sigmagnrref_chinrref_sharpnrref_ranrref_decnrref_mjdstartrefref_mjdendrefref_nframesrefNorderDirNpix
npartitions=113
0string[pyarrow]double[pyarrow]double[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: string>[pyarrow]list<element: double>[pyarrow]list<element: string>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: bool>[pyarrow]list<element: bool>[pyarrow]list<element: double>[pyarrow]list<element: bool>[pyarrow]list<element: string>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: int64>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: double>[pyarrow]list<element: int64>[pyarrow]int8[pyarrow]int64[pyarrow]int64[pyarrow]
72057594037927936............................................................................................................................................................
...............................................................................................................................................................
3170534137668829184............................................................................................................................................................
3458764513820540928............................................................................................................................................................
\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Dask NestedFrame Structure:\n", + " oid mean_ra mean_dec Norder Dir Npix lc nondet ref\n", + "npartitions=113 \n", + "0 string[pyarrow] double[pyarrow] double[pyarrow] int8[pyarrow] int64[pyarrow] int64[pyarrow] nested], lc_dec: [list], lc_candid: [list], lc_mjd: [list], lc_fid: [list], lc_pid: [list], lc_diffmaglim: [list], lc_isdiffpos: [list], lc_nid: [list], lc_magpsf: [list], lc_sigmapsf: [list], lc_magap: [list], lc_sigmagap: [list], lc_distnr: [list], lc_rb: [list], lc_rbversion: [list], lc_drb: [list], lc_drbversion: [list], lc_magapbig: [list], lc_sigmagapbig: [list], lc_rfid: [list], lc_magpsf_corr: [list], lc_sigmapsf_corr: [list], lc_sigmapsf_corr_ext: [list], lc_corrected: [list], lc_dubious: [list], lc_parent_candid: [list], lc_has_stamp: [list], lc_step_id_corr: [list]> nested], nondet_fid: [list], nondet_diffmaglim: [list]> nested], ref_candid: [list], ref_fid: [list], ref_rcid: [list], ref_field: [list], ref_magnr: [list], ref_sigmagnr: [list], ref_chinr: [list], ref_sharpnr: [list], ref_ranr: [list], ref_decnr: [list], ref_mjdstartref: [list], ref_mjdendref: [list], ref_nframesref: [list]>\n", + "72057594037927936 ... ... ... ... ... ... ... ... ...\n", + "... ... ... ... ... ... ... ... ... ...\n", + "3170534137668829184 ... ... ... ... ... ... ... ... ...\n", + "3458764513820540928 ... ... ... ... ... ... ... ... ...\n", + "Dask Name: lambda, 6 expressions\n", + "Expr=MapPartitions(lambda)" + ], + "text/html": [ + "
lsdb Catalog alerce_nested:
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oidmean_ramean_decNorderDirNpixlcnondetref
npartitions=113
0string[pyarrow]double[pyarrow]double[pyarrow]int8[pyarrow]int64[pyarrow]int64[pyarrow]nested<lc_ra: [list<element: double>], lc_dec:...nested<nondet_mjd: [list<element: double>], no...nested<ref_rfid: [list<element: int64>], ref_c...
72057594037927936...........................
..............................
3170534137668829184...........................
3458764513820540928...........................
\n", + "
" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 6 + }, + { + "cell_type": "markdown", + "id": "129f6e39-714c-45af-8d56-9ff34100d26f", + "metadata": {}, + "source": [ + "### Plot example light curves\n", + "\n", + "It is time to run our first `.compute()`!\n", + "Here we select the first catalog partition (e.g. a single catalog file), load it and plot first five light curves from this file.\n", + "\n", + "Note how we use nested \"lc\" column here: each value is represented by a pandas light curve, which we use for plotting." + ] + }, + { + "metadata": { + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-10-31T16:18:33.799732Z", + "start_time": "2024-10-31T16:16:52.878246Z" + } + }, + "cell_type": "code", + "source": [ + "# \"Compute\" the first partition and plot few light curves\n", + "\n", + "# Single partition would require single worker\n", + "with Client(n_workers=1) as client:\n", + " display(client)\n", + " ndf = catalog.partitions[0].compute()" + ], + "id": "a4f62395", + "outputs": [ + { + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-8a602906-97a3-11ef-a748-1ecfd5b80ac0

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + "
\n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

d6db8995

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Workers: 1\n", + "
\n", + " Total threads: 12\n", + " \n", + " Total memory: 32.00 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-75c5895f-577c-4187-a311-ccddf98d1b0a

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:60531\n", + " \n", + " Workers: 1\n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Total threads: 12\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 32.00 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:60536\n", + " \n", + " Total threads: 12\n", + "
\n", + " Dashboard: http://127.0.0.1:60537/status\n", + " \n", + " Memory: 32.00 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:60534\n", + "
\n", + " Local directory: /var/folders/w1/lh3h4s7d5g10rdlfj4h0mshw0000gn/T/dask-scratch-space/worker-x96j96hs\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "id": "960b2a86-102a-4a40-a4b6-c81f273d02c3", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:18:34.458692Z", + "start_time": "2024-10-31T16:18:33.808269Z" + } + }, + "source": [ + "for i in range(5):\n", + " lc = ndf[\"lc\"].iloc[i]\n", + " oid = ndf[\"oid\"].iloc[i]\n", + " nondet = ndf[\"nondet\"].iloc[i]\n", + " plt.figure()\n", + " plot_lc(lc, nondet, title=str(oid))" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqB0lEQVR4nO3deXhTVf4/8HdS0rQJSWho6ULLElJBFAuCIOBCobIMKkVGEZFNGEcFN8ZlyqioMyM/cWFmBEUHoQgyIDMCKloHWWVTWfqdgoCs0pa2tCxJG0raNPf3R0jaNEnX7Pf9ep77QG7uvTm3We7nnvM550gEQRBAREREJCLSQBeAiIiIyN8YABEREZHoMAAiIiIi0WEARERERKLDAIiIiIhEhwEQERERiQ4DICIiIhIdBkBEREQkOgyAiIiISHQYABERXXPmzBlIJBK8/fbbAXvt7OzsFu0vkUjw6quverVMROGMARARuSWRSBpdpk6d2uTtAGDIkCEetzl69CgA4OjRo3jhhRfQu3dvqFQqJCYmYvTo0di3b5/bchYWFuKBBx5Au3btoFarMWbMGJw6dcpffyYiClFtAl0AIgpOK1as8Pjcq6++ipMnT6J79+5O250+fRqvvPIKHn30Udx+++2O9d26dXP8Pzk5GfPmzXM5ZlJSEgBgyZIl+PjjjzFu3Dg88cQTMBgM+PDDD3HrrbciJycHGRkZjn0qKiqQnp4Og8GAOXPmQCaTYcGCBbjzzjuRm5uL9u3bt+pv4E+dO3dGZWUlZDJZoItCJA4CEVEz/POf/xQACE8++aTLcz/99JMAQFi2bJnbfe+8807hhhtuaPD4+/btE8rLy53WlZWVCXFxccLgwYOd1r/55psCAOHHH390rDty5IgQEREhZGVlNfGMap0+fVoAILz11lvN3jfQAAhz584NdDGIQgabwIioyQ4fPoynnnoKffr0wVtvveWT1+jbty/atm3rtK59+/a4/fbbceTIEaf1//73v3HLLbfglltucazr0aMHhg0bhs8++8yxrqqqCq+88gr69u0LjUYDpVKJ22+/HVu3bvVYjgULFqBz586Ijo7GnXfeiUOHDjk9P3XqVLRt2xanTp3CiBEjoFQqkZSUhNdffx2CIAAAqqurodVqMW3aNJfjG41GREVF4bnnngPgPgeoKa9BRC3DAIiImuTKlSt44IEHEBERgdWrV0Mul7foODU1NSgrK3NaKioqGt2vuLgYsbGxjsdWqxX/+9//0K9fP5dt+/fvj5MnT6K8vByALdhYsmQJhgwZgjfffBOvvvoqSktLMWLECOTm5rrs/8knn+Af//gHZs6ciaysLBw6dAhDhw5FSUmJy7mMHDkS8fHxmD9/Pvr27Yu5c+di7ty5AACZTIaxY8di/fr1qKqqctp3/fr1MJvNePDBBxv9ezX0GkTUQoGugiKi0PDII48IAITly5d73KYpTWAAXJYpU6Y0+No7duwQJBKJ8PLLLzvWlZaWCgCE119/3WX7RYsWCQCEo0ePCoIgCBaLRTCbzU7bXLp0SYiPjxceeeQRxzp7E1h0dLRQUFDgWP/DDz8IAIRnn33WsW7KlCkuTYFWq1UYPXq0EBkZKZSWlgqCIAjffvutAED48ssvnV7/N7/5jaDT6Vxeu+7frqmvIQhsAiNqLtYAEVGjVq1ahaVLl2LSpEmYPHlyq47VpUsXbNq0yWl54YUXPG5//vx5PPTQQ+jatavTdpWVlQDgtiYqKirKaZuIiAhERkYCsNUcXbx4ERaLBf369cOBAwdc9s/MzETHjh0dj/v3748BAwbg66+/dtl21qxZjv9LJBLMmjULVVVV+O677wAAQ4cORWxsLNasWePY7tKlS9i0aRPGjx/v8byb8xpE1HzsBUZEDTp+/Dgee+wxXHfddXj//fdbfTylUunUk6shJpMJd999N8rLy7Fz506n3KDo6GgAgNlsdtnv6tWrTtsAwPLly/HOO+/g6NGjqK6udqzv2rWry/6pqaku66677jqnvCIAkEql0Ol0LtsBtpweAGjTpg3GjRuHVatWwWw2Qy6X4/PPP0d1dXWTAqCmvAYRNR9rgIjII7PZjPHjx6OqqgqrV692SU72paqqKtx333343//+hw0bNuDGG290el6r1UIul6OoqMhlX/s6e9f6lStXYurUqejWrRs+/vhj5OTkYNOmTRg6dCisVqvPz+XBBx9EeXk5vvnmGwDAZ599hh49eiAtLc3nr01E7jEAIiKPnnvuORw8eBDz589Hnz59/Pa6VqsVkydPxubNm7Fq1SrceeedLttIpVL06tXL7QCJP/zwA3Q6HVQqFQBbbzGdTofPP/8ckyZNwogRI5CRkeGoKarv+PHjLut++eUXdOnSxaWc9Qdd/OWXXwDAads77rgDiYmJWLNmDcrKyrBly5YmN3819TWIqHkYABGRW+vWrcPChQtx77334qmnnvLraz/55JNYs2YN3n//fdx3330et/vtb3+Ln376ySkIOnbsGLZs2YL777/fsS4iIgIAnLqO//DDD9izZ4/b465fvx6FhYWOxz/++CN++OEHjBo1ymXbhQsXOv4vCAIWLlwImUyGYcOGOdZLpVL89re/xZdffokVK1bAYrE0OQBq6msQUfMwB4iIXBQVFWH69OmIiIjAsGHDsHLlSrfbdevWDQMHDvTqa//tb3/D+++/j4EDB0KhULi89tixY6FUKgEATzzxBP75z39i9OjReO655yCTyfDuu+8iPj4ef/jDHxz73H333fj8888xduxYjB49GqdPn8bixYvRs2dPt13w9Xo9brvtNjz++OMwm83429/+hvbt27ska0dFRSEnJwdTpkzBgAED8M0332Djxo2YM2cO4uLinLYdP3483nvvPcydOxe9evXC9ddf36S/R3Neg4iajgEQEbk4duwYLl26BAB4+umnPW43ZcoUrwdA9nF59uzZ47aG5vTp044ASKVSYdu2bXj22Wfxl7/8BVarFUOGDMGCBQucgoOpU6eiuLgYH374Ib799lv07NkTK1euxNq1a7Ft2zaX15g8eTKkUin+9re/4fz58+jfvz8WLlyIxMREp+0iIiKQk5ODxx9/HM8//zxUKhXmzp2LV155xeWYgwYNQkpKCvLz85tV+9Oc1yCippMIAocTJSJqrqlTp+Lf//53kwZxDObXIBIr5gARERGR6DAAIiIiItFhAERERESiwxwgIiIiEh3WABEREZHoMAAiIiIi0eE4QG5YrVacO3cOKpUKEokk0MUhIiKiJhAEAeXl5UhKSoJU2nAdDwMgN86dO4eUlJRAF4OIiIhaID8/H8nJyQ1uwwDIDfsEivn5+VCr1QEuDRERETWF0WhESkqK4zreEAZAbtibvdRqNQMgIiKiENOU9BUmQRMREZHoMAAiIiIi0WEARERERKLDHCAiIqIwUlNTg+rq6kAXwydkMhkiIiK8ciwGQERERGFAEAQUFxfj8uXLgS6KT7Vr1w4JCQmtHqePARAREVEYsAc/HTp0gEKhCLuBfAVBwJUrV3D+/HkAQGJiYquOxwCIiIgoxNXU1DiCn/bt2we6OD4THR0NADh//jw6dOjQquawgCZB79ixA/fccw+SkpIgkUiwfv16p+clEonb5a233mrwuIsWLUKXLl0QFRWFAQMG4Mcff/ThWRAREQWWPedHoVAEuCS+Zz/H1uY5BTQAMplMSEtLw6JFi9w+X1RU5LQsXboUEokE48aN83jMNWvWYPbs2Zg7dy4OHDiAtLQ0jBgxwlFlRkREFK7CrdnLHW+dY0CbwEaNGoVRo0Z5fD4hIcHp8YYNG5Ceng6dTudxn3fffRe/+93vMG3aNADA4sWLsXHjRixduhR//OMfvVNwIvINsxmoqvL8fGQkIJf7rzwUOvjZoWYKmRygkpISbNy4EcuXL/e4TVVVFfbv34+srCzHOqlUioyMDOzZs8cfxSSilrJagZ07gdJSz9vExQHp6UAjszyTyPCzQy0QMp+E5cuXQ6VS4b777vO4TVlZGWpqahAfH++0Pj4+HsXFxR73M5vNMBqNTgsR+ZlUCqhUgMEAqNWui8Fge54XMKqPnx1qgZD5NCxduhQTJ05EVFSU1489b948aDQax5KSkuL11yCiJtDrAY0GsFgAhaJ2sVhs6/X6QJeQghU/O9RMIREAff/99zh27BhmzJjR4HaxsbGIiIhASUmJ0/qSkhKXfKK6srKyYDAYHEt+fr5Xyk1EzaTVAjqda1NGaaltvVYbmHJR8ONnJ6SVl5dj4sSJUCqVSExMxIIFCzBkyBA888wzPnvNkAiAPv74Y/Tt2xdpaWkNbhcZGYm+ffti8+bNjnVWqxWbN2/GwIEDPe4nl8uhVqudFiIKEL0eUCoBe1O00Wh7zDt4agw/O15RdqUM+QZbRUC+IR9lV8p8/pqzZ8/Grl278MUXX2DTpk34/vvvceDAAZ++ZkADoIqKCuTm5iI3NxcAcPr0aeTm5uLs2bOObYxGI9auXeux9mfYsGFYuHCh4/Hs2bPxz3/+E8uXL8eRI0fw+OOPw2QyOXqFEVGQq38nzzt4aip+dlqt7EoZhi4fiiHLh2B3/m4MWT4EQ5cP9WkQVF5ejuXLl+Ptt9/GsGHDcOONN2LZsmWoqanx2WsCAe4Ftm/fPqSnpzsez549GwAwZcoUZGdnAwBWr14NQRAwYcIEt8c4efIkyspq35jx48ejtLQUr7zyCoqLi9G7d2/k5OS4JEYTURDT64FTp4DCQt7BU/Pws9MqldWVMFWbcOrSKQxeOhgAoIvRobK60meveerUKVRXV6N///6OdRqNBt27d/fZawIBDoCGDBkCQRAa3ObRRx/Fo48+6vH5M2fOuKybNWsWZs2a1driEVGg2O/k9+0D+vXjHTw1HT87rZKiScGKsSscwQ8ArBi7Aima8OscFBI5QEQkQqmpQFqa7V+i5uBnp8XyDfmYtG6S07pJ6yY5coJ8QafTQSaT4aeffnKsMxgM+OWXX3z2mgADICIKVjExwODBtn+JmoOfnRaLlkVDKVNCF6PDrkd2QRejg1KmRLQs2mevqVKpMGXKFDz//PPYunUrDh8+jOnTp0Mqlfp0ao+QGQmaiIiIfCtWEYstU7agsroSKZoUbJuyDdGyaMQqYn36uu+++y4ee+wx3H333VCr1XjhhReQn5/vk7H/7BgAERERkUPdYMdfuT8qlQqffvqp47HJZMJrr73WYA5wazEAIiIiooA6ePAgjh49iv79+8NgMOD1118HAIwZM8Znr8kAiIiIiALu7bffxrFjxxyDGn///feIjfVd0xsDICIiIgqoPn36YP/+/X59TfYCIyIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIioqBRVVXll9fhSNBEREQUMEOGDMGNN96INm3aYOXKlejVqxe2bt3q89dlDRARERHVKisD8vNt/8/Ptz32seXLlyMyMhK7du3C4sWLff56AGuAiIiIyK6sDBg6FDCZgBUrgEmTAKUS2LIF8OHEpKmpqZg/f77Pju8OAyAiIiKyqay0BT+nTgGDB9vW6XS29T7Ut29fnx7fHTaBERERkU1Kiq3mp64VK2zrfUipVPr0+O4wACIiIiKb/Hxbs1ddkybV5gSFEQZAREREZBMdbcv50emAXbts/yqVtvVhhjlAREREZBMba0t4rqy0NXtt22YLfnyYAB0oDICIiIioVt1gx8e5PwCwbds2n7+GO2wCIyIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIqIwIQhCoIvgc946RwZAREREIU4mkwEArly5EuCS+J79HO3n3FLsBk9ERBTiIiIi0K5dO5w/fx4AoFAoIJFIAlwq7xIEAVeuXMH58+fRrl07REREtOp4DICIiIjCQEJCAgA4gqBw1a5dO8e5tkZAA6AdO3bgrbfewv79+1FUVIR169YhMzPT8byn6HX+/Pl4/vnn3T736quv4rXXXnNa1717dxw9etRr5SYiIgo2EokEiYmJ6NChA6qrqwNdHJ+QyWStrvmxC2gAZDKZkJaWhkceeQT33Xefy/NFRUVOj7/55htMnz4d48aNa/C4N9xwA7777jvH4zZtWNFFRETiEBER4bUgIZwFNDIYNWoURo0a5fH5+lVcGzZsQHp6OnQ6XYPHbdOmjVeqx4iIiCg8hUwvsJKSEmzcuBHTp09vdNvjx48jKSkJOp0OEydOxNmzZ/1QQiIiIgoVIdM2tHz5cqhUKrdNZXUNGDAA2dnZ6N69O4qKivDaa6/h9ttvx6FDh6BSqdzuYzabYTabHY+NRqNXy05ERETBJWQCoKVLl2LixImIiopqcLu6TWo33XQTBgwYgM6dO+Ozzz7zWHs0b948l8RpIiIiCl8h0QT2/fff49ixY5gxY0az923Xrh2uu+46nDhxwuM2WVlZMBgMjiU/P781xSUiIqIgFxIB0Mcff4y+ffsiLS2t2ftWVFTg5MmTSExM9LiNXC6HWq12WoiIiCh8BTQAqqioQG5uLnJzcwEAp0+fRm5urlPSstFoxNq1az3W/gwbNgwLFy50PH7uueewfft2nDlzBrt378bYsWMRERGBCRMm+PRciIiIKHQENAdo3759SE9PdzyePXs2AGDKlCnIzs4GAKxevRqCIHgMYE6ePImysjLH44KCAkyYMAEXLlxAXFwcbrvtNuzduxdxcXG+OxEiIiIKKRJBDFPHNpPRaIRGo4HBYGBzGBERUYhozvU7JHKAiIiIiLyJARARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkeiEzFxgREREnpgtZlTVVHl8PjIiEvI2cj+WiIIdAyAiIgppVsGKnWd3ovRKqcdt4hRxSO+aDqmEDR9kw08CERGFNKlECpVcBYPZALVc7bIYzAao5CoGP+SEnwYiIgp5eq0eGrkGFqsFCpnCsVisFmjkGui1+kAXkYIMAyAiIgp52mgtdDE6lJqcm8FKTaXQxeigjdYGqGQUrBgAERFRWNBr9VBGKmE0GwEARrMRykgla3/ILQZAREQUFurXArH2hxrCAIiIiMKGvRao0FjI2h9qEAMgIiIKG/ZaIIPZwNofahDHASIiorCSqk1FdU01UrWpgS4KBTEGQEREFFZiomMwuNPgQBeDghybwIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoBDYB27NiBe+65B0lJSZBIJFi/fr3T8xUVFZg1axaSk5MRHR2Nnj17YvHixY0ed+3atejRoweioqLQq1cvfP311z46AyIiIgpFAQ2ATCYT0tLSsGjRIrfPz549Gzk5OVi5ciWOHDmCZ555BrNmzcIXX3zh8Zi7d+/GhAkTMH36dBw8eBCZmZnIzMzEoUOHfHUaREREFGIkgiAIgS4EAEgkEqxbtw6ZmZmOdTfeeCPGjx+Pl19+2bGub9++GDVqFP7yl7+4Pc748eNhMpnw1VdfOdbdeuut6N27d5NqjwDAaDRCo9HAYDBArVa37ISIiIjIr5pz/Q7qHKBBgwbhiy++QGFhIQRBwNatW/HLL79g+PDhHvfZs2cPMjIynNaNGDECe/bs8biP2WyG0Wh0WoiIiCh8BXUA9N5776Fnz55ITk5GZGQkRo4ciUWLFuGOO+7wuE9xcTHi4+Od1sXHx6O4uNjjPvPmzYNGo3EsKSkpXjsHIiIiCj5BHwDt3bsXX3zxBfbv34933nkHM2fOxHfffefV18nKyoLBYHAs+fn5Xj0+ERERBZc2gS6AJ5WVlZgzZw7WrVuH0aNHAwBuuukm5Obm4u2333Zp5rJLSEhASUmJ07qSkhIkJCR4fC25XA65XO69whMREVFQC9oaoOrqalRXV0MqdS5iREQErFarx/0GDhyIzZs3O63btGkTBg4c6JNyEhERUegJaA1QRUUFTpw44Xh8+vRp5ObmQqvVolOnTrjzzjvx/PPPIzo6Gp07d8b27dvxySef4N1333XsM3nyZHTs2BHz5s0DADz99NO488478c4772D06NFYvXo19u3bh48++sjv50dERETBKaDd4Ldt24b09HSX9VOmTEF2djaKi4uRlZWF//73v7h48SI6d+6MRx99FM8++ywkEgkAYMiQIejSpQuys7Md+69duxYvvfQSzpw5g9TUVMyfPx+/+c1vmlwudoMnIiIKPc25fgfNOEDBhAEQERFR6AmbcYCIiIiIfIEBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRKdNoAtARD5mNgNVVZ6fj4wE5HL/lYeIKAgwACIKZ1YrsHMnUFrqeZu4OCA9HZCyQpiIxIO/eEThTCoFVCrAYADUatfFYLA9z+CHiESGv3pE4U6vBzQawGIBFIraxWKxrdfrA11CIiK/YwBEFO60WkCnc20GKy21rddqA1MuIqIAYg4QkRjo9cCpU4DRaGv6MhoBpZK1P0Q+ZraYUVXjuRNCZEQk5G3YCSEQGAARiYG9FigvzxYAlZYCvXqx9ofIh6yCFTvP7kTpFc+dEOIUcUjvmg6phA0y/sa/OFGYM1vMKDeXozwlHpUyKSpPn0ClTIrylHiUm8thtpgDXUSisCSVSKGSq2AwG6CWq10Wg9kAlVzF4CdAAvpX37FjB+655x4kJSVBIpFg/fr1Ts9XVFRg1qxZSE5ORnR0NHr27InFixc3eMzs7GxIJBKnJSoqyodnQf7guIh7WHgRd89+B7rx+EZsvLAH38sKcfjEbnwvK8TGC3uw8fhG7Dy7E1bBGuiiEoUlvVYPjVwDi9UChUzhWCxWCzRyDfRaNkMHSkCbwEwmE9LS0vDII4/gvvvuc3l+9uzZ2LJlC1auXIkuXbrgv//9L5544gkkJSXh3nvv9XhctVqNY8eOOR5LJBKflJ/8g9XILWe/Az1x6QRS1ClAaiqqpFFAtxSo5SrkG/Ohi9Hx70bkI9poLXQxOuSV5EEtVzvWl5pK0Su+F7TRbIYOlIAGQKNGjcKoUaM8Pr97925MmTIFQ4YMAQA8+uij+PDDD/Hjjz82GABJJBIkJCR4u7gUIC4X8Xp4EW+YXqvHqUunbHegsfGoio1HJICrZiPvQIn8wP4dNJqNUMvVMJqNUEYq+d0LsKC+YgwaNAhffPEFCgsLIQgCtm7dil9++QXDhw9vcL+Kigp07twZKSkpGDNmDA4fPtzg9mazGUaj0Wmh4MJq5Jaz34GWmpxr0EpNpdDF6HgHSuRj9b+D/O4Fh6AOgN577z307NkTycnJiIyMxMiRI7Fo0SLccccdHvfp3r07li5dig0bNmDlypWwWq0YNGgQCgoKPO4zb948aDQax5KS4lrLQIHFi3jr6LV6KCOVMJptwT3vQIn8y/4dLDQW8rsXJII+ANq7dy+++OIL7N+/H++88w5mzpyJ7777zuM+AwcOxOTJk9G7d2/ceeed+PzzzxEXF4cPP/zQ4z5ZWVkwGAyOJT8/3xenQ63Ei3jL8Q6UKLDs30GD2cDvXpAI2nGAKisrMWfOHKxbtw6jR48GANx0003Izc3F22+/jYyMjCYdRyaToU+fPjhx4oTHbeRyOeScDTvo1U8mZBJh89jzEHgHShQYqdpUVNdUI1WbGuiiEIK4Bqi6uhrV1dWQ1pukMSIiAlZr07vs1tTUIC8vD4mJid4uIgUAq5FbjnegRIEVEx2DwZ0GIyY6JtBFIQS4BqiiosKpZub06dPIzc2FVqtFp06dcOedd+L5559HdHQ0OnfujO3bt+OTTz7Bu+++69hn8uTJ6NixI+bNmwcAeP3113HrrbdCr9fj8uXLeOutt/Drr79ixowZfj8/8j77RXzfuX3ol9SPF/Fm4h0oEZFNQAOgffv2IT093fF49uzZAIApU6YgOzsbq1evRlZWFiZOnIiLFy+ic+fO+Otf/4rHHnvMsc/Zs2edaokuXbqE3/3udyguLkZMTAz69u2L3bt3o2fPnv47MfIpXsRbzn4HSkQkdhJBEIRAFyLYGI1GaDQaGAwGqNXqxncgIiKigGvO9Ttoc4CIiIiIfIUBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0gnYkaCISH7PFjKqaKo/PR0ZEQt6Go7YTUesxACKioGAVrNh5didKr5R63CZOEYf0rumQSlh5TWHObAaqPN8MIDIS4BROrcIAiIiCglQihUquwolLJ5CiTnF5Pt+YD12MjsEPhT+rFdi5Eyj1fDOAuDggPR2Q8vvQUvzLEVHQ0Gv10Mg1sFgtUMgUjsVitUAj13DuNxIHqRRQqQCDAVCrXReDwfY8g59WYQ0QEQUN+1xveSV5UMtrR3EtNZWiV3wvzv3mS2xyCS56PXDqFGCx2IIeO6MR0Ghsz1OrMAAioqCi1+px6tIpGM1GqOVqGM1GKCOVrP3xJTa5BB+tFtDpgLw85wCotBTo1cv2PLUKP8lEFFTstUClJtvFuNRUCl2MjrU/vsQml+Ck1wNKpa3WB7D9q1Sy9sdL+GkmoqCj1+qhjFSi0FjI2h9/0ettTSsWC6BQ1C4WC5tcAsVeC2SvmSsttT1m7Y9XMAAioqBjrwUymA2s/fGX+hdbO150A8teC1RYyNofL2MARERBKVWbirT4NKRqUwNdFPFgk0vwsQemBgMDUS9jEjQRBaWY6BgM7jQ40MUQl/qJt0y4DQ6pqUB1te1f8hrWABERUS02uQSfmBhg8GDbv+Q1DICIiKgWm1xIJNgERkQU7po7yCGbXEgEGAAREYWzlgxyaG9yIQpjbAIjIgpnHOSQyK0W1QCNHTsWEonEZb1EIkFUVBT0ej0eeughdO/evdUFJCKiVuK8UkQuWhTyazQabNmyBQcOHIBEIoFEIsHBgwexZcsWWCwWrFmzBmlpadi1a5e3y0tERM3FQQ6JXLSoBighIQEPPfQQFi5cCOm1alOr1Yqnn34aKpUKq1evxmOPPYYXX3wRO3fu9GqBiYioBey1QEajrRao3iCHZosZVTWeE6UjIyIhb8PZ4Cl8SARBEJq7U1xcHHbt2oXrrrvOaf0vv/yCQYMGoaysDHl5ebj99ttx+fJlb5XVb4xGIzQaDQwGA9R1q4sp8Jrbm4WIav34o22Qw27dgJMnbYMc9u8Pq2DF1tNbUXrFc6J0nCIO6V3TIZUwV4iCV3Ou3y2qAbJYLDh69KhLAHT06FHU1NQAAKKiotzmCRG1WEt6s4Qh3qlTi9lrgeoNciiVSKGSq3Di0gmkqFNcdss35kMXo2PwQ2GlRQHQpEmTMH36dMyZMwe33HILAOCnn37CG2+8gcmTJwMAtm/fjhtuuMF7JSWy92Y5cQJIcf2RRn6+LZ8hjIMfq2DFzrM7eadOLWPPBdq3D+jXzyn3R6/V49SlU7BYLVDLa++cjWYjNHIN9FomSlN4aVEAtGDBAsTHx2P+/PkoKSkBAMTHx+PZZ5/Fiy++CAAYPnw4Ro4c6b2SEgGi783CO3VqNQ+DHGqjtdDF6JBXkucUAJWaStErvhe00UyUpvDSohyguozXZg0Op1wZ5gAFubp5DHZ18hnC3cXKi/jvyf9CIVO43Klfqb6C4d2G82JFLVL/s8XPFIWa5ly/W32bqFarGSSQf9kna7wWfNfvzRLu7HfqpSbnZrBSUyl0MTpeqKjF6n+2+JmicNbiqTD+/e9/47PPPsPZs2dRVa9XzoEDB1pdMCKP7HkMeXm2ZrDSUlvtj4jGMrHnaxjNRsedujJSKdo8DSaGe4/9s1VoLBT1Z4rCX4sCoH/84x/405/+hKlTp2LDhg2YNm0aTp48iZ9++gkzZ870dhmJXHnozSIW9fM1xJynwcRw77J/tvad24d+Sf1E+ZkicWjRr8H777+Pjz76CO+99x4iIyPxwgsvYNOmTXjqqadgMBi8XUYiV/ZaIINBtCPZ6rV6KCOVor9TtyeGG8wGqOVql8VgNkAlVzH4aYZUbSrS4tOQquVs8BS+WvSLcPbsWQwaNAgAEB0djfLycgC27vH/+te/mnycHTt24J577kFSUhIkEgnWr1/v9HxJSQmmTp2KpKQkKBQKjBw5EsePH2/0uGvXrkWPHj0QFRWFXr164euvv276yVHwMJuB8nLPS6dOQFqaS28WsbDfqRvMBtHnaei1emjkGlisFihkCsdisVrYhbsFYqJjMLjTYMRExwS6KEQ+0+KpMC5evIjOnTujU6dO2Lt3L9LS0nD69Gk0p1OZyWRCWloaHnnkEdx3331OzwmCgMzMTMhkMmzYsAFqtRrvvvsuMjIy8PPPP0OpVLo95u7duzFhwgTMmzcPd999N1atWoXMzEwcOHAAN954Y0tO16eYu+ABBz1sklRtKqprqkV/p84u3ETUXC3qBj9jxgykpKRg7ty5WLRoEZ5//nkMHjwY+/btw3333YePP/64+QWRSLBu3TpkZmYCsE2r0b17dxw6dMgxoKLVakVCQgLeeOMNzJgxw+1xxo8fD5PJhK+++sqx7tZbb0Xv3r2xePHiJpXFX93gOfx8I378ETh40POgh336iKLbOzUNu3ATkc+nwvjoo49gtVoBADNnzkRsbCx27dqFe++9F4899lhLDunCbDYDsE2pYSeVSiGXy7Fz506PAdCePXswe/Zsp3UjRoxwaV6r/1r21wNqxzbyNne1PRGSCJyvOI8kVRLaRLRBZESk4znRD2on8kEPqXmYGO4ea5mJ3GtRACSVSlFVVYUDBw7g/PnziI6ORkZGBgAgJycH99xzT6sL1qNHD3Tq1AlZWVn48MMPoVQqsWDBAhQUFKCoqMjjfsXFxYiPj3daFx8fj+LiYo/7zJs3D6+99lqry9wQTz1VKqoqcOLiCeQb85HQNgF9EvtAKpFy+HnAtbu7nQi7vVPTsAu3M/aQI/KsRQFQTk4OJk2ahAsXLrg8J5FIHBOitoZMJsPnn3+O6dOnQ6vVIiIiAhkZGRg1alSz8oyaIisry6nWyGg0IsVds0sreJrCQC1Xo8JcgQPFB5xqe3j3eo29FshotAVBIhv0kJqHXbidceoUIs9a9Kl/8skn8cADD6CoqAhWq9Vp8UbwY9e3b1/k5ubi8uXLKCoqQk5ODi5cuACdTudxn4SEBMf8ZHYlJSVISEjwuI9cLneMaO3Lka099VSJU8ahnbydI3lT7IPaObHXAtmToUtLRdvtnZqGXbidsYcckXstCoBKSkowe/Zsl6YmX9FoNIiLi8Px48exb98+jBkzxuO2AwcOxObNm53Wbdq0CQMHDvR1MRvlaQqDq5ar6JPYB1ctVwFw+HkX9qkvRDroITUPu3A749QpRO61KAD67W9/i23btrX6xSsqKpCbm4vc3FwAwOnTp5Gbm4uzZ88CsI3ns23bNpw6dQobNmzAXXfdhczMTAwfPtxxjMmTJyMrK8vx+Omnn0ZOTg7eeecdHD16FK+++ir27duHWbNmtbq83mAfvM5otiVa22t77uh8Bwe184SDHhK1iqffHf7OkJi1KAdo4cKFuP/++/H999+jV69ekMlkTs8/9dRTTTrOvn37kJ6e7nhsz8OZMmUKsrOzUVRUhNmzZ6OkpASJiYmYPHkyXn75ZadjnD17FtI648AMGjQIq1atwksvvYQ5c+YgNTUV69evD5oxgDz1VOmm7YYLlReYu+BJaipQXS3aQQ/dMpuBKs+9exAZCcjZu4fYQ47InRaNA/Txxx/jscceQ1RUFNq3bw+JRFJ7QIkEp06d8moh/c3X4wDZxyupsdYgQhrhGKfkUuUl/Fz6M3rG9WT1PXlmNgNXrwI7dgBlZa7PR0TYgh8xDRTJYLBRnn53iMKJz8cB+tOf/oTXXnsNf/zjH51qX6hpPPVUsecuEHlUd4TsEyeAM2eA9u2dt1Grbet0OnEEPxw1vEnYQ47IWYsCoKqqKowfP57BTytwCgNqEakUUKlswU9qqm1ONLkcUChsz58/b3vcrp14ksXr/k08jRoulmCwEfzdIarVol+EKVOmYM2aNd4ui6iwpwq1mF5vGwk7Ohro2tXWHBYVBdTUAG3b2pp7xJYsbv+bWCy2YNC+WCwcNbwO+++OQqZAubnc42K2mBs/GFGIa1ENUE1NDebPn49vv/0WN910k0sS9LvvvuuVwhGRG3VHyE5KAs6dA0wm4PJlID4e6NBBfBd8jhreZBwdmsimRQFQXl4e+vTpAwA4dOiQ03N1E6KJyEfsI2QDtiDo8GEgJkactT92HDW8STg6NJFNiwKgrVu3erscRNQc9WuBDhyw9f4SY+2PXf1aINb+eGSfM81itThGoAfAOQhJVBjiE4Uq+wjZ5eVAp062nCCx1v7YcdTwJuHo0EQtrAEioiBgr/HYtw+49VZbACT2gSLr/k369RN3MNgIey2Q0WyEWq7m6NBBxmwxo6rG89hWkRGRkLcR99hWrcUAiCgEePwx7JQA6ZVUtLnhRsjjPE/4KyocNbxJODp08GKiun8wAKLgw1F9nTT6YxgLxJUfRnpsB/4YArZk8MEcULQp7LVAnIMwuDBR3T8YAFFw4ai+Lvhj2EoMqD3i6NDBi4nqvscAiIILR/V1iz+GLcSAulEcHTo41W+itGNTpfeI8xtPwY2j+rpgr50WsgfUBoOta3z9xWCwPS/S4AcQ2aj0ZrOt16SnxRxcI2DrtXooI5Uwmo0AwER1L2MNEAUfjurrFnvttJB9gESLxfnzZDSKNqAWpRCsDWSium8Fx7tMVJ99PBej7c6Ho/q61gKx9qeJ7AF1/Qtfaal4x00KsZoQrwjR2kB7LRAT1b2PNUAUnDiqr1vstdNCnCajVgjWhHhNCNYGMlHdd8Ls001hhaP6urD/GBrMBtb+NEf9WiAx1/6EaE2IV4RobWCqNhVp8WlMVPcy1gAFGrvoesZRfd1ir53mcQwimRKPNkcPA6dPALIIWFLiAXO5OEfUDcGaEK8JwdpAe6I6eRcDoEASc1V0U3FUXxf8MWy6+oNIamWF0B47hYs36nDxwh7ggkhH1BVzRwM2r9M1IvrGByExV0U3lX1U3xgRdNElr7MPImkwG2xjqaSmouqmnkBqKtRyNQxmA1RylbiCHzsxdzRg8zqBAVDgccybJjGVX4RqjgSqORKYLhSLo9cKeYVeq4dGroHFakFkbDyqBvRDZGw8LFaLuAeRFHNelP3cDQbxnDO5YBNYoIm5KrqprFZId+/B6F9sDyO+zgFkUc7biL2pkDziiLoNsOfDiLEmhM3roserRTAQc1V0U0ilQNu2UJsBgxwQ1Co2FVKz1B9R93zFecz4cgYGLBkAU5UpwKULIDHXhLB5XfRYAxQMmJTXKGs3HYxyoI0VtiZCWbTtCTH0WqFWq18LVHalLNBFCh5erAlx9LjzQJQ97ihoMQAKFmKuim4KrRYnY4BeJfXWM1ikJqo7iKRCpgh0cYKHvSakler3uHMn0D3uGKBRXQyAggXHvGnUSS3Q7RIAYznQPppNhdQsdUfUvSHuhkAXJ+zYe9yduHQCKeoUl+fzjfnQxegCFvyEQoBG/sUAKJgwKa9BlxTAyRhAUlYGtO/A2h9qNvsgkp01nQNdlLBkr2WzWC1OCedGszHgPe6CPUAj/+M7HUyYlNeok1rYcoDYVEgtYB9EMiaa3zFfqD9hr12wTNxbd0gEhUzhWEQ/JIJIMQCikHJJAQi6ruLstUIUAur3uDOajUEzcW+wB2jkX2wCo5Bj1XcD0IZNheQV5eZyWAWr2+eYFNt89XvcBdt4S/ZmOqPZCLVcHVQBGvkXAyAKPTExwODkQJeCwkTOiRxE1R9Y8xomxbZM3R53wRZctCRAY++x8MQAiIhEzVhlRIe2HVzWMym25er2uOuX1C9oan/smhOgsfdY+Arou7Vjxw7cc889SEpKgkQiwfr1652eLykpwdSpU5GUlASFQoGRI0fi+PHjDR4zOzsbEonEaYmKcn93R0SkjlQzKdYHUrWpSItPQ6o2+Jqq7QGawWxoNPen/oS69RdRT6gb4gL6jplMJqSlpWHRokUuzwmCgMzMTJw6dQobNmzAwYMH0blzZ2RkZMBkanjoerVajaKiIsfy66+/+uoUiCjEdY3pyqRYHwj2HnfNCdDYeyw8BbQJbNSoURg1apTb544fP469e/fi0KFDuOEG26BlH3zwARISEvCvf/0LM2bM8HhciUSChIQEn5SZiALLm/kYkRagW5sOKK0+BdOFYkdSrMYihV4WD5jNgJy5HeHIHqA1ha8n1GWOUWAEbQ6Q2WwGAKfmK6lUCrlcjp07dzYYAFVUVKBz586wWq24+eab8cYbbziCKCIKXd7Mx5BYgcG/ArFbf0Dv8kKcNZxF+7YJqK4oRndNJ2hP7wHi4oD0dE60Sz7rPcYco8AJ2r9mjx490KlTJ2RlZeHSpUuoqqrCm2++iYKCAhQVFXncr3v37li6dCk2bNiAlStXwmq1YtCgQSgoKPC4j9lshtFodFqIKPh4Mx9DkALlcgDlRnRI1CNCE4Ni6RVEaGLQIVFvG2tKpWLwQwAArVQJvSwel8/nI6LiCi6fz4deFg+tRQaUl9tqC1uAOUaBE7Q1QDKZDJ9//jmmT58OrVaLiIgIZGRkYNSoURAEweN+AwcOxMCBAx2PBw0ahOuvvx4ffvgh/vznP7vdZ968eXjttde8fg7UPA1VA5uqGs77CnemKhPazmsLAKjIqoAyUhngEgWON6dbOKkFoFJDHaFAh7guOHbhGLq37wZ1hALQgCONk43VCuzciR6Fp1FVfAxW4Qj0Eil6JMiByGszNLeitjCYpxAJZ0EbAAFA3759kZubC4PBgKqqKsTFxWHAgAHo169fk48hk8nQp08fnDhxwuM2WVlZmD17tuOx0WhESorrXDHkO41VA1+tvurnElGw8mY+hmNk8aMnkJycDIvVgmR1MlBwnvPMUS2pFFCp0LayBu0TuuL4xeNI1XZD29gk2/P5+baR6VtYW+jrHCNyLyTq1DQaDeLi4nD8+HHs27cPY8aMafK+NTU1yMvLQ2Jiosdt5HI51Gq100L+1Vg1sLGKzZJUy5vTLVi76QClEiqzgF7xvaAyC5xnjlzp9YBGgyRFPDonXo+keL1tXkKLBdBoWv15CeYpRMJVQAOgiooK5ObmIjc3FwBw+vRp5Obm4uzZswCAtWvXYtu2bY6u8HfddRcyMzMxfPhwxzEmT56MrKwsx+PXX38d//3vf3Hq1CkcOHAADz/8MH799dcGk6YpODTU1VQdyaCUatWf06lV3da1Wtvde+m12sfSUs4zR66ufU5UhkpboCxX2dZ76fPi1c80NUlAm8D27duH9PR0x2N7M9SUKVOQnZ2NoqIizJ49GyUlJUhMTMTkyZPx8ssvOx3j7NmzkNapdrx06RJ+97vfobi4GDExMejbty92796Nnj17+uekqMUaqgbmXRDV59XpFvR64NQpoLCQtT91mc1Alefu2YiMFNcwAfbPidEIqNW2f734eQnmKUTCUUADoCFDhjSY0PzUU0/hqaeeavAY27Ztc3q8YMECLFiwwBvFowDw1NVUF6MLdNEoyHh1ugV7LdC+fUC/fqz9ARyJv46aMXfENkyA/XOSl2cLgEpLvZorFuxTiISboE6CJvEJ9pmkKbikalNRXVPtnekWUlOB6mrbv+RI/MWJE4C7TiGtTPwNWT6uLfTqZ5oaJLJPLoUCezIgq4GpMV6dbiEmBhg82PYv2VxL/IXFYkv4tS9eSvwNSfZaIIPBJ7liwT6FSDhhAERBpzkTFRKRD9VPELcTe6J4aiqQlsbawhDHJjB/YkJhk4m5GtjdgJB1B4I0W8yiHgiR/MzHib8hyV5bSCGNAZC/MKGwWZozUWE48TQgZN2BIPcU7MGo1FEcGp/8w8eJv0SBwl9Qf7EnFBoMth+R+gvnHSJ4HhDSMeYIgLaRbRn8tFLZlTLH/wuMBU6PQ5GpygTJaxJIXpP4ZtoYvd5W68NhAiiM8FfUn5hQSE3gaUBIOw4J0DplV8owetVox+ORn47E0OVDQz4I8iVTWzlu2TwBT6x6GJUpiaz9obDAAMifmFDYYuF2x96Q+iPCunueWq6yuhKm6tpakjOXz8BUbUJldWUASxX8TrQHcuMBq75boItC5BUMgPzNXpVsvDa3FRMKGyXGO/b68wKVm8sDXKLwkaJJwZJ7ljitWzF2BVI0nAC5IZejgT2dwWECKGwwAPI3zjvUbGK8Y69fCxTOwZ6/5RvyMeNL57kBJ62bhHxDfoBKRESBwAAoEJhQ2CxivWOvOyBkjVDjWB/uTYC+Fi2LhlJWO4xAl3ZdoJQpES2LDmCpiMjfGAAFgo9HEg03Yr1jt9cCFZYXYsHe2vntxNAE6EuxilhsfGij43HOxBxsmbIFsYrYAJaKiPyN4wAFCucdajIx37GnalNRYCiAxWpxrDtz+Qx0MbqwbgL0tbrBTrI6mQNLBguTCWjb1vb/igpbDTmRjzAAChSOJNpk9jv2Ln/vAsB2x95e0V4Ud+wx0TG4r+d90ERpkLEiw7FeDE2AFKYaGhHf5IMxjIg8YABEIUHMd+yemgC3TdnGIIhCSyMj4l+tMCDq2v9NVSYoWQNEPsQcIKIgJ+YmQAozjY2IXx56wz34fBRu8hnWABEFOTE3AVIYsk+uarHYgh47o9EWHJFnnFDbqxgAEYUAMTcBesSE2dBUf3JVu9JSCF27BKxYQY8Tansd/0pERORfHkbEtzYQAIm+qYkTansda4CIiLyNTRUNq18LVFoK9OrFaTYa01DzISfUbjYGQGLDH2a/MVWZ0HaerYmmIquCzVZiwaaKprFfzJ1GxLc0ultdovuONdB8iF69QmZQ3WB53xgAiQl/mIl8z95UceIEkOJmmIL8fNtFTOzfMfvFfN8+oF8/2+NL55t3DJMJwqvX/vuUCQi1AKgleWz2wNFotAVBwT6hdhDn6on8GygybEMm8g+93tYkYbEACkXtYrGwqaKu1FQgLY0j4jcHJ9T2Gl7pxIY/zES+V/8iZceLlTP7iPjM/WkeTqjtFQyAxKbOD3NldSWGZKdjSHY6rhYV8IeZyJs89HTixYpajRNqewUDIDFy/DDbRl1VmWGrBeIPc7OJvmsueRZGTRVlV8oc/y8wFjg9JjdMJkAisS2+mt8sRJoP6/4uBttvJAMgMbr2wywps/2IxZkAQdc1JH+YiYKZqVMiHvxmBib+Ix1XIyN8dpPhywCl7EoZRq8a7Xg88tORGLp8KIOgQGPzYasxABIrvR5QKNDRCFyJBKzddAEphtliRrm53ONitpgDUi5fC7uaI3/c8YYirRYnYwCN2Xc3Gb4OUCqrK2Gqrn1Pz1w+A1O1CZXVlV45fpNd6/ElvAp+xsgr2A1erLRaCLqu0JiBn5IQkNofq2DFzrM7UXrFc7f8OEUc0rum+7FURN51oj0gqwGs+m4+OX5ldSWsFeWO7uDKOWcgjdd5LUBJ0aRgyT1LkLEiw7FuxdgVSNG46eJPFEJYAyRiVn035MbbfqADQSqRQiVXwWA2QC1XuywGswEquQpSCT+mFLouRwN7OsNnTRUpmhQs+s0ip3XeDFDyDfmY8eUMp3WT1k1CviHfK8cXs2DOjxEDXlnELCYGezrbfqADRa/VQyPXwGK1QCFTOBaL1QKNXAO9lonZJD7NaRrON+Rj5tcznfb3ZoASLYuGUlY7eF2Xdl2glCkRLQvgDweRF7AJjAJKG62FLkaHvJI8qOW1Q7uXmkrRK74XtNFMzAYAZaQSwlwh0MVolmAZ7j7UNKdpWCqRugQonTWd0MaLAUqsIhYbH9qILn/vAgDImZiD9kIUYpVxtg2aMLpvUz8LF65cgP2ZQmMhtHIpYhWx3jgNIhesAaKA02v1UEYqYTTbxksxmo1QRiqDovYn7JKVKbCakCzeWNPwedN5ZKzIQMTrETBVmRCriMV/HviPY//149djy5QtXg0c6h4rWZ3sk6Ck7EoZxn02zvE4c00me5uRTwU0AJo3bx5uueUWqFQqdOjQAZmZmTh27JjTNlevXsXMmTPRvn17tG3bFuPGjUNJSUmDxxUEAa+88goSExMRHR2NjIwMHD9+3JenQq1grwUqNdnueEtNpdDF6Fj7Q6LVUNOwOlLtsn17RW0iX0d1x5CsNanf2+xXw9nA9DbzAre5PewpGXQCGgBt374dM2fOxN69e7Fp0yZUV1dj+PDhMNX5cDz77LP48ssvsXbtWmzfvh3nzp3Dfffd1+Bx58+fj3/84x9YvHgxfvjhByiVSowYMQJXr1719SlRC9lrgQqNhUFT+9NaHDyOWqr+TYFdqakUXWO6BqhUzdCCi31jydwXrlxwrC80FvL7RK0W0AAoJycHU6dOxQ033IC0tDRkZ2fj7Nmz2L9/PwDAYDDg448/xrvvvouhQ4eib9++WLZsGXbv3o29e/e6PaYgCPjb3/6Gl156CWPGjMFNN92ETz75BOfOncP69ev9eHbUHPYffIPZEBa1Px7HZin9FZBIoJS3haIqMGVr7thLbAYMDE9Nw7qYwIzZ5WsNJXN7ah6rGxRR6AiWm8OgSoI2GAwAAO21MWn279+P6upqZGTUjj/Ro0cPdOrUCXv27MGtt97qcozTp0+juLjYaR+NRoMBAwZgz549ePDBB132MZvNMJtrf/SN9rl7yK9StamorqlGqja4h3ZvCneDx+lidLhaHdhayOYm2IarUEgqr99BINw7BjSUzO2ueSwhSofiimJ0uraOSdOhwd3NoSpS5fW8taYIml84q9WKZ555BoMHD8aNN94IACguLkZkZCTatWvntG18fDyKi4vdHse+Pj4+vsn7zJs3DxqNxrGkpHCAr0CIiY7B4E6DERMdAkO7m81AeTlQXo62ZqCtGY7HKC9HSlQHLLlnidMuK8auQLIm2fHY9Ib/R7UNq7GXyurcNRYUOD8OE26bhkNxROQmlDlWEYvPM2q/M1/esRhbR69FrCLWbfPYe6Pec6oxClTSdLDUZoSKoBlZHEEUAM2cOROHDh3C6tWr/f7aWVlZMBgMjiU/XxwDfPGL20JWK7BzJ7BxI66sX4vRvwCjfwEu/+dTGD//F7BxI85/+zl+t2G6026T1k1CgaEgQIWuFRZjL5WVAaNr7yIxciQwdGhIBkENNTGGW9Nwg8rKoJ1YO+BiwqTH0P7u+4GyMrfNY49vfBwGs8HxOBBJ056augPSNBciSdb2kcXrCtTI4kERAM2aNQtfffUVtm7diuTk2jvkhIQEVFVV4fLly07bl5SUICEhwe2x7Ovr9xRraB+5XA61Wu20hDtOcNgKUimgUqG8tBCv7H8bBjlgkAN/2vcm/vjjGygvLYSsXXso5G0du9gHj4uSRbkczt8JnQ0l2IbMRbay0vlH/swZ2+PK0Osx1JhUbSrS4tOCtmlY+UZb7+SGVVYClXXf07OO99Rd85hGrsFbd73ldAi/XkjNZly9WOpUC1xWcgYoL0f16VO12xUWhmRg7ivBNLJ4QAMgQRAwa9YsrFu3Dlu2bEHXrs69G/r27QuZTIbNmzc71h07dgxnz57FwIED3R6za9euSEhIcNrHaDTihx9+8LiPGAVTNWRI0uthVshRVVWJShlQKQPOVJWiuuoqzAo5Ym7sh40PbXRsnjMxx2MbdyCq7oN57KUmSUkBljjfRWLFCtv6MBNSTcOtkZICLHJu5rK/p+7GOloxdgWyNmc5be63C+m1WuDknf+Hf0U97KgFHv0L8Ln1AXR86NHabcdmhmztpFdcrFMbVlgIheFK0IwsHtAAaObMmVi5ciVWrVoFlUqF4uJiFBcXo/LaXZxGo8H06dMxe/ZsbN26Ffv378e0adMwcOBApwToHj16YN26dQAAiUSCZ555Bn/5y1/wxRdfIC8vD5MnT0ZSUhIyMzMDcZpBKZiqIUOSVovYXv3xB/0kp9UvXDcNsb36255v4uBxpaX+r7pv0thLjeQ5oU7Hgbo/7so32sJU9KtvTyA/H5jhfBeJSZNs6yk05ecDM52bueq+p/XHOuqo7uhSK+S3C+m1WuALxafxzuF/OmqBDXJgcd5SWCsrare112SJcRiWsjJgbG3vPYzNRPu778fXI1Y4VjV0c+hrAe0F9sEHHwAAhgwZ4rR+2bJlmDp1KgBgwYIFkEqlGDduHMxmM0aMGIH333/faftjx445epABwAsvvACTyYRHH30Uly9fxm233YacnBxERbk2P4iVp2rIbVO2BWUQFIy9dgo7ROODnz+BqhoolwMqM/DeoY/x4v0PoWMzjxWI4FOv1ePUpVPux16y5zmVliKi+ipG/2JbHfF1DmBvxouLA9LTgYsXnfNxAOA3o4GvN8JnoqOdp1/o0sX2OJrzU4Ws6Ggguu572sn22MN7Wps0PRiALWm6XZIO7f11IdXrITuSi7bSKJyR2VYltI2HuUaOq1PGQ/FOndqsFSuAOukdouGuWbOTDu0lCseqZHVywKbJCXgTmLvFHvwAQFRUFBYtWoSLFy/CZDLh888/d8nlqb+PRCLB66+/juLiYly9ehXfffcdrrvuOj+dVWjgBIetJ++QiPMJKsRd+35fj/YoTVBD3iGx2ccKRBt4gwm21+5wYTBAUKscd7eCWgWo1YDBYHteKnXNxwGAKyag0od3vLGxwMY6AVZODrBli209habYWGBdbTMX1q1v+D1tIGnaL7RaqK/vjVdvmOVYNf+u+ZiXPA3Ra/7tvO2kSbaeimLjqVkzSILBoEiCJv+zT3BoF8hqyFAVq4jF24+vw5VIoKMReDo9Cwuf/KbZf8NOmuSABZ8NJtjq9YBGA1hqHHlOUCgAi8W2Xn+txshdPs6SJb7/kat7YUxOFnfwUy/PImTzTbS1zVzo2LHh97SBpGm/0evRtl0HqK61BsdZotA2LglWlaZ2my6dbLWT7logwuV988RTs2aQBIMMgETMHxMchjttRz1OxgAaM6C9oR/aJze/p87qcWsCFnw2mGCr1QI6HST1f5RLS1GZkgjJe+1tXbdPHXPNx5kxI2h+5IKJ2zmiWstNnoXPk27rH/tCAC7cDSRN+41WC0HX1VELLCkrA3r3Br5cX7uNp5qsQLxv/uauWVOpBKKDIx2FAZA/1EkmdbuYzY0fgwKiKWMlnWgP5MYDVn035yeaOGBdkioxeINPvR5QKBx3uDCWA0olrN3qTMcQHeWcjwMAiuD5kQsqXrjjrz8n1sWLhf6tCblQ5j7ny98X7kaSpv3F2k3nqAWGQmH7zjSlJisYarB8zVOzZvvg+L0LqqkwwlKdZFKP7MmkUsajwaSpQ7Zfjgb2dAYQ04Ruyu4uEueKgChVcDbh1LnDLZdfu8Pt089WO2TX/lo+Tpcuteu+3oiyOi16BcYCtFe0R3SbaLSdZxsfqSKrAspIJUxVJpd1YemCmzv+aA3w7ZdNPoR9Tqyfrj3OXJOJNioNct6ZB+WYibUb+rImpPKqh5wvzxfuC1cuwP6utnjKivrBo0zRrKRpn9FqcTIGuOUcIOi62r4bl867bld/5PL27W01WCPuqV0fjkM51A8GY2KBIJlTkAGQr9mTSU+ccP/Bzs8HdLqQCH5Ec6G6prLisqMLOGAb5EzVrott8LMaORAZCUiaccD6oxfbjb8fULUP2iRet3e49dUrd1k08Ntlo2y1XwB6Rg9HG5UGX05o+sU+7FReddsjpjnJ4u7mxOpT2QnKt5933nDSJGDbNt9cTJOTbTledeZbxJIlHl/LU9DWrGZfd81F0Rrg4yVAf1svMKxbDySkBOQ7dKI9IKtxUwts527kcrkcNWbneSdrHp6IiO07wi8IClLBf9UNB45kUovtAmJf6ieTUvCwWpGS96vLIGdrFVORvPP/bDUeO3faaviayl1vKQDIPxfcVd/X7nA15jp3uI24arnqcqE2VZtw1RLGY6E0NhVBcnKre8S4mxPr3cwP0EbpJunWizUh9mEohLkClCUX3ed8eWh6ulrt/rPQrHGvPDUX1T3HxpKmfah+LbDbZsp6I5fXVF5Bvrm2ZSBfK8VJczEuCFf8VWzRYwDkD9eSSV2awUpLbeubcEEhP5NKUSy5glW7FzsNcvZm3gcolZqdu4E3lbveUnZBXvXtMc/Jg2R1ssuFesXYFUhWB0f314AoKGh1jxh3c2JN2P4kipbX+Vs31n28teqPwQRcy/lyH3Ala9x/Fpo17pWnhOeOzR1xy/fsNV52mWsyMWTzJFxe+I7zdv/8O2b8rnbS7rsfsOKhmfG4olEgnNQPBoNpuiUGQP6i19t+NIzXqjyNRttj1v4ELdl1PVCtjEYbq60LuCYmHlAoIJdEtKzmzt3oxXYTJwb1KMbNynOCLeen/oV60rpJKDCKuGdYdJTbHjF17/gbm5TY3ZxYSpkSkR3qjI3m65qQ+mMwAbZBLz28ZoGhAHPWPuZ4nGgEnlrxUPPGvfKU8FxY2PRj+Im7Zkr1eQPaPvG003bxjz+Ht2//s+NxkRr4x6RVLR8QtX6OURD0JnMXDAbTnJMMgPylfi0Qa3+CXvvkVPxh4iJHF9f5d83HghELoDaaW/beubtzBoA2EqC4GLgSPlXfUW2i3F6oo9qIuGdYe9ceMRe+WovffFs7nUpjkxK7mxNry5QtTtNE+EX9YKd+r566U6McO4V/LqlNCv7qMylWLSqBwtCMz3uQd6euy2MzpdPYQF1QFRWJ575/2Wm7Fg+I6i7HKAi61LsLBoOpKZwBkD/Za4EKC8Ou9sdUZYLkNYltXJggyfD3BvUNN+NKpG2aizhFHDRVkpa/d+7unAHAIgDxttolv/Hx0AyeLtRB293fX+r1iLmiUTR7UuL6c2LFKmKdOiQEvHNCvYtxzORH0eVSba5cykUruskTnKZDaJSn7tRaPwd+TeCpmfLc6jrN3zk5KP9mPSzt1I5VrZrLrH5+4ZkzQZFX6C4YDKamcPYC8yd7LdC+fUC/fqz9CQXXEoB7lVx7XFoK9OrV8vfOU9PEqlX+ywHy09AM9S/USkVsWAXH3mCflDhjRW2PqpCflLj+xbigAJLkDkBBbS1QxMpPm/95d9ed2l138wBz10zZRqZEZHydKXKSk9FeqbTdJMzuCcB2k6CNS2nZTYI9v7Buz7wgyCu0B4M/11k3ad0kfP3Q1wErU12sAfK31FQgLc32L4WEk1rgSiQgKTzXrNqfZt2V+3MAtzrzfEGtdl3qJXg3ZTBIahlPkxL7e144r2oo2d/Ow+c9qGqyWqg5tZ/uavNaxF1+YQAGhazPU85asDSFswbI32JigMGDA10KaoZLCuBkDCAxGoGezrU/XpmlvnOy/2cy1+uBU6dsQzGoa6vhYTQ6JXh7Ggzyq3vXOMb4MT1lAkL0YhVo4TIpsX2gy1hFrPuL8cWLtf9v4YCFoRQcuav9bGg0+Farn1/YpYv/f1PccASD9Wq5otsEx+ebARBRE5xoD1hv6uWTmjvlv7+w3TX7cwwTe3NsXp5zAFSvia9+EuOZy2egi9GhuKIYna6tKzQWQqvQQuTZPS1in5S4y9+7ALBNSuwIJIJY2ZUyp/fbaZR0dxdjhQz4+bjtcQAHLAxb9vxC+2jsOTm2kaaD4G/sNhgEWn/j6AVsAhMxp8HNgvyOKtAuRwPWQQOb3A28WQI1gFsThmaw56jU9d6o95ySPDPXZGL0p25GuHanifOjiUmzJyUOghnEr1Y79+JxSt6un+yfkwN8saH2sRc/76FUK+Rzdf+myclBEfwEOwZARL4ShONyOGnC0AzuclQe3/g4DGaD47G9a2tLMceoGYJkBvFkjWsvHqfk7foX4yDsrUXEAIjIF4J0XA4XjQzN4C5HRSPX4K273nLabsm9zrVEBcYCpxFgPXGXYxRMA6U1iz8CXk9TQlz177gqBQbXAS1DPnnbm5RKSF4FJK/C/dhfFBSYA0QNM5uBqirb/6tMjolBUV4ORFptE4LK5QErXtByNy6HTuf3C1WjGhmawV2OylXLVUz45F6MqbPdg99Mh/y96/DLhV8A2AIZXbkMm+0bFBYCNVJcMDvPCl4pl7rNMWrWPFHBwF3Aq1LhwrrljlUFxgJcNVxA2rXH9lnRm5UQap8Sov4M4s2YT8wbomTOvXhCNXmbxI0BEHlWb7yYiOqrGG27viHi6xxAFlU7Xgw58zQuh58vVE2SmgpUV3tM8K6fo1JpqXTp2mptE+UUtBgLz+CdVXV+XsZmwiJvi2kPVjuCIvus4O8Mf8dpuPyQHAfHTcBb07ULpv5rvGPVXSvuQsXFEtj7Q93/6RhER6vw2W8/c72xANzfXHiaEuJr/46rUj9PKVSSt4nqYhMYeVZvvBhBrXJMCiqoVS2bEFQsPI3L4W7iy0BXkduHZmhigre7cU52PrITS8csdayLsgApsjq1SWfOAqYKWOs03/xqOAuD2YCnc5znSGpyU4pSCQiCbQn039DN2Ddli9/FaVW143G+MR8WweJ43PFwPvrnliLimxyM/gUY/cu1G4uNG23Lzp22m5C6PE0JERXYcVWalLxNFGR45aKG6fW2cWEsFkChQKXMNjEoLDUtmxBULDyNyxHgC5W31O/aWlld6ZQsfU4DzKzXMazNp//CKxM+dFr3wegPoJHXzpEUsk0pbgLe+Mefwyf93nBa9/+G/T/H/8sjgad6TIU2vovzjYWbwSgdPE0JwR4/RM3GAIgaVr+n0DWSsjJO5toQd12Bt2wBOne21VhUVASubD5QP1n6ViTj9bUXnbaxTJyA1//1e6d1T37zpFM3+5yJOaE5Z5ibgLcqKhJPbXvRabM/bv6j4/+nY4B/HM3GhfKS2hsLhcJ2s9HQzUX9KSFiY/1fG6ZUwmSugORV2yjpYsbhREIXAyBqnGO8mHIAtolBoVCw9qcxIhqXw54sbffJg2sR30FXu0GXToCyLaTRzrlDSpkSiaraOZJCtinFTcBb/s16VMfUDjKZok5BlVzm6B0k69wFpQlqRF2qFwy7GY6gLo59QyEliHvEMQmaGnetFkhycB8AIM4ECLquoqj98cpUFyJRN3BJ6toLWL8e0NuGwMe69WiTkIJl5lLg5eAcFr/V6gW87ZVKpx50myZtwpXqK7j5o5sB2Gq7Yq9Kody6CyozUC6H7SajGfPNEVHLMQCiptHrgWM/o6PRVuVt7aZrfB/yzN5kEc7czN7d/lJtUq8YZoiv34OurmR1MpSxSlTqziHOZAuAJGVlQB/X4QgoDIjhOx9iGABR02i1EHRdoTEDPyWBP9DUKDbVNI21mw5XIoGORrBpublBAoMKagUGQNRkVn035MbbJgYlIu9QJqRg9Qs/2Aaj7N4zLG8uGAz7AYPBZmMARE0XE4M9nQNdCAoK9SfkrJEC6ibk8rR0v3DXyGCUIY8XZwpCDICIqHncTcgZrQG+/dI3+4mBfTBK8iyEgqimdp5gzVhgsRs8ETWPpwk5KxuZ56yl+xGFq2AazVyEGAARUfPYJ+SsqynznLV0PyIiH2AARF5RdqXM8f8CY4HTYwoz+flQ/v5Jx0OlBZ7nOau3n9uJPBvbj4jIBxgAUauVXSnD6FW1Ez+N/HQkhi4fyiAoXHma5yy6kXnOPE3k2dh+FHrYtEMhIKAB0Lx583DLLbdApVKhQ4cOyMzMxLFjx5y2uXr1KmbOnIn27dujbdu2GDduHEpKSho87tSpUyGRSJyWkSNH+vJURMFTLU9ldSVM1bW5HWcun4Gp2oTK6kq/l5H8wNM8Z+0bmcLCw0SeysTO4TGXEi/6RCEloAHQ9u3bMXPmTOzduxebNm1CdXU1hg8fDpOp9mL67LPP4ssvv8TatWuxfft2nDt3Dvfdd1+jxx45ciSKioocy7/+9S9fnkrYa6iWJ0WT4jShJQCsGLsCKZoUfxeT/KWl85y5m8iTiCgAAtoNPicnx+lxdnY2OnTogP379+OOO+6AwWDAxx9/jFWrVmHo0KEAgGXLluH666/H3r17ceutt3o8tlwuR0JCgk/LLybuanl0MTpUVlci35CPGV/OcNp+0rpJ2DZlm7iDoBDqtusTYj//MMd58ijUBVUOkMFgAABor42Eun//flRXVyMjI8OxTY8ePdCpUyfs2bOnwWNt27YNHTp0QPfu3fH444/jwoULHrc1m80wGo1OCzlrqJYnWhYNpay2yr9Luy5QypSIlnGAOyIiCk5BEwBZrVY888wzGDx4MG688UYAQHFxMSIjI9GuXTunbePj41FcXOzxWCNHjsQnn3yCzZs3480338T27dsxatQo1NTUuN1+3rx50Gg0jiUlRcS1Fh54quXJN+QjVhGLjQ/V5oTkTMzBlilbnCaCJAI48BuR2NhrCoMxxy9oRoKeOXMmDh06hJ07d7b6WA8++KDj/7169cJNN92Ebt26Ydu2bRg2bJjL9llZWZg9e7bjsdFoZBBUT2O1PPVnvQ62Dzq1HJs6iCgcBUUANGvWLHz11VfYsWMHkusMipaQkICqqipcvnzZqRaopKSkWfk9Op0OsbGxOHHihNsASC6XQy6Xt+ocwp29lqfL37sAsNXytFe0Zy0PUTMwmCQKHgFtAhMEAbNmzcK6deuwZcsWdO3a1en5vn37QiaTYfPmzY51x44dw9mzZzFw4MAmv05BQQEuXLiAxMREr5VdjOrX8jD4ISKiUBXQGqCZM2di1apV2LBhA1QqlSOvR6PRIDo6GhqNBtOnT8fs2bOh1WqhVqvx5JNPYuDAgU49wHr06IF58+Zh7NixqKiowGuvvYZx48YhISEBJ0+exAsvvAC9Xo8RI0YE6lQp3JnNQFWV5+cjI4Ewr2Vk7YafsHcdkVcENAD64IMPAABDhgxxWr9s2TJMnToVALBgwQJIpVKMGzcOZrMZI0aMwPvvv++0/bFjxxw9yCIiIvC///0Py5cvx+XLl5GUlIThw4fjz3/+M5u5yDesVmDnTqC01PM2cXFAejogDZp+B0REohbQAEhowl1MVFQUFi1ahEX1J1H0cJzo6Gh8++23XikfUZNIpYBKBZw4YZvws778fECnY/BDRBRE+ItM5A16PaDRABYLoFDULhaLbb1eH+gSEhFRHUHRC4wo5Gm1tlqevDxAra5dX1oK9Ople56cmc225kNPRJA3RUSBwwCIyFv0euDUKcBotAVBRqMtYZW1P7XsCbxWK7B1K/OmiChg+MtC5C32WiD7Rb201PY4HGt/WjvzuT1vymCwBYv1F4PB9jyDHyLyEf66EHmTXm8LCAoLWfvTGOZNEVEAMQAi8iZ7LZDBEL61P95Sv8bMLpxrzogoaDAHiMjbUlOB6mrbv9Qw5k0RUYCwBojI22JigMGDbf9Sw8SUN0VEQYUBEBEFFvOmiCgAGAARUWAxb4qIAoA5QEQUeMybIiI/YwBERIFnz5siIvITNoERERGR6DAAIiIiItFhAERERESiwxwg8gplpBLCXCHQxSAKKvxeEAUv1gARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6HAkaGoyjmpLREThgjVAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYlOQAOgefPm4ZZbboFKpUKHDh2QmZmJY8eOOW3z0UcfYciQIVCr1ZBIJLh8+XKTjr1o0SJ06dIFUVFRGDBgAH788UcfnAERERGFooAGQNu3b8fMmTOxd+9ebNq0CdXV1Rg+fDhMJpNjmytXrmDkyJGYM2dOk4+7Zs0azJ49G3PnzsWBAweQlpaGESNG4Pz58744DSIiIgoxEkEQgmZo39LSUnTo0AHbt2/HHXfc4fTctm3bkJ6ejkuXLqFdu3YNHmfAgAG45ZZbsHDhQgCA1WpFSkoKnnzySfzxj39stBxGoxEajQYGgwFqtbrF50NERET+05zrd1DlABkMBgCAVqtt8TGqqqqwf/9+ZGRkONZJpVJkZGRgz549bvcxm80wGo1OCxEREYWvoAmArFYrnnnmGQwePBg33nhji49TVlaGmpoaxMfHO62Pj49HcXGx233mzZsHjUbjWFJSUlr8+kRERBT8giYAmjlzJg4dOoTVq1f7/bWzsrJgMBgcS35+vt/LQERERP4TFLPBz5o1C1999RV27NiB5OTkVh0rNjYWERERKCkpcVpfUlKChIQEt/vI5XLI5fJWvS4RERGFjoDWAAmCgFmzZmHdunXYsmULunbt2upjRkZGom/fvti8ebNjndVqxebNmzFw4MBWH5+IiIhCX0BrgGbOnIlVq1Zhw4YNUKlUjhwdjUaD6OhoAEBxcTGKi4tx4sQJAEBeXh5UKhU6derkSJYeNmwYxo4di1mzZgEAZs+ejSlTpqBfv37o378//va3v8FkMmHatGlNKpe9YxyToYmIiEKH/brdpA7uQgABcLssW7bMsc3cuXMb3aZz587C3LlznY793nvvCZ06dRIiIyOF/v37C3v37m1yufLz8z2WjQsXLly4cOES3Et+fn6j1/qgGgcoWFitVpw7dw4qlQoSiSTQxfEqo9GIlJQU5Ofni2KMI55v+BLTuQI833AnpvP15bkKgoDy8nIkJSVBKm04yycokqCDjVQqbXUydrBTq9Vh/yWri+cbvsR0rgDPN9yJ6Xx9da4ajaZJ2wVNN3giIiIif2EARERERKLDAEhk5HI55s6dK5pxj3i+4UtM5wrwfMOdmM43WM6VSdBEREQkOqwBIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOA6Ag9+qrr0IikTgtPXr0cDx/8uRJjB07FnFxcVCr1XjggQdQUlLidIyLFy9i4sSJUKvVaNeuHaZPn46KiooGX0MikUCpVDq2yc7Odnk+KioqKM/3r3/9KwYNGgSFQoF27dq5fZ2zZ89i9OjRUCgU6NChA55//nlYLBanbbZt24abb74Zcrkcer0e2dnZ3j5dv5zv//3f/2HChAlISUlBdHQ0rr/+evz97393OVd3nwH7/Hyhcq4A3J7H6tWrXc43HN5bd99L+3L+/HnHufr6vfXG+Z45cwbTp09H165dER0djW7dumHu3Lmoqqpyep3//e9/uP322xEVFYWUlBTMnz/fpSxr165Fjx49EBUVhV69euHrr7/26rn663y3bduGMWPGIDExEUqlEr1798ann37qVA5//Db741zPnDnj9nO6d+9ep7J4871lABQCbrjhBhQVFTmWnTt3AgBMJhOGDx8OiUSCLVu2YNeuXaiqqsI999wDq9Xq2H/ixIk4fPgwNm3ahK+++go7duzAo48+6nj+ueeeczp+UVERevbsifvvv9+pHGq12mmbX3/9NSjPt6qqCvfffz8ef/xxt8evqanB6NGjUVVVhd27d2P58uXIzs7GK6+84tjm9OnTGD16NNLT05Gbm4tnnnkGM2bMwLfffhty57t//3506NABK1euxOHDh/GnP/0JWVlZWLhwocu2x44dcypLhw4dQupc7ZYtW+b0OpmZmY7nwum9HT9+vMt3d8SIEbjzzjtd3jtfv7etPd+jR4/CarXiww8/xOHDh7FgwQIsXrwYc+bMcRzfaDRi+PDh6Ny5M/bv34+33noLr776Kj766CPHNrt378aECRMwffp0HDx4EJmZmcjMzMShQ4dC7nx3796Nm266Cf/5z3/wv//9D9OmTcPkyZPx1VdfOZXDH7/Nvj5Xu++++87pdfr27ev09/Dqe9vkGUIpIObOnSukpaW5fe7bb78VpFKpYDAYHOsuX74sSCQSYdOmTYIgCMLPP/8sABB++uknxzbffPONIJFIhMLCQrfHzc3NFQAIO3bscKxbtmyZoNFoWn9CjWjt+dblqcxff/21IJVKheLiYse6Dz74QFCr1YLZbBYEQRBeeOEF4YYbbnDab/z48cKIESNacFae+eN83XniiSeE9PR0x+OtW7cKAIRLly41p/jN4q9zBSCsW7fOYznC+b09f/68IJPJhE8++cSxzh/vrSB493zt5s+fL3Tt2tXx+P333xdiYmIc31NBEIQXX3xR6N69u+PxAw88IIwePdrpOAMGDBB+//vfN/eUGuSP83XnN7/5jTBt2jTHY3/8NvvjXE+fPi0AEA4ePOhxH2+/t6wBCgHHjx9HUlISdDodJk6ciLNnzwIAzGYzJBKJ02BSUVFRkEqljuh8z549aNeuHfr16+fYJiMjA1KpFD/88IPb11uyZAmuu+463H777U7rKyoq0LlzZ6SkpGDMmDE4fPiwt08VQOvOtyn27NmDXr16IT4+3rFuxIgRMBqNjnPas2cPMjIynPYbMWIE9uzZ05pTc8vX5+uOwWCAVqt1Wd+7d28kJibirrvuwq5du1r1Gu7461xnzpyJ2NhY9O/fH0uXLoVQZ7izcH5vP/nkEygUCvz2t791ec7X7y3g/fOt/znds2cP7rjjDkRGRjrWjRgxAseOHcOlS5cc24Tq++vpe9nYNv74bfbXud57773o0KEDbrvtNnzxxRdOz3n7vWUAFOQGDBiA7Oxs5OTk4IMPPsDp06dx++23o7y8HLfeeiuUSiVefPFFXLlyBSaTCc899xxqampQVFQEACguLnap6m7Tpg20Wq3bHICrV6/i008/xfTp053Wd+/eHUuXLsWGDRuwcuVKWK1WDBo0CAUFBUF1vk1RXFzsFPwAcDy2/008bWM0GlFZWdnKs6zlj/Otb/fu3VizZo1TM2hiYiIWL16M//znP/jPf/6DlJQUDBkyBAcOHPDGaQLw37m+/vrr+Oyzz7Bp0yaMGzcOTzzxBN577z3H8+H83n788cd46KGHEB0d7Vjnj/cW8P75njhxAu+99x5+//vfO9a15rvr7Zwnf5xvfZ999hl++uknTJs2zbHOH7/N/jjXtm3b4p133sHatWuxceNG3HbbbcjMzHQKgrz+3rao3ogC5tKlS4JarRaWLFkiCIKt+lGn0wkSiUSIiIgQHn74YeHmm28WHnvsMUEQBOGvf/2rcN1117kcJy4uTnj//fdd1q9atUpo06aNU/OQO1VVVUK3bt2El156yQtn5Vlzz7cuT1XDv/vd74Thw4c7rTOZTAIA4euvvxYEQRBSU1OFN954w2mbjRs3CgCEK1eueOnsXPnifOvKy8sTYmNjhT//+c+NluWOO+4QHn744RadR1P4+lztXn75ZSE5OdnxOFzf2927dwsAhH379jVaFl+/t4LQuvMtKCgQunXrJkyfPt1p/V133SU8+uijTusOHz4sABB+/vlnQRAEQSaTCatWrXLaZtGiRUKHDh28eXoufHG+dW3ZskVQKBTC8uXLGyyHP36bfX2udpMmTRJuu+02x2Nvv7dtWhY2UaC0a9cO1113HU6cOAEAGD58OE6ePImysjK0adMG7dq1Q0JCAnQ6HQAgISHB0RvEzmKx4OLFi0hISHA5/pIlS3D33Xe7RNn1yWQy9OnTx1EOX2nu+TZFQkICfvzxR6d19h4L9r9JQkKCS4+ckpISqNVqp7trb/PF+dr9/PPPGDZsGB599FG89NJLjW7fv3//Vje1NcSX51rXgAED8Oc//xlmsxlyuTws31vA9t3t3bu3U9KoJ75+b4GWn++5c+eQnp6OQYMGOSU3A56/l/bnGtrG3e+dN/nifO22b9+Oe+65BwsWLMDkyZMbLIc/fpt9ea51DRgwAJs2bXI89vZ7yyawEFNRUYGTJ08iMTHRaX1sbCzatWuHLVu24Pz587j33nsBAAMHDsTly5exf/9+x7ZbtmyB1WrFgAEDnI5x+vRpbN261aX5y52amhrk5eW5lMPbmnu+TTFw4EDk5eU5BYabNm2CWq1Gz549Hdts3rzZab9NmzZh4MCBrTibxvnifAHg8OHDSE9Px5QpU/DXv/61Sfvk5ub69P311bnWl5ubi5iYGEeOQri9t/Zjf/bZZ0367gK+f2/tZWru+RYWFmLIkCHo27cvli1bBqnU+RI1cOBA7NixA9XV1Y51mzZtQvfu3RETE+PYJlTe38bOF7B1hR89ejTefPNNp2ZrT/zx2+yrc62v/ufU6+9ti+qNyG/+8Ic/CNu2bRNOnz4t7Nq1S8jIyBBiY2OF8+fPC4IgCEuXLhX27NkjnDhxQlixYoWg1WqF2bNnOx1j5MiRQp8+fYQffvhB2Llzp5CamipMmDDB5bVeeuklISkpSbBYLC7Pvfbaa8K3334rnDx5Uti/f7/w4IMPClFRUcLhw4eD7nx//fVX4eDBg8Jrr70mtG3bVjh48KBw8OBBoby8XBAEQbBYLMKNN94oDB8+XMjNzRVycnKEuLg4ISsry3GMU6dOCQqFQnj++eeFI0eOCIsWLRIiIiKEnJyckDvfvLw8IS4uTnj44YeFoqIix2J/DUEQhAULFgjr168Xjh8/LuTl5QlPP/20IJVKhe+++y6kzvWLL74Q/vnPfwp5eXnC8ePHhffff19QKBTCK6+84jhGOL23dkuWLBGioqLc9vTyx3vrjfMtKCgQ9Hq9MGzYMKGgoMDps2p3+fJlIT4+Xpg0aZJw6NAhYfXq1YJCoRA+/PBDxza7du0S2rRpI7z99tvCkSNHhLlz5woymUzIy8sLufO1N3tlZWU5PX/hwgXHNv74bfbHuWZnZwurVq0Sjhw5Ihw5ckT461//KkilUmHp0qWObbz93jIACnLjx48XEhMThcjISKFjx47C+PHjhRMnTjief/HFF4X4+HhBJpMJqampwjvvvCNYrVanY1y4cEGYMGGC0LZtW0GtVgvTpk1z+QGtqakRkpOThTlz5rgtxzPPPCN06tRJiIyMFOLj44Xf/OY3woEDB4LyfKdMmSIAcFm2bt3q2ObMmTPCqFGjhOjoaCE2Nlb4wx/+IFRXVzsdZ+vWrULv3r2FyMhIQafTCcuWLQvJ8507d67b5zt37uw4xptvvil069ZNiIqKErRarTBkyBBhy5YtIXeu33zzjdC7d2+hbdu2glKpFNLS0oTFixcLNTU1TscJl/fWbuDAgcJDDz3kthz+eG+9cb7Lli1ze67179P/7//+T7jtttsEuVwudOzYUfh//+//uZTls88+E6677johMjJSuOGGG4SNGzeG5Pl6ev/vvPNOxzb++G32x7lmZ2cL119/vaBQKAS1Wi30799fWLt2rUtZvPneSgShTv9QIiIiIhFgDhARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARhbypU6dCIpHgsccec3lu5syZkEgkmDp1qmPbzMxMl30lEglkMhni4+Nx1113YenSpbBarX46AyLyNwZARBQWUlJSsHr1alRWVjrWXb16FatWrUKnTp0a3HfkyJEoKirCmTNn8M033yA9PR1PP/007r77blgsFl8XnYgCgAEQEYWFm2++GSkpKfj8888d6z7//HN06tQJffr0aXBfuVyOhIQEdOzYETfffDPmzJmDDRs24JtvvkF2draPS05EgcAAiIjCxiOPPIJly5Y5Hi9duhTTpk1r0bGGDh2KtLQ0p4CKiMIHAyAiChsPP/wwdu7ciV9//RW//vordu3ahYcffrjFx+vRowfOnDnjvQISUdBoE+gCEBF5S1xcHEaPHo3s7GwIgoDRo0cjNja2xccTBAESicSLJSSiYMEAiIjCyiOPPIJZs2YBABYtWtSqYx05cgRdu3b1RrGIKMiwCYyIwsrIkSNRVVWF6upqjBgxosXH2bJlC/Ly8jBu3Dgvlo6IggVrgIgorERERODIkSOO/zeF2WxGcXExampqUFJSgpycHMybNw933303Jk+e7MviElGAMAAiorCjVqs9Pme1WtGmjfNPX05ODhITE9GmTRvExMQgLS0N//jHPzBlyhRIpawoJwpHEkEQhEAXgojIX0aOHAm9Xo+FCxcGuihEFEC8tSEiUbh06RK++uorbNu2DRkZGYEuDhEFGJvAiEgUHnnkEfz000/4wx/+gDFjxgS6OEQUYGwCIyIiItFhExgRERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARERGJzv8HPfcQfU1+4X0AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWwElEQVR4nO3deXhTZd4//nfSpmmSZu2+QksKyFYqKCqCgCjwxQVE4XFhQJlxfAZ1ZnBGB+cZt/mNzDguzzMjuAsMjoI7DCjKCMgygKKgbBbKIqXQ0tI2adOSJs39+yMkbbrRJcnJad+v6zpXm3PunNw5lJNP7uVzK4QQAkREREQypZS6AkRERETdwWCGiIiIZI3BDBEREckagxkiIiKSNQYzREREJGsMZoiIiEjWGMwQERGRrDGYISIiIlljMENERESyxmCGiHq1vn37Yu7cuZ1+3hNPPAGFQoHy8vLgV4qIOoXBDFEPp1AoLrrNnTu3w+UAYNy4cW2W+eGHHwAAP/zwAx5++GEMHz4cer0eqampmDp1Knbv3t1qPYuLizFz5kyYTCYYDAbcfPPNOHbsWLguExHJWLTUFSCi0FqxYkWbx5544gkcPXoUAwYMCCh3/PhxPPbYY7j33nsxZswY//5+/fr5f8/IyMCiRYtanDMtLQ0A8Prrr+ONN97AjBkz8Itf/AI2mw2vvPIKrrjiCqxfvx4TJ070P6empgbjx4+HzWbDo48+CpVKhRdeeAHXXHMN9u7di/j4+G5dg/YUFBRAqeT3OiJZE0TUK7322msCgHjggQdaHPv6668FALF06dJWn3vNNdeIwYMHt3v+3bt3i+rq6oB95eXlIjExUYwePTpg/1/+8hcBQHz11Vf+fYcOHRJRUVFi4cKFHXxH4fX4448LAKKsrEzqqhD1evw6QtQLHThwAA8++CDy8/Px17/+NSSvMWLECMTFxQXsi4+Px5gxY3Do0KGA/e+//z4uu+wyXHbZZf59AwcOxLXXXot3333Xv6++vh6PPfYYRowYAaPRCJ1OhzFjxmDTpk0tXv/ZZ5/FVVddhfj4eGg0GowYMQLvv/9+i3JNx8zs3r0bCoUCy5cvb1Hus88+g0KhwNq1awP2V1VVYe7cuTCZTDAajbj77rtRW1sbUGbDhg24+uqrYTKZEBcXhwEDBuDRRx/t0vsiopYYzBD1MrW1tZg5cyaioqKwcuVKqNXqLp2noaEB5eXlAVtNTc1Fn1dSUoKEhAT/Y4/Hg++//x4jR45sUfbyyy/H0aNHUV1dDQCw2+14/fXXMW7cOPzlL3/BE088gbKyMkyaNAl79+4NeO7//d//IT8/H0899RSefvppREdH47bbbsO6devarNvIkSORk5MTEED5rFq1CmazGZMmTQrYP3PmTFRXV2PRokWYOXMmli1bhieffNJ//MCBA7jhhhvgdDrx1FNP4bnnnsNNN92E7du3+8t05n0RUSukbhoiovC65557BACxfPnyNst0pJsJQIttzpw57b72li1bhEKhEH/4wx/8+8rKygQA8dRTT7Uov3jxYgFA/PDDD0IIIdxut3A6nQFlKisrRXJysrjnnnsC9tfW1gY8rq+vF0OGDBETJkwI2N+nT5+Aei9cuFCoVCpRUVHh3+d0OoXJZAp4DV83U/PXnT59uoiPj/c/fuGFFy7aHdWZ90VELbFlhqgXefvtt/Hmm29i9uzZ+MlPftKtc/Xt2xcbNmwI2B5++OE2y589exZ33HEHsrOzA8rV1dUBQKstRLGxsQFloqKiEBMTA8DbolNRUQG3242RI0fi22+/DXiuRqPx/15ZWQmbzYYxY8a0KNfcrFmz4HK58OGHH/r3ff7556iqqsKsWbNalL/vvvsCHo8ZMwbnzp2D3W4HAJhMJgDA6tWr4fF4Wn3NzrwvImqJwQxRL3HkyBHcd9996N+/P5YsWdLt8+l0OkycODFgGzRoUKtlHQ4HbrjhBlRXV2P16tUBY2l8QYfT6WzxvPPnzweUAYDly5dj2LBhiI2NRXx8PBITE7Fu3TrYbLaA565duxZXXHEFYmNjYbFYkJiYiJdeeqlFueby8vIwcOBArFq1yr9v1apVSEhIwIQJE1qUz8rKCnhsNpsBeAMowBscjR49Gj/96U+RnJyM//qv/8K7777bIrDp6PsiopYYzBD1Ak6nE7NmzUJ9fT1WrlzZYmBuKNXX1+OWW27B999/j9WrV2PIkCEBxy0WC9RqNc6cOdPiub59vuneb731FubOnYt+/frhjTfewPr167FhwwZMmDAhIDjYunUrbrrpJsTGxmLJkiX45JNPsGHDBtxxxx0QQly0zrNmzcKmTZtQXl4Op9OJNWvWYMaMGYiObpnNIioqqtVz+F5Ho9Fgy5Yt+Pe//43Zs2fj+++/x6xZs3DdddehoaGhU++LiFrHPDNEvcBvfvMb7Nmzxz8oNlw8Hg9+8pOf4IsvvsC7776La665pkUZpVKJoUOHtppMb9euXcjJyYFerwfgnfWUk5ODDz/8EAqFwl/u8ccfD3jeBx98gNjYWHz22WcB3VdLly7tUL1nzZqFJ598Eh988AGSk5Nht9vxX//1Xx16bmuUSiWuvfZaXHvttXj++efx9NNP4/e//z02bdqEiRMndvh9EVHr2DJD1MN99NFHePHFF3HTTTfhwQcfDOtrP/DAA1i1ahWWLFmCW265pc1yt956K77++uuAgKagoAAbN27Ebbfd5t/nawVp2rqya9cu7NixI+B8UVFRUCgU/pYPADhx4gQ+/vjjDtX7kksuwdChQ7Fq1SqsWrUKqampGDt2bIee21xFRUWLfcOHDwfQ2LXW0fdFRK1jywxRD3bmzBnMmzcPUVFRuPbaa/HWW2+1Wq5fv3648sorg/ra//u//4slS5bgyiuvhFarbfHa06dPh06nAwD84he/wGuvvYapU6fiN7/5DVQqFZ5//nkkJyfjoYce8j/nhhtuwIcffojp06dj6tSpOH78OF5++WUMGjQoYFr41KlT8fzzz2Py5Mm44447cPbsWSxevBhWqxXff/99h+o/a9YsPPbYY4iNjcW8efO6nCX4qaeewpYtWzB16lT06dMHZ8+exZIlS5CRkYGrr766U++LiNog7WQqIgqlTZs2tTqFuvnWfEp1MDIAz5kzp93XPH78eED5oqIiceuttwqDwSDi4uLEDTfcII4cORJQxuPxiKefflr06dNHqNVqkZ+fL9auXSvmzJkj+vTpE1D2jTfeELm5uUKtVouBAweKpUuX+qdTN9V8arbPkSNH/HXdtm1bi+NtZQBeunRpwPv74osvxM033yzS0tJETEyMSEtLE7fffrs4fPhwl94XEbWkEKIDo+GIiIiIIhTHzBAREZGsMZghIiIiWWMwQ0RERLLGYIaIiIhkjcEMERERyRqDGSIiIpK1Hp80z+Px4PTp09Dr9QFpwomIiChyCSFQXV2NtLS0iyat7PHBzOnTp5GZmSl1NYiIiKgLioqKkJGR0W6ZHh/M+BaoKyoqgsFgkLg2RERE1BF2ux2ZmZn+z/H29Phgxte1ZDAYGMwQERHJTEeGiHAAMBEREckagxkiIiKSNQYzREREJGs9fswMERGRXDU0NMDlckldjZBQqVSIiooKyrkYzBAREUUYIQRKSkpQVVUldVVCymQyISUlpdt54BjMEBERRRhfIJOUlAStVtvjkr4KIVBbW4uzZ88CAFJTU7t1PgYzREREEaShocEfyMTHx0tdnZDRaDQAgLNnzyIpKalbXU4cAExERBRBfGNktFqtxDUJPd977O64IAYzREREEaindS21Jljvkd1MweB0AvX1bR+PiQHU6vDVh4iIqBdhMNNdHg+wbRtQVtZ2mcREYPx44CKrfhIREVHn8dO1u5RKQK8HbDbAYGi52Wze4wxkiIiIQoKfsMFgtQJGI+B2A1pt4+Z2e/dbrVLXkIiIqMdiMBMMFguQk9Oyq6mszLvfYpGmXkRERGFUXV2NO++8EzqdDqmpqXjhhRcwbtw4/OpXvwrp6zKYCRarFdDpALvd+9hu9z5mqwwREUmkvLYcRbYiAECRrQjlteUhfb0FCxZg+/btWLNmDTZs2ICtW7fi22+/DelrAhwAHDy+1pl9+7xjZcrKgKFD2SpDRESSKK8tx4TlE+BwObBi+grM/mg2dCodNs7ZiARtQtBfr7q6GsuXL8fbb7+Na6+9FgCwdOlSpKWlBf21mmPLTDD5WmeKi9kqQ0REkqpz1cHhcuBY5TGMfnM0jlUeg8PlQJ2rLiSvd+zYMbhcLlx++eX+fUajEQMGDAjJ6zXFYCaYfK0zNhvHyhARkaQyjZlYMX1FwL4V01cg05gpUY1Ch8FMsOXmAnl53p9EREQSKbIVYfZHswP2zf5otn8MTbDl5ORApVLh66+/9u+z2Ww4fPhwSF6vKQYzwWY2A6NHe38SERFJRKPSQKfSIcecg+33bEeOOQc6lQ4alSYkr6fX6zFnzhz89re/xaZNm3DgwAHMmzcPSqUy5EszcAAwERFRD5SgTcDGORtR56pDpjETm+dshkalCcngX5/nn38e9913H2644QYYDAY8/PDDKCoqQmxsbMheE2AwQ0RE1GM1DVzCMVZGr9fjn//8p/+xw+HAk08+iXvvvTekr8tghoiIiIJiz549+OGHH3D55ZfDZrPhqaeeAgDcfPPNIX1dBjNEREQUNM8++ywKCgoQExODESNGYOvWrUhICF3XFsBghoiIiIIkPz8f33zzTdhfl7OZiIiISNYYzBAREZGsMZghIiIiWWMwQ0RERLLGYIaIiIhkjcEMERERyRqDGSIiIpI1BjNEREQkawxmiIiIKCTq6+vD8jrMAExERERBMW7cOAwZMgTR0dF46623MHToUGzatCnkr8uWGSIiop6qvBwoKvL+XlTkfRxiy5cvR0xMDLZv346XX3455K8HsGWGiIioZyovByZMABwOYMUKYPZsQKcDNm4EQrjwY25uLp555pmQnb81DGaIiIh6oro6byBz7BgwerR3X06Od38IjRgxIqTnbw27mYiIiHqizExvi0xTK1Z494eQTqcL6flbw2CGiIioJyoq8nYtNTV7duMYmh6EwQwREVFPpNF4x8jk5ADbt3t/6nTe/T0Mx8wQERH1RAkJ3sG+dXXerqXNm72BTAgH/0qFwQwREVFP1TRwCfFYGQDYvHlzyF+jNexmIiIiIlljMENERESyxmCGiIiIZI3BDBEREckagxkiIqIIJISQugohF6z3yGCGiIgogqhUKgBAbW2txDUJPd979L3nruLUbCIioggSFRUFk8mEs2fPAgC0Wi0UCoXEtQouIQRqa2tx9uxZmEwmREVFdet8DGaIiIgiTEpKCgD4A5qeymQy+d9rdzCYISIiijAKhQKpqalISkqCy+WSujohoVKput0i48NghoiIKEJFRUUF7QO/J+MAYCIiIpI1BjNEREQka5IGM1u2bMGNN96ItLQ0KBQKfPzxxwHHFQpFq9tf//pXaSpMREREEUfSYMbhcCAvLw+LFy9u9fiZM2cCtjfffBMKhQIzZswIc02JiIgoUkk6AHjKlCmYMmVKm8ebT9davXo1xo8fj5ycnFBXjYiIiGRCNrOZSktLsW7dOixfvlzqqhAREVEEkU0ws3z5cuj1etxyyy3tlnM6nXA6nf7Hdrs91FUjIiIiCclmNtObb76JO++8E7Gxse2WW7RoEYxGo3/LzMwMUw2JiIhICrIIZrZu3YqCggL89Kc/vWjZhQsXwmaz+beioqIw1JCIiIikIotupjfeeAMjRoxAXl7eRcuq1Wqo1eow1IqIiIgigaTBTE1NDQoLC/2Pjx8/jr1798JisSArKwuAd8zLe++9h+eee06qahIREVEEkzSY2b17N8aPH+9/vGDBAgDAnDlzsGzZMgDAypUrIYTA7bffLkUViYiIKMIphBBC6kqEkt1uh9FohM1mg8FgkLo6RERE1AGd+fyWxQBgIiIiorYwmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0RERCRrDGaIiIhI1hjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0RERCRrDGaIiIhI1hjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0RERCRrDGaIiIhI1hjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0RERCRrDGaIiIhI1hjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0RERCRrDGaIiIhI1hjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJWrTUFaDezel2or6hvs3jMVExUEerw1gjIiKSGwYzJBmP8GDbyW0oqy1rs0yiNhHjs8dDqWAjIhERtY6fECQZpUIJvVoPm9MGg9rQYrM5bdCr9QxkiIioXfyUIElZLVYY1Ua4PW5oVVr/5va4YVQbYbVYpa4iERFFOAYzJCmLxoIccw7KHIFdTWWOMuSYc2DRWCSqGRERyQWDGZKc1WKFLkYHu9MOALA77dDF6NgqQ0REHcJghiTXvHWGrTJERNQZDGYoIvhaZ4rtxWyVISKiTmEwQxHB1zpjc9rYKkNERJ3CPDMUMXItuXA1uJBryZW6KkREJCMMZihimDVmjM4aLXU1iIhIZtjNRERERLLGYIaIiIhkTdJgZsuWLbjxxhuRlpYGhUKBjz/+OOB4TU0N7r//fmRkZECj0WDQoEF4+eWXpaksERERRSRJgxmHw4G8vDwsXry41eMLFizA+vXr8dZbb+HQoUP41a9+hfvvvx9r1qwJc02JiIgoUkk6AHjKlCmYMmVKm8f/85//YM6cORg3bhwA4N5778Urr7yCr776CjfddFOYaklERESRLKLHzFx11VVYs2YNiouLIYTApk2bcPjwYVx//fVtPsfpdMJutwdsRERE1HNFdDDz97//HYMGDUJGRgZiYmIwefJkLF68GGPHjm3zOYsWLYLRaPRvmZmZYawxERERhVvEBzM7d+7EmjVr8M033+C5557D/Pnz8e9//7vN5yxcuBA2m82/FRUVhbHGREREFG4RmzSvrq4Ojz76KD766CNMnToVADBs2DDs3bsXzz77LCZOnNjq89RqNdRqdTirSkRERBKK2JYZl8sFl8sFpTKwilFRUfB4PBLVioiIiCKNpC0zNTU1KCws9D8+fvw49u7dC4vFgqysLFxzzTX47W9/C41Ggz59+uDLL7/EP/7xDzz//PMS1pqIiIgiiUIIIaR68c2bN2P8+PEt9s+ZMwfLli1DSUkJFi5ciM8//xwVFRXo06cP7r33Xvz617+GQqHo0GvY7XYYjUbYbDYYDIZgvwUiIiIKgc58fksazIQDgxkiIiL56cznd8SOmSEiIiLqCAYzREREJGsMZoiIiEjWGMwQERGRrDGYISIiIlljMENERESyxmCGiIiIZI3BDBEREckagxkiIiKSNQYzREREJGsMZoiIiEjWGMwQERGRrDGYISIiIlljMENERESyxmCGiIiIZI3BDBEREckagxkiIiKSNQYzREREJGsMZoiIiEjWGMwQERGRrDGYISIiIlljMENERESyxmCGiIiIZC1a6gpQ7+N0O1HfUN/m8ZioGKij1WGsERERyRmDGQorj/Bg28ltKKsta7NMojYR47PHQ6lgwyEREV0cPy0orJQKJfRqPWxOGwxqQ4vN5rRBr9YzkCEiog7jJwaFndVihVFthNvjhlal9W9ujxtGtRFWi1XqKhIRkYwwmKGws2gsyDHnoMwR2NVU5ihDjjkHFo1FopoREZEcMZghSVgtVuhidLA77QAAu9MOXYyOrTJERNRpDGZIEs1bZ9gqQ0REXcVghiTja50pthezVYaIiLqMwQxJxtc6Y3Pa2CpDRERdxjwzJKlcSy5cDS7kWnKlrgoREckUgxmSlFljxuis0VJXg4iIZIzdTERERCRrbJkhaTmdQH3b6zQhJgZQc50mIiJqW5eCmenTp0OhULTYr1AoEBsbC6vVijvuuAMDBgzodgWpB/N4gG3bgLK212lCYiIwfjygZCMiERG1rkufEEajERs3bsS3334LhUIBhUKBPXv2YOPGjXC73Vi1ahXy8vKwffv2YNeXehKlEtDrAZsNMBhabjab9zgDGSIiakeXWmZSUlJwxx134MUXX4TywgeNx+PBL3/5S+j1eqxcuRL33XcfHnnkEWzbti2oFaYexmoFjh0D3G5vAONjtwNGo/c4ERFROxRCCNHZJyUmJmL79u3o379/wP7Dhw/jqquuQnl5Ofbt24cxY8agqqoqWHXtErvdDqPRCJvNBkPTD8sgcrqdqG9oe9xHTFQM1NEc99Gmr74C9u0D+vVr3Hf0KDB0KHD55cF9LY7RISKShc58fnepZcbtduOHH35oEcz88MMPaGhoAADExsa2Oq6mp/EID7ad3Iay2rbHfSRqEzE+ezyUCnaXtMrXOmO3e1tn7HZApwt+qwzH6BAR9UhdCmZmz56NefPm4dFHH8Vll10GAPj666/x9NNP4yc/+QkA4Msvv8TgwYODV9MIpVQooVfrUVhZiExDZovjRfYi5JhzGMi0x2IBcnK8rTMGgzfYGDrUuz+YfGN0CguBzJb/Vigq8taDgQwRkax0KZh54YUXkJycjGeeeQalpaUAgOTkZPz617/GI488AgC4/vrrMXny5ODVNIJZLVYcqzwGt8cNg7qxKczutMOoNnLNoY7wtc4UF4emVab563CMDhFRj9GlMTNN2e12AAjZeJTuCvqYmTbGXOw+vRsHzx5En6RcCHUMAOBoxVEMTR6Ky9ODPO6jp/rqK2D3bmDkyOCPlWn+OuEao0NERF0S8jEzTUVqEBMS7Yy5GFhfg/qSAoikCrjGjobdVcOVoDsrNxdwubw/QylcY3SIiCgsuhzMvP/++3j33Xdx8uRJ1Ddrqfj222+7XbGI1M6YizgYkHrmKL5XOmFUKlHmKMPQ5KFcCbozzGZgdBjWaQrXGB0iIgqLLo10/Nvf/oa7774bycnJ2LNnDy6//HLEx8fj2LFjmDJlSrDrGFmsVu/YCrcb0GobN7cbian90NCvL4rtxWyViTROJ1Bd3bglJ3uD08JC78/WBgQTEZEsdKllZsmSJXj11Vdx++23Y9myZXj44YeRk5ODxx57DBUVFcGuY2Rp/q3ep6wMcUOHISPdO35mZNpItspEira6B4uLvd1NOTnAwYONAQ4REclKl+7cJ0+exFVXXQUA0Gg0qK6uBuCdsv3OO+8Er3aRymr1jrG4MPi56ZiLXEsu8pLzkGsJ8bgP6ri2lk3IzQUGDfK2rHHZBCIi2erS3TslJcXfApOVlYWdO3cCAI4fP45uTo6SB1/rjO+bflmZ97HFArPGjNFZo2HWmKWtIwW60D1Y76xFbTS8m1mP2r6ZqEswozozGdXOajjdTqlrSkREndSlbqYJEyZgzZo1yM/Px913341f//rXeP/997F7927ccsstwa5jZApXXhQKDosFnpxsFG58FyXJOv9uXVEpbLmZqDi3AzjHbM1ERHLUpWDm1VdfhcfjAQDMnz8fCQkJ2L59O2666Sbcd999Qa1gxPK1zvjyonAmTOdIsEaS0pqLmN1mOCtPw5yUhaiaWkTrTVBYc2FQ65mtmYhIproUzCiVStTX1+Pbb7/F2bNnodFoMHHiRADA+vXrceONNwa1khErXHlRehqp1kiyWJA49Aqc2/Qe3AkNMNnOwzEwB6rEZNQxWzMRkWx1KZhZv349Zs+ejXPnzrU4plAo/ItN9njhyovS00i4RpJx8KWI37cTRSePw2NMQ12fNABgXiAiIhnr0qfFAw88gJkzZ+LMmTPweDwBW68JZKh72snXE9I1ki60zujrPChPMcBtMsDutDMvEBGRjHWpZaa0tBQLFixAcnJysOtDvUU7+XpCnY3XOGQENOeO45CpDplgqwxRODndTtQ3tD1eLiYqBuro4I6Xo56vS8HMrbfeis2bN6Nf04X6iDpLqjWSzGakTpoB1dHPma2ZKIw8woNtJ7ehrLbt8XKcUUhd0aW/lhdffBEffvgh5s6di+eeew5/+9vfAraO2rJlC2688UakpaVBoVDg448/DjheWlqKuXPnIi0tDVqtFpMnT8aRI0e6UmWKJL6lBVQqICXFO0amttb7MyXFG9CEmEVjQY45BzanDTnmHLbKEIWBUqGEXq2HzWmDQW1osdmcNujVegYy1Gldapl555138PnnnyM2NhabN2+GQqHwH1MoFHjwwQc7dB6Hw4G8vDzcc889LfLTCCEwbdo0qFQqrF69GgaDAc8//zwmTpyIgwcPQheGDzwKgeYzmWpqgIIC4NAh74BftRpoaAj+TKZW5Fpy4WpwMVszURhZLVYcqzwGt8cNg7qxi9nOGYXUDV0KZn7/+9/jySefxO9+9zsou/GBM2XKlDYXpjxy5Ah27tyJ/fv3Y/DgwQCAl156CSkpKXjnnXfw05/+tMuvSxJqPpPJYPAGNIcPe7uXGhpCsrRAa/300cpoDEse5j/Ofnqi0LNoLMgwZOC7ku+Qbc727y+yFWFQ4iColCr+f6RO61IwU19fj1mzZnUrkLkYp9ObVj42Nta/T6lUQq1WY9u2bQxm5Mw3Vsbt9gYz/foB0dHeQb9KZdDHzLCfnihyeIQH5ypP48TJfThdXABNjAZ19XWob6hHnFPg3NkTsBhSMG7gJP5/pA7r0l/KnDlzsGrVqmDXJcDAgQORlZWFhQsXorKyEvX19fjLX/6CU6dO4cyZM20+z+l0wm63B2wUYZqvbaXXA0OGAHV1/jWugon99ESRQymA/j+UIX/PaeTuOoyhX59E7q7DGHfQgWG7i2D8YhtSvz8GZS9Y5o+Cp0stMw0NDXjmmWfw2WefYdiwYVCpVAHHn3/++W5XTKVS4cMPP8S8efNgsVgQFRWFiRMnYsqUKe0uZrlo0SI8+eST3X799nBqYRCEeSYT++mJIoTLhTRTBirrtSiMBaqFE+rYOCQY01APwOzwIC1tAFexp07pUjCzb98+5OfnAwD2798fcKzpYODuGjFiBPbu3QubzYb6+nokJiZi1KhRGDlyZJvPWbhwIRYsWOB/bLfbkdlaltkuYpdFEDid3plMycnAwYNAdrZ3JtOgQd79TmfQ12XyzV7aV7ovIJhhjhmiMLowAcBYVIaccx64a0pRGy2QoElAQsUZ2CpLkGBOh/GS4VLXlGSmS8HMpk2bgl2PdhmNRgDeQcG7d+/GH//4xzbLqtVqqIP8QdiUr8uisLIQmYaWQRIXK7yIprOZWpvJVFoamnWZ0Ng6Y3faYVAz8y9R2PkmADQ0IG7gMJj2VKBBHw2tLhG1ENDb6mC4egSQkCB1TUlmJP3Erampwd69e7F3714AwPHjx7F3716cPHkSAPDee+9h8+bNOHbsGFavXo3rrrsO06ZNw/XXXy9hrb0fika1EW6PG1qV1r+5PW52WVyM72ZmswFpad5WGY/H+zMtzbs/BLOZgMbWmTKHt1WtzFHGHDNE4XZhKZO49GzEJ/VBXFQsYuL0OG87B21CKvQTW5/hStQeSYOZ3bt3Iz8/399ltWDBAuTn5+Oxxx4DAJw5cwazZ8/GwIED8eCDD2L27Nl45513pKwygJYfij78cOygpusyWa3AJZd4f4Z6XSZ4A1FdjI6Zf4mk4psAcP48jP0uga6uAVV1VTCW10A3aqx3diNRJ3WpmylYxo0b1+5g3gcffLDDCfjCjV0WXec06ODOTIFy3wGInGxggPfmpTh2HJ6hgxFt0CFUHYW+QHT36d0YmTaSgSeRFC5MAIiLjYXRkARn8Qno4pPZKkNdJmkwI2fNB5RyIGnH+AZQ23AcKfYCuAtOwB2nQXRNHaLrnCiBGsaTDSEZQO2bhZaiS0GuJRcpuhRUO6v9xzkLjShMmiw0a+o3CKqTJ6G95hq2yoRZT5qZy2CmG3ytM+yy6Dj/AOrYBiT3y4Gp4DhqzfHQVttQPSAHZbENyAhBzpfWZqH959R/AspwFhpRGF1ondE1NEA3/GrgOrbKhFNPm5kb+TWMYFyssGt8A6jtGYmI1hthKK9GtN77OFQDqJk4jyjC+Fpn3G5gyhTv7xQ2Pe2eKI9aRrBcSy7ykvO4WGEn+ILA06rzqMtKQ3S1A3VZaTitOh/SoJCz0IgiTG4ukJfn/Ulh15PuiQxmusmsMWN01miYNWapqyIrvllFZ1MNqLnEirOphpB31XEWGlGEMZuB0aO9PynsetI9kcEMhZ/TCYtbBasqGWXOSjgG5qDMWQmrKhkW94UMwCHiC6LsTu+aXZyFRkS9WU+5J3IAMIVXkwzAA+trUF9SAI84BKtCiYEpaiAmdBmAAc5CIyJqqqfcE9kyQ+HVJANwXEIa4lOyUaX2ID4lG3EJoc0A7MPEeUREjXrCPZHBDIVfkwzAaclW9Em9BGnJ4ckADHAWGhFRUz3hnshuJgq/Jgmz9P36YWjyUO/+U0eBoUO9x0PB6QTqvQmiclUp8OhykatKAaovJM6LiQn6at1ERHKQa8mFq8El25m5DGZIGhcSZsFuBwwG70+dLnStMk1X6wZgBnAFAKBJ4rwQjtUhIopkvpm5csVgpjuafNNvFb/pt61J6wwMBm+QEcpWGd9YncJCIDOz5fGiIm99GMgQEckOg5muavZNv1X8pt8+X+tMcXFoW2Wav57b7Q2gfOz2sIzVISKi0OCnbFc1mZUDg6HlFoZZObLna52x2bw/Q9Uq0/z1mgegZWXheX0iIgoJftJ2R5NZOdBqG7cwzcqRLafTO+i2uhpISfGmMk9JadwXwqR5sFq9rUB2b4KokI/VISKikGM3U3c0H/fhE+rxH3LWVvfcf8I0EDfcY3WIiCjk2DLTXfym3zmR0D3n+zcL11gdIiIKKQYz3dV8HAbHX1yc1N1z4R6rQ0R+TrcT1c7qNjenO4TdzNRjsZspGMI9K0fuIqF7LjcXcLm8P4koLDzCg20nt6Gstu1ZoInaRIzPHg+lgt+1I4JMUpAwmAkG34fz7t3AyJH8pt8R4U6a15zZDIyWb4IoIjlSKpTQq/UorCxEpqFlvqciexFyzDkMZCKFjFKQ8C+mO6SclSN37J4j6pWsFiuMaiPcHje0Kq1/c3vcMKqNslzksMeKhDGOHcSWma6SelZOT8DuOaJex7eo4b7SfTCoG7uZyxxlGJo8VJaLHPZoMkk2yk/ZrpJRxBqxOBCXqFeyWqzQxehgd3pngdqdduhidGyViUQySTbKT9rukHpWTk+Qmwvk5XEgLlEv4mudKXN4PyDLHGXIMeewVSZSySAFCYOZ7pBJxBrRfANxzWapa0JEYeRrnSm2F7NVRipNx322tvnGfcpgjCPHzHSX1LNyiIhkyNc6s/v0boxMG8lWmXDr7EylCB/jyJaZ7pJBxEpEFIlyLbnIS85DroXdzGHX2XGfET7GkS0zQeDISsW8Z0YhygO8MX0pYiMsYo0kTrcT9Q1tJ2CKiYqBOlr6BExEFCJNkrCZEY3R5mGAG95uDSBikrD1Cp2dqRTByUYZzASDxYKjZuCy04DIyY64iDVSMPsnUS8noyRsvUJns7FHcLJR/rUESWE8sDcZ8Fj7SV2ViOXL/mlz2mBQG1psNqcNerWegQxRT8WUFpFHBjOVOoItM0FSpQF29AFn5VyE1WLFscpjcHvcAQmz7E57eLJ/ymSdEaIeSyZJ2HqN5q0z4VwjL4gYzFBYSZr9k03cRNKLhIVmKVBnZyqdPQskJ3t/Ly0FkpJCX8eL4B2bwk6y7J9s4iaKDD2ka6PHiPCZSh3BuzaFnaTZP5m1mUh6Fgvq+2Si7nQRautrUXe6CI7MFFTrVKh2VqPaWQ2nmwv1hpXMs7Gzm4kk4Rs7E/bsn2ziJpKcR3iwQ30WKnsBFN8eglAqUQI16o+U+MtwZmOYNZ+p5HAAcXHe32tqvC1nEYx/JSQJX+uMzWkL/5osbOImkpRSoYQmOR1nkrXQn/dA9MtBbFIaZzZSl7FlhiSTa8mFq8EV/uyfPWT0PpGcWS1WFFmtqIw5B4W1H7QqLYAwzmykHoVhL0nGrDFjdNZomDUSTGf3tc5E6DojRD2dRWNBZt9hODwgAW6j3r+fK2hTVzCYod6pB4zeJ5I7yWY2UvcUFjb+/s03QEGBdHW5gMFMMDgcEE8A4gnv7yQTMh+9TyR3ks5spK7ZsydwoPANNwDDh0se0DCYod7LN3qfWZuJJONrnQn7zEbqGpst4KFD4fGmtqiqkqY+FzCYISIiyUg6s5HaVl7e+PupU42PL7usZdkXXwRGjQpPvdrA2UxERBQebayNlqtKgUeXi1xdlgSVohbKy4GpUxsfT57szY6+cSOwf3/L8vff7+1qkjCgYTBDPRsXliSKDO2sjWYGcAUAnDkAjE/ikiLh1No9sqwMqK5ufHzihHeiRF2dN1N6U9EKQBENmEyhrmm7GMxQz9XKzbO+oR4NDQ2NRZIS4LlmrP/mGRMVA3U0gxuioPOtjVZYCGRmtjxeVOT9wGQgEz7tLb57113A0083Pl6xwvvv1mzmZ98HBE7M/Q90AwaEuLLtYzATBOdqz8GX6LnYXgyLWokEbYKkdSK0uHl6hAcHSr7zTwPVlJ5DlaovKo42zkBjCnWiEPKtzux2By4nYrdzbTQptBVglpUBr70WUNRx952Iu+MEtPVAizm7uf1DXtWL4R27m8pryzHj3Rn+x9NWTcOE5RNQXlvezrMobJosLKnUxSHWYIEtygWtUg2VKR4Kay5TqBOFiy+/U/OWgLIy5nuSSmuL75pMQGxsY5msLOgOn4B4AtC202svJd61u6nOVQeHqzFO/dF2Eg6XA3WuOglr1cs5nd7+3upqQKVCfaIFdceOoNZWDouIRUyDAqK0FLWZqXAZ9YhWRsPtcTOFOlE4cG20yNJagGk0egf1+nz8cdir1VnsZuqmTGMmFv+/xcAjN/r3rZi+ApnGVvqEKfSa9QF7hAeFx3cjav9BePZEoyE2BjHuKnxvAspUBtQVV8CoNsIYa8Sw5GGcFkoUalwbLaI43U7UZyYj+ocDOF/6I6Z/Ohd6J7Dimv+FyVcoPb3N55c9C+DZOMlX1mbLTDcV2Yow/5P5AftmfzQbRbYiiWrUy/n6gG02wGCA0mhCdHIqKiyxiHV5oKutR0qDFu7UZDREK+GqqoDS6UJcTBxbZYjChWujRQSP8GDbyW1Yd24HtqqKceDglwCAdDtg+u9fBZSLdAxmukmj0kCnaoxGHU8DCR4NNCqNhLXq3Zx9M1GniUFtbTVqlR4klNgQZzsP1akziDtWjLi6BgysjEL6lr3I//Y0+hw4hRxjX7bKEIUL10aLCEqFEnq1HjanDQprLlR6I9LtQK2qZblIF/k1jHAJ2gR8MPODgH3r7lzH2UwS8QgPttUcxFZVMfYd3IidZ77C0fNnUFNfjWJhR2lULQpTVFBnZcMeq4Cm1oW4+BRYE6QfjU/Uq3BttIhgtVhhVBtRZ9CgIbsPjE7geBdWeJF60guDmSCIPx/4OKFWmnpQ4zeN08laxOhN0DsBpKfDqDHDZTbicI4ZdVnp8GhikaJOgDDoET90FFtliMKNa6NFhKaLfTr6pGFvMnCsC/8k513nL14ohBjMdFd5OTB9RuC+qVMD17UgP6fbiWpndZub0+3s9mtYLVbEJqWhOiMRett5qEwWaHRmKM1mHO+fCFNiBqrOV2GIMhlZ+eOR029kEN4ZEZE8+Rb7rIwFdvQBqrowSiLDmBH8inUCZzN1V10dUNcshZDD4d1PAXyDzcpqW8k2eUEwktb5vmkUJJQioSQWMSVlcGamwFFVjwyoUOuqhd4J9Em7BHFX3wJo+M2QiHov3z1zd/Hu1gucO3fRc5yynUKGTroswGyZ6a7MTGDx4sB9r7/uHdCmUHg3R4t8ib1S08FmvkR1TbdgJq2zWqxQJSajJEkLT1UlTvYxom5wf+R6TKioq0CSQwFFPyucBummEhIRRQqrxQqtStvywIkTwG23XfT52rOVkvZIsGWmixz1DsQtigMAlL6TgaYfiY777kHSzJMtUz4TrBYrjlUeg9vjhkHdmM7c7rQHNWmdRWNBX1NfrI3aij7xdTiAI8gwpyPuVD2iz5TjdFwDDqIQxpMNXL6AiHo9i8aCbHN2ywPnz3foC7ll+u2NK2snhH8CDO/gwaDRtf+YAHjHy6iUKqToUlBkK0Jtfa1/K7IVIdOQGdSBuP3j+yM2KRU7M5VQJ6Qgo+8wqPsPwgBVCtT9B6EstoHLFxARXdDP3K/lzowMb2/DxZw4IekQC0nv4osWLcJll10GvV6PpKQkTJs2DQUFBQFlzp8/j/nz5yM+Ph5xcXGYMWMGSktLJapxG975Z+Djjz5ovVwv5k/OdGQdCisLUVBegE0nNmFn8U5sOrEJBeUFOOs4G9TkTBaNBaPSR0FAIFGbiJS4FAhrP9QPGQR7ZhKXLyAiasLc2vjBU6eAn/60YyfwrawtAUmDmS+//BLz58/Hzp07sWHDBrhcLlx//fVwNGnS+vWvf41//etfeO+99/Dll1/i9OnTuOWWWySsdSvMga0JjrjYNgr2Xr7xMtXV5chUmDAgJg2K6hqYXFHen+4oZCpNUNa7gvq6I9NG4srMK6GOVgMA3EY97COH4HR0HXLMOZySTSSlpuuotbY5uz+7kbopNrbDyxQ03HUnUCRN9ntJx8ysX78+4PGyZcuQlJSEb775BmPHjoXNZsMbb7yBt99+GxMmTAAALF26FJdccgl27tyJK664QopqUxdZTTmoWb8GhqoTiAeQWFUKj+cMEhtcSDemY2DVUeCUBxg/3rssQRCYNWbMGDQDnx/9HHanHQa1AXanHboYHVtliKTUbB21ViUmBvV+QO1rNfFdQgKwbh3Qt2+7zy02RyFRE4sojTTZ7yPqL8RmswEALBdSW3/zzTdwuVyYOHGiv8zAgQORlZWFHTt2tHoOp9MJu90esFFksOgSkJTSD+crziLGkgBdfBpssQJCr0dGUi7iKh3em5bDEdRvaE2TQgFAmaOMrTJEUmu2jlqLzWbzHmcgExblteWY+vbUFvsrjuzr0PPNpjTEfPixJIN/gQiazeTxePCrX/0Ko0ePxpAhQwAAJSUliImJgclkCiibnJyMkpKSVs+zaNEiPPnkk6GuLnVR+vCxsB/Yg7q6apgtabBF1cOoMiD9x0qg6sKqq62NiermNzTfLKpiezFbZYgihdUKHDsGuN3eAMbHbgeMRi5AGUZ1rjo4XC1nLRluvg3QGy/6/HLbaUS7q5AWisp1QMSEvPPnz8f+/fuxcuXKbp1n4cKFsNls/q1Iov47ap05vR8Mg/PhLCmGNkYLo9qInPh+0HmU3kAmLS0k39B8rTM2p42tMkSRwrfgZPOuprIyLkAZZpnGTLx+Y8tZS9EnT3VoavZTd2UiJruV2VBhEhHBzP3334+1a9di06ZNyMhoTImckpKC+vp6VFVVBZQvLS1FSkpKq+dSq9UwGAwBm+ROneLyBk2kDx+L6DgDKktPQqPSIF1h8PbH9uvn/Yam1TZubnfQvqHlWnKRl5yHXAsXtiOKGFar94uMb0iA3e59zFaZsCqyFeGn/2pj1lIHpma/stqDhHPSZb6XNJgRQuD+++/HRx99hI0bNyI7OzBhz4gRI6BSqfDFF1/49xUUFODkyZO48sorw13djjt0KPDx5MnAhAkMaC7wtc6IslKkxqXCYDsPDBvm3UL4Dc2sMWN01ujWpx8SkTSat86wVUYSGpUGOlXLWUuOaHRoanZUnB6QaPAvIHEwM3/+fLz11lt4++23odfrUVJSgpKSEtRdSLpjNBoxb948LFiwAJs2bcI333yDu+++G1deeWVkzWSqrAh8/LN5gY8lTiYUiTKGX4P05P7IrFE2fgvjNzSi3sn3f7+4mP/nJZKgTcC6O9a1PNA3C25NB9KNrFsn2eBfQOIBwC+99BIAYNy4cQH7ly5dirlz5wIAXnjhBSiVSsyYMQNOpxOTJk3CkiVLwlzTi6hrNtOmuJXByRImE4pEpvQcmEZNAXbvBgY3+RaWkwPs2+cdK1NWBgwdym9oRHLmdAL19W0fj4lpbJ3ZvRsYOZL/5yWSoG0lGPnoY5yFE2lDvb0htTGA4glAWw84nm76ZOkCGUDiYEYIcdEysbGxWLx4MRY3X8wxkqSlXrRIw113IurLLQxomsrNBVwu708f3+wGfkMjkr/O5JJp7X5A0ktPR1pM+0nzTp46iKwOJtYLlYgYACx3urKqdo+ftEShQRMraX9iRDKbgdGjvT99fN/QbDb2mxPJXWdyybR2P6CIUOSuQJ8XsqB4wtsy09x59/mw16k5BjPB0Kw/0ZmeGPC4/IMViPlyq+TNcBGreUrzlBTvt7OUFKY0J5I7q9U7I7H5mEG73dvFlJzM/+cRrq3BwT7phvQw1qZ1EZM0T26apn0+ZVSi/qt1GHq5N3virFsDy/7k60fxaf7VYAdTK9prhv7Pf7w/Q5XS3OEA4uK8v9fUdHj9ESLqBIvFm3rhvfcC/4+VlABZWYAvmzuXLohYCdoEfDDzAwxaMqjV48X2YvQ3J4W5VoH4V9MFzdM+X7fiOlyzZrr/8YGowNlNOpUOGhW7mFrFlOZEPV///t7uo/Jyb/4owPvYauX/c5mI18S3eSw2WvrFlfmX0wXN0z4X2YvgFm7/Y7doCCi/7s51rY8SJy9fM3TThHkKBTB1KnDffUDqxQdYE1EEs1iAUaO8/8cbGrxdTn37eruSg5gYk6QRr2070AkXBjNd0Fra5z9f++c2yzOQuYi2Upo3PU5E8jZihLdb6cQJ72SI9AvjLJgkj4KAwUwXtJb2+Xdf/E6i2vQQzRPmVVdLWx8iCi5f60xDQ2M3MhNjRrxie3HAGNFIxQHAXdB8ZHemIRM1FaUAvImhBqrTcMp+uvEJ1dXega4xMYBaHebayoSvdcaXMK+7Sz90JFEXEYXXyJHelpnzF6byMjFmxJu2ahqi9UasunWV1FVpF4OZLvClfe77f30BABtmb8D5yjLg/xsDAPjAcC8e+/aJxiesXw/ExnK0/sU0TZjnGyTYFR1N1HX55V1/DSLqPLMZmDED+PxzJsaUiR9tJ5ESmxMRuWTaw0/VLmo6DibDkAFrQn//Y2NiJqqbNsD4ZutwtH77mibMa7boaKdwhhRRxHC6nah2VjduOhUcmSmoKy+BIzMFTgNTIkQKXYwO4nGBtbf/K2D/iukrWsxYqo0BHM4aQAjoJJ6WDbBlJiQU7gZUaoBxc4BP7/wEmjoXR+t3lC+leZ8+3TuPr5XH7fYGMD52O/8tiMLEIzzYdnIbymoDW0lVqIHBUgM7CmE62YDx2eOhVPDLRSQoshXhni8ewIknGvfd8cEdUEWpWpQtry2H7iJLHYQL/3pCQFlxLnAHR+t3nC+ledMxLQ5H2+XbYrEAGRlAURFQW9u4FRV5M46qVMw4ShRiSoUSerUeNqcNBrXBv2mS0uC64jKUxzZAr9YzkIkgzceE9jX1RWx0LM67WnYzRVLXE1tmQkBotNA74e1qslezX1gKHo83iCwoAI4f947Bqa31DgpWq4HSUm9XExGFlNVixbHKY3B73DCoG1tJ7U47jGojrJYL90Zm5I4IzceErr9zPeK18dhZtBM3rrwxoGyGIUOCGraO4XAINPTNQuKFxgRFeTlbZaSgVHrzWOh03m4rrdb7MzsbSEvzjptxNyY6xKlT3Z9BRUQtWDQW5JhzUOYI7Goqc5Qhx5wDi4b3xkjTfExonasO8z+d36LcKfupcFarXWyZCYGGvn1QGwOk2+H9EGWrTMf5plTX1DTuq6lpXHG8M9PbrVagXz9v60x1tXesTL9+3iBGoQAeeaSx7OTJ3paajRu5IChRsFz4/2xVJeOk6wBsZacQGx2L6vpqxLicSI42odp5IaeU0wG2lUamthaajIRlDHwYzISANjkdKx/eBezeDQwYxFaZi3C6nahvqAc8Hii/3ALl2XLAbodvNav69Z8gxnIhwOjM9HaLBRg2zJvXoqYGGDDAOxj46FHvEglNx8ycOOFtQWu+si8RdU2TFAkWAHnnTmFn0U44VWpUna9CgiYBRwtOY8dlgwClElG153Gb1HWmVrW10GQkZbdnMBMsOh0UT3h/rdHpGmfl5OZKWq1I13y2g67sID575494cX1jmR/Kf8AQ81VQ2qu9AUdnplRbrd41YMrLvQOCfRlHR48GXn8dmDixseyKFUAm1zYnCgpfioTCQiAzE8nqXETXHMHpmhIYjBZkuAxwmRJgitJBUe9CadXZxuf6Eo0CTDYaIdpbaDISMJgJFd+sHGqXb7ZDYWUhMg2ZcPfLgb3ZfSv2H/+E0vUv4Pe/71iXXdPsvyqV9zlOJxAV5R0MPHy4d7DhTwOXpMDs2cDmzQxoiILA6bCj3qxDtKIBoqIU0Xo9+pr64pS9CCZ3FGL1ZtRn90XK3qNwl5yGoa7JrEVfolGAyUapQxjMkOSaznZQJSbjuDnweMrJKsAY7e0auliXXWvZf2tqvONmDh3y3hDT0rwtZk1nS/Tt633sG5tDRF3maXDjwEev4vzpk9CdLIW2pBzOeCPUnnoMtFdBV3kKpUNdiDJOwnmNCnXlxYjPHOh/fm2sCoiNhrL4NJR9MhHDQIYugn8hJLnmsx2aBzMGF4D77+9YS1dr2X/T0rzdUx6Pd0B2ejqQlASsW9f4vPXrOfiXKEiUUdGIMcfDbauA29oXCrMZqmg1NMYE9DVnI0ooUJGZACiV2Ko6jR89lShrsp7dV5X7sLtoF751FGKH+iw8wiPhuyE5YDATJL400OJxETEZEeXEarFCF6NDtbMala01jrz6aseT51mtqI/ToLa2GrXR8G6ZqTifloy6PhmozkyG0+0MDFwyMhjIEAVR+vCxiDZa4I6JRkOfTMTUuyHUMYixO+DMTEVp/zScd53HWbUbVWnxiK9tfK5WpYWpuh5nkrXQJKczqR5dFLuZKCL4Wmd2F+9ueTA+3jutuoNdQB6zCXu11RD7tsORmezfr/OUwmaKQsW5HUisS8T4pMsZzROFiDm9HwyD81Gx60ucz7SionA/nD+egaKiHCcn5KMQFThc+Anq3fVwJUbhxzNnMfzCc7XnG3BerYLCam1Mqkdh4/ty3nxfJOO9nCKG1WKFVtXKatkvvABs2dLhlhOlQomo3P6wR7uhd3q/5emdQIzeBIU1FzanjSnUicIgffhYRMcZcN5VB1dKIhTlFahLSYRl9LXIMefAIzwYlDgIsUlpKDU1rv2jOnkKxboGZPQdxqR61CFsmemi1iJX6h6LxoJscza09c0OjBrV6S6g7H4jcC57F6KPlUJlsiDWVgHHwBzUGTQwuoT32x674YlCqmnrTEyfHJwrPICa4ZcgOd0KlbMa0VHRsGgsiKsX0G5Y6n+eY/X7aMiMg/WGX0hYe5ITfjWliNLP3K/lTpOp0+exaCyIHzoKlUonYkrK4NHGoq5PGlOoE4WZr3XGXXkOzkEDUDUoGwCgV+sxJGkI6lx1GKa3on9V48fRaY8dGXbAIiInwyw1qllYE3HjQxnMUEQxa8wtdxYXd2ndpOx+I3A+Kw21ZWdQmWbBqehaKBVKJOuSUe2sbkyjTkQh42udaaiqQPrwsTCmZcPutAPwLjapi9HBeslo5PzpJf9z3FGA9a9vMOcTdRi7mSjyTZvmHQDcyanTplgTTifr8P2pcnhUxThx/CCyjFnYcWoHADB9OlGI+ZYqMQ4eiVqHDamXXoM6cQ4Hyg4g25SN09WncWnqpbCUO4D//rX/eRk2wHLPfCaxjCCRPrSCwQxFvpMnu7RukqvBhcSM/thavR+m6HpolVqk69MRrfD+2Z+rqwhFbYkILZcqwaAUHKs5gJr6GhSUF+BQ+SEY1UbcOuhWoBYBSSz7GTIBNZNYUscxmCF56OS6SU1vpHWuOpyyn0JfU18crzoOAKhz1UHXfKAxEQVN86VKfAxqA2qcNdh1ehdGpI7wLlaohTeJZd++AADzmg3elAzM/UQdxDEzJA+zZwNFRR0u7ruRNogG5KXkwaKxIN2QDq1KC61Ki1JHKfpZWhlsTERBY7VYYVQb4fa4/f/3tCotkuKSMDB+IK7pe01jYSaxpG5gMEOR5VwrA32jo72LznWyydl3I+1r6otLEi+BOkqN2OhYVDurYVKbMDqTC4EShVLzpUp86lx1mJI7BTnmHIlqRj0NgxmKLHXnW+5LSgLefrvT39R8N9Lz7vNIi0uD7bwNAFBsL0Z+aj5yMocCQng3XeRMMSTqSXxLlbSYwcTMvhREDGYosmRktNz3yitAXl6XTue7kerVesSqYnGy6iQMagPG9hnbzYoSUUc0b51hricKBQYzFFlOnWq574EHOjVepqnmrTOljlLkp+ZzvAxRGPm+VBTbi9kqQyHBYIYii6aVjJ+67k3R9N1IlQol+sf3Dxx0SEQh5/tSYXPa2CpDIcFghiJKeWsxy7p13ZrZ4LuRuoWbgw6JJJJryUVech5yLblSV4V6IOaZoYhRXluOqW9PbbH/XF0F4tGnW+fOteTC1eDijZRIImaNGaOzOIOQQoMtMxQxquqqoKyoanngtttQffoEnG5nl8/tu5G2uvYTERHJGoMZigge4cGPth8x/ZLpLY5ttNiw7vBabDu5DR7hkaB2RBQsjnoHFE8qoHhSAUe9o/GATsdUCdRlDGYoIigVStS6avHi0bdbHGu4+27Y9Cro1XooFfyTJSKiQPxkoIgxMGEgks+rWuzXvrYUxmoXp3MSEVGrGMxQxMiNz8WfJ/21xf5Kgwo5if05nZOIiFrFYIYiSv7AcS32aX+zENackeGvDBERyQKDGYoorbW+ZGcNY6sMERG1icEMRTwmuSMiovYwmKGI9u3eT2FJyJS6GkREFMEYzFBEyzaxVYaIiNrHYIYimlljkroKREQU4RjMUMSpjWnygJlAiYjoIhjMEBERkawxmCEiIiJZYzBDREREssZghoiIiGSNwQwRERHJGoMZIiIikjUGM0REFDblteX+30/ZTwU8JuoqBjMUcWpjAMUTgMNZwzwzRD1IeW05pr491f948j8nY8LyCQxoqNskDWYWLVqEyy67DHq9HklJSZg2bRoKCgoCyrz66qsYN24cDAYDFAoFqqqqpKksERF1S52rDg6Xw//4RNUJOFwO1LnqJKwV9QSSBjNffvkl5s+fj507d2LDhg1wuVy4/vrr4XA0/rHX1tZi8uTJePTRRyWsKRERdVemMROv3/h6wL4V01cg08jFZKl7FEIIIXUlfMrKypCUlIQvv/wSY8eODTi2efNmjB8/HpWVlTCZTB0+p91uh9FohM1mg8FgCHKNiYioo4psRRi7bCxOVJ3w78sx52DznM0MaKiFznx+R9SYGZvNBgCwWCwS14SIiIJNo9JAp2ocB9fX1Bc6lQ4alUbCWlFPEC11BXw8Hg9+9atfYfTo0RgyZEiXz+N0OuF0Ov2P7XZ7MKpHRETdlKBNwLo71qHv//UFAKy/cz3itfFI0CZIWzGSvYhpmZk/fz7279+PlStXdus8ixYtgtFo9G+ZmWy6JCKKFE0DlwxDBgMZCoqICGbuv/9+rF27Fps2bUJGRka3zrVw4ULYbDb/VlRUFKRaEhERUSSStJtJCIEHHngAH330ETZv3ozs7Oxun1OtVkOtVgehdkRERCQHkgYz8+fPx9tvv43Vq1dDr9ejpKQEAGA0GqHReAeElZSUoKSkBIWFhQCAffv2Qa/XIysriwOFiYiISNpuppdeegk2mw3jxo1Damqqf1u1apW/zMsvv4z8/Hz87Gc/AwCMHTsW+fn5WLNmjVTVJiIioggSUXlmQoF5ZoiIIoej3oG4RXEAgJqFNdDFcMkSap1s88wQERERdRaDGSIiIpI1BjNEREQkawxmiIiISNYYzBAREZGsMZghIiIiWWMwQ0RERLLGYIaIiIhkjcEMERERyRqDGSIiIpI1SReaJCKi3kUXo4N4vEevokMSYMsMERERyRqDGSIiIpI1BjNEREQkawxmiIiISNYYzBAREZGsMZghIiIiWWMwQ0RERLLGYIaIiIhkjcEMERERyRqDGSIiIpI1BjNEREQkawxmiIiISNYYzBAREZGsMZghIiIiWWMwQ0RERLIWLXUFQk0IAQCw2+0S14SIiIg6yve57fscb0+PD2aqq6sBAJmZmRLXhIiIiDqruroaRqOx3TIK0ZGQR8Y8Hg9Onz4NvV4PhULh32+325GZmYmioiIYDAYJayg9XgsvXodGvBaNeC0a8Vp48To0CuW1EEKguroaaWlpUCrbHxXT41tmlEolMjIy2jxuMBh6/R+jD6+FF69DI16LRrwWjXgtvHgdGoXqWlysRcaHA4CJiIhI1hjMEBERkaz12mBGrVbj8ccfh1qtlroqkuO18OJ1aMRr0YjXohGvhRevQ6NIuRY9fgAwERER9Wy9tmWGiIiIegYGM0RERCRrDGaIiIhI1hjMEBERkazJJph54oknoFAoAraBAwf6j5eUlGD27NlISUmBTqfDpZdeig8++CDgHIcPH8bNN9+MhIQEGAwGXH311di0aVNAmZMnT2Lq1KnQarVISkrCb3/7W7jd7oAymzdvxqWXXgq1Wg2r1Yply5aF7H235mLX4ujRo5g+fToSExNhMBgwc+ZMlJaWBpyjoqICd955JwwGA0wmE+bNm4eampqAMt9//z3GjBmD2NhYZGZm4plnnmlRl/feew8DBw5EbGwshg4dik8++SQ0b7oV3b0OJ06cwLx585CdnQ2NRoN+/frh8ccfR319fcDrRPp1AILzN+HjdDoxfPhwKBQK7N27N+BYb7oW69atw6hRo6DRaGA2mzFt2rSA473lXtFT7pvFxcW46667EB8fD41Gg6FDh2L37t3+40IIPPbYY0hNTYVGo8HEiRNx5MiRgHP0hPsm0P1rEZH3TiETjz/+uBg8eLA4c+aMfysrK/Mfv+6668Rll10mdu3aJY4ePSr++Mc/CqVSKb799lt/mdzcXPH//t//E9999504fPiw+MUvfiG0Wq04c+aMEEIIt9sthgwZIiZOnCj27NkjPvnkE5GQkCAWLlzoP8exY8eEVqsVCxYsEAcPHhR///vfRVRUlFi/fn1EXIuamhqRk5Mjpk+fLr7//nvx/fffi5tvvllcdtlloqGhwX+OyZMni7y8PLFz506xdetWYbVaxe233+4/brPZRHJysrjzzjvF/v37xTvvvCM0Go145ZVX/GW2b98uoqKixDPPPCMOHjwo/ud//keoVCqxb98+WVyHTz/9VMydO1d89tln4ujRo2L16tUiKSlJPPTQQ7K6DsG4Fk09+OCDYsqUKQKA2LNnj39/b7oW77//vjCbzeKll14SBQUF4sCBA2LVqlX+473pXtET7psVFRWiT58+Yu7cuWLXrl3i2LFj4rPPPhOFhYX+Mn/+85+F0WgUH3/8sfjuu+/ETTfdJLKzs0VdXZ2/TE+4bwbjWkTivVNWwUxeXl6bx3U6nfjHP/4RsM9isYjXXntNCCFEWVmZACC2bNniP2632wUAsWHDBiGEEJ988olQKpWipKTEX+all14SBoNBOJ1OIYQQDz/8sBg8eHDA68yaNUtMmjSpW++vM9q7Fp999plQKpXCZrP591VVVQmFQuF/nwcPHhQAxNdff+0v8+mnnwqFQiGKi4uFEEIsWbJEmM1m//sWQohHHnlEDBgwwP945syZYurUqQGvP2rUKPHzn/+82++xI7p7HVrzzDPPiOzsbP9jOVwHIYJ3LT755BMxcOBAceDAgRbBTG+5Fi6XS6Snp4vXX3+9zdfoLfeKnnLffOSRR8TVV1/d5nGPxyNSUlLEX//6V/++qqoqoVarxTvvvCOE6Dn3zWBci9ZIfe+UTTcTABw5cgRpaWnIycnBnXfeiZMnT/qPXXXVVVi1ahUqKirg8XiwcuVKnD9/HuPGjQMAxMfHY8CAAfjHP/4Bh8MBt9uNV155BUlJSRgxYgQAYMeOHRg6dCiSk5P95500aRLsdjsOHDjgLzNx4sSAek2aNAk7duwI8bsP1Na1cDqdUCgUAQmMYmNjoVQqsW3bNgDe92AymTBy5Eh/mYkTJ0KpVGLXrl3+MmPHjkVMTIy/zKRJk1BQUIDKykp/GamvRXeuQ2tsNhssFov/sVyuA9D9a1FaWoqf/exnWLFiBbRabYvz95Zr8e2336K4uBhKpRL5+flITU3FlClTsH//fv9zesu9oqfcN9esWYORI0fitttuQ1JSEvLz8/Haa6/5jx8/fhwlJSUBdTQajRg1apS/jj3lvhmMa9Eaqe+dsglmRo0ahWXLlmH9+vV46aWXcPz4cYwZMwbV1dUAgHfffRculwvx8fFQq9X4+c9/jo8++ghWqxUAoFAo8O9//xt79uyBXq9HbGwsnn/+eaxfvx5msxmAd9xN0/+QAPyPS0pK2i1jt9tRV1cX0mvg0961uOKKK6DT6fDII4+gtrYWDocDv/nNb9DQ0IAzZ87430NSUlLAOaOjo2GxWC76Pn3H2ivjOx5q3b0OzRUWFuLvf/87fv7zn/v3yeE6AN2/FkIIzJ07F/fdd1/Azbqp3nItjh07BsA73uR//ud/sHbtWpjNZowbNw4VFRXtvk/fsfbKyOle0VPum8eOHcNLL72E3NxcfPbZZ/jv//5vPPjgg1i+fHlAPdv72+0p981gXIvmIuHeKZtgZsqUKbjtttswbNgwTJo0CZ988gmqqqrw7rvvAgD+8Ic/oKqqCv/+97+xe/duLFiwADNnzsS+ffsAeG/W8+fPR1JSErZu3YqvvvoK06ZNw4033tjmh1ukau9aJCYm4r333sO//vUvxMXFwWg0oqqqCpdeeulFl1CXm2Beh+LiYkyePBm33XYbfvazn0nwbrqnu9fi73//O6qrq7Fw4UKJ30n3dfdaeDweAMDvf/97zJgxAyNGjMDSpUuhUCjw3nvvSfnWOq2716Kn3Dc9Hg8uvfRSPP3008jPz8e9996Ln/3sZ3j55ZelrlrYBftaRMq9M1qyV+4mk8mE/v37o7CwEEePHsWLL76I/fv3Y/DgwQCAvLw8bN26FYsXL8bLL7+MjRs3Yu3ataisrPQvU75kyRJs2LABy5cvx+9+9zukpKTgq6++Cngd38j+lJQU/8/mo/1LS0thMBig0WhC/bZb1fRaAMD111+Po0ePory8HNHR0TCZTEhJSUFOTg4A73s4e/ZswDncbjcqKiou+j59x9or4zsebp29Dj6nT5/G+PHjcdVVV+HVV18NOCbH6wB0/lps3LgRO3bsaLG+ysiRI3HnnXdi+fLlveZapKamAgAGDRrkP4darUZOTo6/i6a33Ct6yn0zNTU14N8TAC655BL/jFdfPUtLS/3//r7Hw4cP95fpCffNYFwLn0i6d8r2q3pNTQ2OHj2K1NRU1NbWAkCLb9xRUVH+b1ltlVEqlf4yV155Jfbt2xfwB7thwwYYDAb/P/6VV16JL774IuAcGzZswJVXXhnEd9c5Ta9FUwkJCTCZTNi4cSPOnj2Lm266CYD3PVRVVeGbb77xl924cSM8Hg9GjRrlL7Nlyxa4XC5/mQ0bNmDAgAH+5uVIuxadvQ6A91vFuHHj/N++m/99yPE6AJ2/Fn/729/w3XffYe/evdi7d69/euSqVavwpz/9CUDvuRYjRoyAWq1GQUGBv6zL5cKJEyfQp08fAL3nXtFT7pujR48O+PcEvFPOff+e2dnZSElJCaij3W7Hrl27/HXsKffNYFwLIALvnZ0eMiyRhx56SGzevFkcP35cbN++XUycOFEkJCSIs2fPivr6emG1WsWYMWPErl27RGFhoXj22WeFQqEQ69atE0J4R+XHx8eLW265Rezdu1cUFBSI3/zmN0KlUom9e/cKIRqnGF5//fVi7969Yv369SIxMbHVKYa//e1vxaFDh8TixYvDPt2yvWshhBBvvvmm2LFjhygsLBQrVqwQFotFLFiwIOAckydPFvn5+WLXrl1i27ZtIjc3N2CKYVVVlUhOThazZ88W+/fvFytXrhRarbbFtLro6Gjx7LPPikOHDonHH388rFMMu3sdTp06JaxWq7j22mvFqVOnAqavyuk6BONaNHf8+PEWs5l607X45S9/KdLT08Vnn30mfvjhBzFv3jyRlJQkKioqhBC9517RU+6bX331lYiOjhZ/+tOfxJEjR8Q///lPodVqxVtvveUv8+c//1mYTCaxevVq/zT11qZmy/2+GYxrEYn3TtkEM7NmzRKpqakiJiZGpKeni1mzZgXMiz98+LC45ZZbRFJSktBqtWLYsGEtpmp//fXX4vrrrxcWi0Xo9XpxxRVXiE8++SSgzIkTJ8SUKVOERqMRCQkJ4qGHHhIulyugzKZNm8Tw4cNFTEyMyMnJEUuXLg3Z+27Nxa7FI488IpKTk4VKpRK5ubniueeeEx6PJ+Ac586dE7fffruIi4sTBoNB3H333aK6ujqgzHfffSeuvvpqoVarRXp6uvjzn//coi7vvvuu6N+/v4iJiRGDBw/2B4/h0N3rsHTpUgGg1a2pSL8OQgTnb6Kp1oIZIXrPtaivrxcPPfSQSEpKEnq9XkycOFHs378/oExvuVf0lPvmv/71LzFkyBChVqvFwIEDxauvvhpw3OPxiD/84Q8iOTlZqNVqce2114qCgoKAMj3hvilE969FJN47FUII0fn2HCIiIqLIINsxM0REREQAgxkiIiKSOQYzREREJGsMZoiIiEjWGMwQERGRrDGYISIiIlljMENERESyxmCGiIiIZI3BDBFFlLlz50KhUOC+++5rcWz+/PlQKBSYO3euv+y0adNaPFehUEClUiE5ORnXXXcd3nzzTf9aQkTU8zCYIaKIk5mZiZUrV6Kurs6/7/z583j77beRlZXV7nMnT56MM2fO4MSJE/j0008xfvx4/PKXv8QNN9wAt9sd6qoTkQQYzBBRxLn00kuRmZmJDz/80L/vww8/RFZWFvLz89t9rlqtRkpKCtLT03HppZfi0UcfxerVq/Hpp59i2bJlIa45EUmBwQwRRaR77rkHS5cu9T9+8803cffdd3fpXBMmTEBeXl5AcEREPQeDGSKKSHfddRe2bduGH3/8ET/++CO2b9+Ou+66q8vnGzhwIE6cOBG8ChJRxIiWugJERK1JTEzE1KlTsWzZMgghMHXqVCQkJHT5fEIIKBSKINaQiCIFgxkiilj33HMP7r//fgDA4sWLu3WuQ4cOITs7OxjVIqIIw24mIopYkydPRn19PVwuFyZNmtTl82zcuBH79u3DjBkzglg7IooUbJkhoogVFRWFQ4cO+X/vCKfTiZKSEjQ0NKC0tBTr16/HokWLcMMNN+AnP/lJKKtLRBJhMENEEc1gMLR5zOPxIDo68Da2fv16pKamIjo6GmazGXl5efjb3/6GOXPmQKlkYzRRT6QQQgipK0FE1BWTJ0+G1WrFiy++KHVViEhC/JpCRLJTWVmJtWvXYvPmzZg4caLU1SEiibGbiYhk55577sHXX3+Nhx56CDfffLPU1SEiibGbiYiIiGSN3UxEREQkawxmiIiISNYYzBAREZGsMZghIiIiWWMwQ0RERLLGYIaIiIhkjcEMERERyRqDGSIiIpI1BjNEREQka/8/rsuUnnV2rikAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSIUlEQVR4nO3deXwTZeI/8E/SI03SJE16F1ogTZEFsSIiIsoly7GIcnyVdbGC4KK7iAdeC7sr+tuDlfXYXcVrVUBcBXTBA7GKyyWIKEq1qBRbqJRCSws06UXaNM/vj2nSphc0TZuZ9vN+veZVMjOZPJlXyHzyzHOohBACRERERAqlDnYBiIiIiDqCYYaIiIgUjWGGiIiIFI1hhoiIiBSNYYaIiIgUjWGGiIiIFI1hhoiIiBSNYYaIiIgUjWGGiIiIFI1hhoi6lfz8fKhUKjzxxBNdfszVq1dDpVJh//795z3mmDFjMGbMmACVkKhnY5gh6sZUKtV5l7lz517wfoB0EW5tn0OHDnlf+y9/+Quuv/56xMfHQ6VS4dFHH221nOvWrcNll12GiIgIxMbGYv78+SgtLe3ks0NE3UVosAtARJ1n7dq1rW579NFHkZeXh4suushnv6NHj+KRRx7BggULcM0113jXp6amev/du3dvLF++vNkxk5KSvP/+wx/+gISEBAwZMgQfffRRq+V4/vnn8dvf/hbXXnstnnrqKRw/fhz//Oc/sX//fuzbtw8REREX/H6JqGdimCHqxm655ZYW17/88svIy8vDokWLsGTJEp9t+/fvxyOPPIIRI0a0+nyTydTqNo+jR4+ib9++KC0tRWxsbIv71NTUYOnSpRg1ahS2bt0KlUoFALjqqqswdepU/Pvf/8aiRYvO9zaJqIfjbSaiHua7777D3XffjSFDhuDvf/97p71O3759z7vPwYMHUVZWhlmzZnmDDABcd911iIyMxLp167zrampq8Mgjj2Do0KEwmUzQ6/W45pprsH379laP//TTT6NPnz7QarUYPXo0Dh486LO9tXYrc+fOPW/5hRBYsGABwsPDsXHjRp9tVVVVuOOOOxAdHQ2j0Yhbb70VZ8+ebfVYxcXFCA0NxWOPPdZsW05ODlQqFZ599tk2y0PUk7FmhqgHqaqqwk033YSQkBCsW7cOGo3Gr+PU1dU1a9MSERGByMjIdh3H6XQCALRabbNtWq0WBw4cgNvthlqthsPhwMsvv4ybb74Zv/71r1FeXo5XXnkFEydOxBdffIFLL73U5/mvvfYaysvLsXDhQpw7dw7//Oc/MW7cOGRnZyM+Pr59b7iJuro6zJs3D+vXr8emTZswZcoUn+133XUXoqKi8OijjyInJwfPP/88fvrpJ+zYscMntHnEx8dj9OjR2LBhA5YtW+azbf369QgJCcGNN97YoTITdWcMM0Q9yKJFi/D9999jzZo16N+/v9/HOXToULNbR3PmzMHq1avbdZy0tDSoVCrs2bMHt912m3d9Tk4OSkpKAABnz55FdHQ0zGYz8vPzER4e7t3v17/+NQYMGIBnnnkGr7zyis+xc3Nz8eOPP6JXr14AgEmTJmH48OF4/PHH8dRTT7WrnI25XC7ccssteO+99/Dee+9hwoQJzfYJDw/H//73P4SFhQEA+vTpg4ceegjvv/8+rr/++haPO2vWLNxxxx04ePAgLr74Yu/69evXY/To0R0OYETdGW8zEfUQb7zxBl599VVkZGTg1ltv7dCx+vbti61bt/osDz30ULuPExMTg5tuuglr1qzBk08+iSNHjuDTTz/FrFmzvEGguroaABASEuINMm63G2fOnIHL5cLll1+Or7/+utmxp02b5g0yAHDFFVdg+PDh2LJliz9vGYB0q+vGG2/E5s2bsWXLlhaDDAAsWLDAW34A+M1vfoPQ0NA2X3vGjBkIDQ3F+vXrvesOHjyI77//HrNmzfK7zEQ9AWtmiHqAH3/8EXfeeSf69++P5557rsPH0+v1GD9+fABKBrz44ouorq7GAw88gAceeACA1HA5NTUVGzdu9Ll15Qk9hw4dQm1trXd9v379mh03LS2t2br+/ftjw4YNfpd1+fLlqKiowIcfftjmGDFNXzsyMhKJiYnIz89v9TkxMTG49tprsWHDBvzpT38CINXKhIaGYsaMGX6XmagnYM0MUTfndDoxa9Ys1NTUYN26de1u19LZTCYT3n33Xfz000/YuXMn8vPzsXbtWpw8eRKxsbGIiooCALz++uuYO3cuUlNT8corryAzMxNbt27FuHHj4Ha7/XrtltqvAFKbmJZMnDgRer0eK1aswLlz5/x6zbb88pe/xOHDh5GVlQUA2LBhA6699lrExMQE/LWIuhOGGaJu7oEHHsCBAwewYsUKDBkyJNjFaVVKSgpGjRqFPn36oKysDF999ZVP7c/bb78Nq9WKjRs3IiMjAxMnTsT48eNbDRU//vhjs3WHDx/26aVkNptRVlbWbL+ffvqpxWNeeeWVeOedd/DZZ5/hxhtvhMvluqDXrqiowMmTJ8/bQ2ratGkIDw/H+vXrkZWVhcOHD+OXv/xlm88hIoYZom5t06ZNePbZZ3H99dfj7rvvDnZxLtiSJUvgcrlw3333edeFhIQAkLpEe+zbtw979+5t8RjvvPMOCgsLvY+/+OIL7Nu3D5MnT/auS01NxaFDh7yNjQHgm2++wZ49e1ot2/jx47Fu3TpkZmYiIyOjxVqhl156yec22PPPPw+Xy+Xz2i2JiorCxIkTsWHDBqxbtw7h4eGYNm1am88hIraZIeq2Tp48ifnz5yMkJATXXnstXn/99Rb3S01NxYgRIwL++mvXrsVPP/2EqqoqAMCuXbvw5z//GQCQkZGBPn36AAD+9re/4eDBgxg+fDhCQ0Pxzjvv4OOPP8af//xnDBs2zHu86667Dhs3bsT06dMxZcoUHD16FC+88AIGDhyIioqKZq9vs9lw9dVX4ze/+Q2cTif+8Y9/IDo62qeh8rx58/DUU09h4sSJmD9/Pk6dOoUXXngBgwYNgsPhaPW9TZs2DatWrcKtt94Ko9GIF1980Wd7TU0Nrr32Wtx0003IycnBc889h6uvvrrVnkyNzZo1C7fccguee+45TJw40XubjYjaIIioW9q+fbsAcN5lzpw5Ps/78ssvBQCxatWqFo87evRoMWjQoPO+/ujRo1t9ze3bt3v327x5s7jiiiuEwWAQOp1OXHnllWLDhg3Njud2u8Vf//pX0adPH6HRaMSQIUPE5s2bxZw5c0SfPn28+x09elQAEH//+9/Fk08+KZKTk4VGoxHXXHON+Oabb5od9/XXXxdWq1WEh4eLSy+9VHz00UdtHrOx5557TgAQDzzwgBBCiFWrVgkAYufOnWLBggXCbDaLyMhIMXv2bHH69Olm52f06NHNyuNwOIRWqxUAxOuvv37e80xEQqiEaFRnS0RERKQwbDNDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESK1u0HzXO73Thx4gQMBkOr87AQERGRvAghUF5ejqSkJKjVbde9dPswc+LECSQnJwe7GEREROSHgoIC9O7du819un2YMRgMAKSTYTQag1waIiIiuhAOhwPJycne63hbun2Y8dxaMhqNDDNEREQKcyFNRNgAmIiIiBSNYYaIiIgULahhZteuXZg6dSqSkpKgUqnwzjvvNNvnhx9+wPXXXw+TyQS9Xo9hw4bh2LFjXV9YIiIikqWgtpmprKxEeno65s2bhxkzZjTbnpeXh6uvvhrz58/HY489BqPRiO+++w4RERFBKC0REVHXqqurQ21tbbCL0SnCwsIQEhISkGOphBAiIEfqIJVKhU2bNmHatGnedb/85S8RFhaGtWvX+n1ch8MBk8kEu93OBsBERKQIQggUFRWhrKws2EXpVFFRUUhISGixkW97rt+y7c3kdrvxwQcf4KGHHsLEiRNx4MAB9OvXD0uWLPEJPERERN2NJ8jExcVBp9N1u0FfhRCoqqrCqVOnAACJiYkdOp5sw8ypU6dQUVGBv/3tb/jzn/+Mxx9/HJmZmZgxYwa2b9+O0aNHt/g8p9MJp9PpfexwOLqqyERERB1WV1fnDTLR0dHBLk6n0Wq1AKTrfVxcXIduOck2zLjdbgDADTfcgPvuuw8AcOmll+Kzzz7DCy+80GqYWb58OR577LEuKycREVEgedrI6HS6IJek83neY21tbYfCjGy7ZsfExCA0NBQDBw70Wf+zn/2szd5MS5Ysgd1u9y4FBQWdXVQiIqKA6263lloSqPco25qZ8PBwDBs2DDk5OT7rDx8+jD59+rT6PI1GA41G09nF616cTqCmpvXt4eEAzykREclUUMNMRUUFcnNzvY+PHj2KrKwsWCwWpKSk4MEHH8SsWbMwatQojB07FpmZmXj//fexY8eO4BW6u3G7gd27gZKS1veJjQXGjgXOM2spERFRMAT16rR//34MGTIEQ4YMAQAsXrwYQ4YMwSOPPAIAmD59Ol544QWsWLECgwcPxssvv4z//ve/uPrqq4NZ7O5FrQYMBsBuB4zG5ovdLm1nkCEiIpkKas3MmDFjcL5hbubNm4d58+Z1UYl6KJsNOHIEcLmkAOPhcAAmk7SdiIhIpvhzmwCLBbBam99qKimR1lsswSkXEREpSnl5OWbPng29Xo/ExEQ8/fTTGDNmDO69995OfV2GGZLYbIBeL9XGANJfvZ61MkREClZaVYoCu9Srt8BegNKq0k59vcWLF2PPnj147733sHXrVnz66af4+uuvO/U1ARn3ZqIu5qmdyc6WbjWVlACDB7NWhohIoUqrSjFuzThU1lZi7fS1yNiUAX2YHtvmbEOMLibgr1deXo41a9bgjTfewLXXXgsAWLVqFZKSkgL+Wk2xZoYaeGpnCgtZK0NEpHDVtdWorK3EkbNHMPLVkThy9ggqaytRXVvdKa935MgR1NbW4oorrvCuM5lMuOiiizrl9RpjmKEGntoZu51tZYiIFC7ZlIy1030nal47fS2STclBKlHnYZghX2lpQHq69JeIiBSrwF6AjE0ZPusyNmV429AEmtVqRVhYGL788kvvOrvdjsOHD3fK6zXGMEO+zGZg5EjpLxERKZY2TAt9mB5WsxV75u2B1WyFPkwPbZi2U17PYDBgzpw5ePDBB7F9+3Z89913mD9/PtRqdadPzcAGwERERN1QjC4G2+ZsQ3VtNZJNydgxZwe0YdpOafzr8dRTT+HOO+/EddddB6PRiIceeggFBQWIiIjotNcEGGaIiIi6rcbBpSvayhgMBvznP//xPq6srMRjjz2GBQsWdOrrMswQERFRQBw4cACHDh3CFVdcAbvdjv/3//4fAOCGG27o1NdlmCEiIqKAeeKJJ5CTk4Pw8HAMHToUn376KWJiOu/WFsAwQ0RERAEyZMgQfPXVV13+uuzNRERERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREnaKmpqZLXocjABMREVFAjBkzBhdffDFCQ0Px+uuvY/Dgwdi+fXunvy5rZoiIiLqr0lKgoED6d0GB9LiTrVmzBuHh4dizZw9eeOGFTn89gDUzRERE3VNpKTBuHFBZCaxdC2RkAHo9sG0b0IkTP6alpWHFihWddvyWMMwQERF1R9XVUpA5cgQYOVJaZ7VK6zvR0KFDO/X4LeFtJiIiou4oOVmqkWls7VppfSfS6/WdevyWMMwQERF1RwUF0q2lxjIyGtrQdCMMM0RERN2RViu1kbFagT17pL96vbS+m2GbGSIiou4oJkZq7FtdLd1a2rFDCjKd2Pg3WBhmiIiIuqvGwaWT28oAwI4dOzr9NVrC20xERESkaAwzREREpGgMM0RERKRoDDNERESkaAwzREREMiSECHYROl2g3iPDDBERkYyEhYUBAKqqqoJcks7neY+e9+wvds0mIiKSkZCQEERFReHUqVMAAJ1OB5VKFeRSBZYQAlVVVTh16hSioqIQEhLSoeMxzBAREclMQkICAHgDTXcVFRXlfa8dwTBDREQkMyqVComJiYiLi0NtbW2wi9MpwsLCOlwj48EwQ0REJFMhISEBu+B3Z2wATERERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREisYwQ0RERIrGMENERESKxjBDREREihbUMLNr1y5MnToVSUlJUKlUeOedd3y2q1SqFpe///3vwSkwERERyU5Qw0xlZSXS09OxcuXKFrefPHnSZ3n11VehUqkwc+bMLi4pERERyVVoMF988uTJmDx5cqvbExISfB6/++67GDt2LKxWa2cXjYiIiBQiqGGmPYqLi/HBBx9gzZo1be7ndDrhdDq9jx0OR2cXjYiIiIJIMQ2A16xZA4PBgBkzZrS53/Lly2EymbxLcnJyF5WQiIiIgkExYebVV1/F7NmzERER0eZ+S5Ysgd1u9y4FBQVdVEIiIiIKBkXcZvr000+Rk5OD9evXn3dfjUYDjUbTBaUiIiIiOVBEzcwrr7yCoUOHIj09PdhFISIiIpkJas1MRUUFcnNzvY+PHj2KrKwsWCwWpKSkAJAa8L711lt48skng1VMIiIikrGghpn9+/dj7Nix3seLFy8GAMyZMwerV68GAKxbtw5CCNx8883BKCIRERHJnEoIIYJdiM7kcDhgMplgt9thNBqDXRwiIiK6AO25fiuizQwRERFRaxhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRGGaIiIhI0RhmiIiISNEYZoiIiEjRghpmdu3ahalTpyIpKQkqlQrvvPOOz/aKigrcdddd6N27N7RaLQYOHIgXXnghOIXtDpxOoLy89cXpDHYJiYiI2i00mC9eWVmJ9PR0zJs3DzNmzGi2ffHixdi2bRtef/119O3bFx9//DF++9vfIikpCddff30QSqxgbjewezdQUtL6PrGxwNixgJoVdkREpBxBDTOTJ0/G5MmTW93+2WefYc6cORgzZgwAYMGCBXjxxRfxxRdfMMy0l1oNGAxAbi6QnNx8e0EBYLUyyBARkeLI+sp11VVX4b333kNhYSGEENi+fTsOHz6MCRMmtPocp9MJh8Phs1A9mw0wmQCXC9DpGhaXS1pvswW7hERERO0m6zDzzDPPYODAgejduzfCw8MxadIkrFy5EqNGjWr1OcuXL4fJZPIuyS3VQvRUFotU+9L0VlNJibTeYglOuYiIiDpA9mHm888/x3vvvYevvvoKTz75JBYuXIhPPvmk1ecsWbIEdrvduxQUFHRhiRXAZgP0esBTY+VwSI9ZK0NERAoV1DYzbamursbSpUuxadMmTJkyBQBwySWXICsrC0888QTGjx/f4vM0Gg00Gk1XFlVZPLUz2dmA0SjVygwezFoZIiJSLNnWzNTW1qK2thbqJg1SQ0JC4Ha7g1SqbsJTO1NYyFoZIiJSvKDWzFRUVCA3N9f7+OjRo8jKyoLFYkFKSgpGjx6NBx98EFqtFn369MHOnTvx2muv4amnngpiqbsBT+3M/v3A5ZezVoaIiBRNJYQQwXrxHTt2YOzYsc3Wz5kzB6tXr0ZRURGWLFmCjz/+GGfOnEGfPn2wYMEC3HfffVCpVBf0Gg6HAyaTCXa7HUajMdBvQbnOngW+/x4YOBAwm4NdGiIiIh/tuX4HNcx0BYYZIiIi5WnP9Vu2bWaIiIiILgTDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKVposAtARF3A6QRqalrfHh4OaDRdVx4iogBimPEXLw6kFG43sHs3UFLS+j6xscDYsYCalbVEpDwMM/7gxYGURK0GDAYgNxdITm6+vaAAsFr5WSUixeK3lz88Fwe7HTAamy92u7SdFweSC5sNMJkAlwvQ6RoWl0tab7MFu4RERH7j1dZfvDiQklgsUu1L09rEkhJpvcUSnHIREQWAX7eZpk+fDpVK1Wy9SqVCREQEbDYbfvWrX+Giiy7qcAFly3NxyM6WamM8SkqAwYN5cSD5sdmAI0cAh0P6zDocgF7P4E1EiudXzYzJZMK2bdvw9ddfQ6VSQaVS4cCBA9i2bRtcLhfWr1+P9PR07NmzJ9DllRebTboYOBzSY14cSKacLifK9WGoTE5A9YkCVNVUofpEASqTE1CuD4PT5Qx2EYmI/OZXzUxCQgJ+9atf4dlnn4W6vl2I2+3GPffcA4PBgHXr1uHOO+/Eww8/jN27dwe0wLLStHaGtTIkQ27hxu5ju1FSVYJwVCDBkQPV1z9AqNUoggY1PxYhVheLsf3GQq3inWciUh6/vrleeeUV3Hvvvd4gAwBqtRqLFi3CSy+9BJVKhbvuugsHDx4MWEFly1M7U1jIWhmSJbVKDYPGALvTjoi4JIhUKwzn3BCpVkTEJcHutMOgMTDIEJFi+fXt5XK5cOjQoWbrDx06hLq6OgBAREREi+1quh1P7YzdzoaUJFs2iw0mjQkutwvCloqaiwdC2FLhcrtg0phgszCEE1ErnE6gvLz1xRn829R+3WbKyMjA/PnzsXTpUgwbNgwA8OWXX+Kvf/0rbr31VgDAzp07MWjQoMCVVM7S0oDaWukvkQxZtBZYzVZkF2fDaEmF4/KLAQAlZ/IwOH4wLFqGcCJqgULGVfMrzDz99NOIj4/HihUrUFxcDACIj4/Hfffdh4cffhgAMGHCBEyaNClwJZUzsxkYOTLYpSBqk81iw5GzR+BwOmDUGOFwOqAP17NWhohap5BBN1VCCNGRAzjqe/IYG3dPlhGHwwGTyQS73S7bMhJ1lS8Kv0B2cTZSLanIq6+VuaLXFcEuFhHJ2ZkzwMcfS2OpNb6OOhxAVRUwYUKnNLFoz/W7w1HKaDQyJBAphM1igz5cj0JHIWtliOjCKGDQTb/nZnr77bexYcMGHDt2DDVNJlz8+uuvO1wwIgo8T9uZ/Sf24/Kky9lWhogujMwH3fSrZuZf//oXbrvtNsTHx+PAgQO44oorEB0djSNHjmDy5MmBLiMRBVCaJQ3p8elIs7DBOhFdoKa1MzKqlQH8DDPPPfccXnrpJTzzzDMIDw/HQw89hK1bt+Luu++G3W4PdBmJKIDMWjNGpoyEWWsOdlGISElkPK6aX2Hm2LFjuOqqqwAAWq0W5eXlAKQu22+++WbgSkdERETyIONx1fwKMwkJCThz5gwAICUlBZ9//jkA4OjRo+hg5ygiIiKSq7Q0ID1dduOq+RVmxo0bh/feew8AcNttt+G+++7Dz3/+c8yaNQvTp08PaAGJiIhIJjzjqpnldZvar3Fm3G433G43QkOlzlDr16/Hnj17kJaWhjvvvBNhYWEBL6i/OM4MERGR8rTn+u33oHnnzp3Dt99+i1OnTsHtdjccUKXC1KlT/Tlkp2CYISIiUp72XL/9GmcmMzMTGRkZOH36dLNtKpXKO9kkERERUWfzq83MokWLcNNNN+HkyZPeW06ehUGGiIiIupJfYaa4uBiLFy9GfHx8oMtDRERE1C5+hZn/+7//w44dOwJcFCIiIqL286sBcFVVFW688UbExsZi8ODBzXov3X333QErYEexATAREZHydHoD4DfffBMff/wxIiIisGPHDqhUKu82lUolqzBDRERE3ZtfYeb3v/89HnvsMfzud7+DWu3XnSoiIiKigPAridTU1GDWrFkMMkRERBR0fqWROXPmYP369YEuCxEREVG7+XWbqa6uDitWrMBHH32ESy65pFkD4KeeeioghSMiIiI6H7/CTHZ2NoYMGQIAOHjwoM+2xo2BiYiIiDqbX2Fm+/btgS4HERERkV/YgpeIiIgUza+aGSJSBqfLiZq6mla3h4eEQxOq6cISEREFHsMMUTflFm7sPrYbJVUlre4Tq4vF2H5joVaxkpaIlIvfYETdlFqlhkFjgN1ph1FjbLbYnXYYNAYGGSJSPNbMEHVjNosNR84egcvtglHTMLeJw+mASWOCzWILYumISI6UeHuaYYaoG7NoLbCarcguzvYJMyWVJRgcPxgWrSWIpSMiuVHq7Wn5lISIOoXNYoM+XA+H0wFAqpXRh+tZK0NEzSj19nRQS7Nr1y5MnToVSUlJUKlUeOedd3y2FxcXY+7cuUhKSoJOp8OkSZPw448/BqewRArlqZ0pqZR+aZVUlsBqtrJWhohaZLPYYNKY4HK7oAvTeReX2yXb29NBDTOVlZVIT0/HypUrm20TQmDatGk4cuQI3n33XRw4cAB9+vTB+PHjUVlZGYTSEimXp3am0FHIWhkialPTH0Aecv4hFNQ2M5MnT8bkyZNb3Pbjjz/i888/x8GDBzFo0CAAwPPPP4+EhAS8+eabuP3227uyqESK5vly2n9iPy5PulyWX0ZEJB+ezgMOpwNGjVH2t6flddOrEafTCQCIiIjwrlOr1dBoNNi9e3ebz3M4HD4LEQFpljSkx6cjzZIW7KIQkcwp7fa0bMPMgAEDkJKSgiVLluDs2bOoqanB448/juPHj+PkyZOtPm/58uUwmUzeJTk5uQtLTSRfZq0ZI1NGwqw1B7soRKQASro9LdswExYWho0bN+Lw4cOwWCzQ6XTYvn07Jk+eDLW69WIvWbIEdrvduxQUFHRhqYmIiLoHT+2M3WmXda0MIPNxZoYOHYqsrCzY7XbU1NQgNjYWw4cPx+WXX97qczQaDTQaeQ3mQ0REpERpljTU1tXK/va0rMOMh8lkAiA1Ct6/fz/+9Kc/BblEgaPEkRZJQRwOoKKi9e2RkYDR2Pp2IurRPLen5S6oYaaiogK5ubnex0ePHkVWVhYsFgtSUlLw1ltvITY2FikpKcjOzsY999yDadOmYcKECUEsdeAodaRFUgiXC3jpJeDYsdb3SUkB7r0XCFXE7xoiohYF9Rts//79GDt2rPfx4sWLAQBz5szB6tWrcfLkSSxevBjFxcVITEzErbfeij/+8Y/BKm7AeUZazD2bi2Rj84bKBY4CWM1WBhnyT2goEB0NZGUBaS1UEf/4IzBkCIMMESmeSgghgl2IzuRwOGAymWC322GUYXX6meoz+DjvY+jCdM0mAqyqrcKE1AmybnRFMpeXB/zzn4DBAMTGNqwvKQHKy4F77gFSU4NXPiKiVrTn+s2f/EGmxJEWSUFSU6Xal8JC3/WFhdJ6BhkiaoPT5US5s7zVxelyBruIABTSALi7U9pIi6Qwo0YBBw5ItTGxsdJfo1FaT0TUCiW162TNjAwobaRFUpimtTOslSGiC6CkGbSDXwICoKyRFkmBRo2SamNyclgrQ0QXTCkzaDPMyISSRlokZfC51907DtWDB6KmpBjVgweivHecbO51E5F8KaVdJ9vMyIhSRlok+WvpXreutxMJP4tCUW8nqn78QDb3uolI3pTQrpNhRkaUMtIiyV+LYxjZjCi1pSEUgJ1jGBHRBfLUznx94muERoWiwF6AgbEDEaYOQ7mz3LtfMEesZ5gh6qY8v6ZcblezMYzkdK+biOTParbivZz3cPDUQahVamhCNSiuLPbZJ5i1vfxZRtRNKeVeNxHJX4wuBqnmVJyuPo1+5n5IMiTJqmcTa2aCxekEalqfYBLh4QBn/6YOUsK9biJShtF9RuNY2THE6+OhC9N518uhtpdhJhjcbmD3bmnwstbExgJjxwJqVp6R/zy1M9nF2TBqjCipLMHg+MGslSGidrNarJjcfzKyi7N91svhe4VXymBQq6W5cux2acyPpovdLm1nkKEA4BhGRBQonu8Th9MBALKp7eXVMlhsNsBkAlwuQKdrWFwuab2NFxwKDI5hRESBItcR6xlmgsViAazW5reaSkqk9RZecChw0ixpSI9P5xhGRNRhcqztZZgJJpsN0OsBh1RdB4dDesxaGQowzxhGZq052EUhIoWTY20vGwAHk6d2JjtbaitTUgIMHsxaGSIikjW5jVjPmplg89TOFBayVoaIiBRBbrW9DDPB5qmdsdvZVoaIiMgPvM0kB2lpQG2t9JeIiIjahWFGDsxmYGTXTjDpdDlRU9f6CMTBnDCMiIjkRe7XDIaZHsgt3Nh9bDdKqlofgTiYE4YREZF8KOGawStVD6RWqWHQGGB32n0mCpPLhGFERCQfSrhm8GrVQ9ksNpg0JrjcLujCdN7F5XYFfcIwIiKSF7lfMxhmeqimQ1J7yGVoaiIikg+5XzMYZnowuU4YRkRE8iPnawbDTA8m1wnDiIhIfuR8zWCY6eHkOGEYERHJk1yvGQwzPZwcJwwjIiJ5kus1g+PMkOwmDCMiIvmS4zVDJYQQwS5EZ3I4HDCZTLDb7TAajcEujsTpBGpaH0kR4eGAhqPvEhFRz9We6zdrZrqa2w3s3g2UtD6SImJjgbFjATXvAhIREZ0Pr5ZdTa0GDAZplmyjsflit0vbGWSIiIguCK+YwWCzASYT4HIBOl3D4nJJ623yaB1ORESkBLzNFAwWC2C1AtnZUm2MR0kJMHiwtJ2og+Q+yy0RUaAwzASLzQYcOQI4HFKgcTgAvZ61MhQQbuHG9qPbcbL8ZKv7JBoSMcE2gROKEpHiMcwESnt7KDWtnWGtDAVY3tk8HCg6gGhtdLNtp6tPY0jCkCCUiogo8BhmAqFpD6XaWqn9S2MxMcCoUVLDXk+w8dTOFBayVoYCSq1So390f3xd9DU0oRrownTebVW1VRAQ6B/dn7UyRNQtMMwEgqeHUm4u0KsX8O23Uq8kj9JSoF8/oLJSeuzpeu2pndm/H7j8ctbKUEANTRqKfYX7UFxR7DNKZ6GjEP2i+mFo0tAglo6IKHD4syxQPD2U3G7UmgxwnqvCuUgdzoUATpMBVX17oSoiFOdOn0KNLqKh63VaGpCeLv0lCiCL1oLhvYbDWedEZY0UpCtrKuGsc2J4r+GyGYaciBTG6QTKy1tfnM4uLxJrZgLFYgF694Y7Kws/1BUhtPwn1DkLEVZRhcqkWFQ4DkFdUoOQ2jrUapJxjXBLVfxmMzByZLBLT92Up3amqKIIqZZUFFUUIcWUwloZIjq/ltqCut3Arl3SHYeQEKnZRFNBGPiVYSZQ3G6gpATqw4cRXXMa9tJSxJ05B7c2AmEaHYyVx6A+50TWNWlIju/FtgrUJTy1M299/xZKKktYK0NEF6at0epzc4H8fKn5RHq6b2gpKJCaT3TxwK+8ogaKWi21l9HrEanSYIN9L/YXHUCtKRKIiYHWUQ1npBaqtDTZTJlOPcPQpKFIMaWgsLyQtTJEdGHaGq0+LQ0QQurIEhkpi4FfGWYCyWYDUlOhjTAg1A2cMAJ12gio3HVQ1dUhf0A8eve9hL+KqUtZtBZc2ftKRGujcWXvK/n5I6IL09po9VqtVCvT9BZTSYlUKxOEziy8zRRIFgtwySVA7mHoa4Hvo4Gr9GEwHytCWUIUzl0ykLUyFBRDE4dCG6rFwNiBwS4KESlF0/HQamqkYFNQII2LduYMUFws1eCUlwNhYUEbYoRhJtBsNrj79sEJPfBjLHA2XMDidrNWhoLKrDVjZAobmhNRO3nGQysrk/6eOCGFGo0GKCqSgk18vBRqLrkEiIoKSjEZZgLNYoEYfDFObwEqwoGQCC3yf2ZGdXtrZdo7ojAREVGgNa6d0emAU6eAIUOApKSGGpmqKqnGpn//Lm/468Ew0wncqVZUhQO9HIBpaCr2/syAwe2plWmrFblHELq+ERFRD+SpnbHbpZqXuLiG9jP9+gFZWdLfocHrXMArYWewWJBnBkxOIHrQFRjQ/yqkWdoxKF5brciNRmm9wdC+INOeQY4qKwGVSlo8oxYTEVHP5KmdqauTamXOnWvY1quXNF7alVcGdRR71sx0ktxoIKwOiBx0KUbG927/ATxJ2OWSAoyHw9H+rm+NanrO1Z7D3HdvAwCsvmEVIsIipH1Y00NERK1JS5PmHUxMBL74QroWGY1SF+30dOCyy4JaPF65OkmZFtjbB1Ji9YcnCTe91eRP17dGNT3CaIBdA9g1gDAa/K/pISKinsMzWr3V6nttCmJ37MZ49ZIzm02aTdvhkB47HP7Pru0dL6AO1WFAdRiCPsgREREpkOfaVFjo/zUpwBhmgqiyphKqx1RQPabyTgToo2ntTEcScP2xVKWlvutlkqqJiEghPNcmu1021w+2mZE7mw3ncr7H/H+NRZ0aeGXKMeg7cCzkfA+DEyjXAHCUyyZVExGRgnja0KS1o3NLJ2LNjNxZLBDWfjA5gTwzOpaA648VW18JpCotlU2qJiIiBfG0ofG3XWiAsWbGH+cb0A61/h3T6W5xkzshHt/FSj2kOqrxGDjQ6VgrQ0REiscw014XMKCd2myAyg2IC6z3UrkB9Wd7gbPlLW4PqT2HELfUA6nD6sfAGXYCENZ+rJUhIiLFY5hpL08359xcIDm5+faCAiA58YKDDFAfeiIjgfzjLR8z/xTKNRcejs7HMwaO25YamAMSEREFUVDbzCxfvhzDhg2DwWBAXFwcpk2bhpycHJ99zp07h4ULFyI6OhqRkZGYOXMmiouLg1Tieq1Ni17fzdmdam33Id2p1taPaTAiL4AVKB0eA4eIiEhGghpmdu7ciYULF+Lzzz/H1q1bUVtbiwkTJqCy0RD69913H95//3289dZb2LlzJ06cOIEZM2YEsdQ474B2pRENbV+OO46jtKqhO3Sr3bHbOKaw9sNZXWe8kZY1LleLXcZJkZwuJ8qd5a0uTpfz/AchIpKhoN5myszM9Hm8evVqxMXF4auvvsKoUaNgt9vxyiuv4I033sC4ceMAAKtWrcLPfvYzfP7557jyyiuDUWyJZ7oBz5DO9QPanU4yY8obU7y7TfrPJBjCDdg2ZxtidDHtOmb16VO47cPb8fFhAF0YZqj7cQs3dh/bjZKq1tt6xepiMbbfWKhV7ORIRMoiq28tu90OALDUN0r96quvUFtbi/Hjx3v3GTBgAFJSUrB3794Wj+F0OuFwOHyWTtHKgHZVhghU1jbUZuSX5aOythLVtdXtPqaqtBR5ZnRprQx1T2qVGgaNAXanHUaNsdlid9ph0BgYZIhIkWTzzeV2u3Hvvfdi5MiRuPjiiwEARUVFCA8PR1RUlM++8fHxKCoqavE4y5cvh8lk8i7JLTWoDZQWhnRONiXj5akv++y2dvpaJJsusByNj6nTBbStjD/inojnraZuwmaxwaQxweV2QRem8y4utwsmjQk2C7vpE5EyySbMLFy4EAcPHsS6des6dJwlS5bAbrd7l4KCggCVsAV6PRAfDxQXS3/DwnD8+A+45615iHQC4S5pt4xNGSiwX2A5Gg0T3VJbmaZtcIgulEVrgdVsRUml762mksoSWM1WWLTspk9EyiSLrtl33XUXNm/ejF27dqF3797e9QkJCaipqUFZWZlP7UxxcTESEhJaPJZGo4FGE4gBWc7DM97M0aNAeTmQlwcUF8PodGBSTh2OO4BTOiB/SB/ow/TQhmkv/Nj1w0S7bX2AT3w3tasNjr/OnPZ9fLoUSPR7EgWSEZs+Gcdqv0Pl6SIYNUY4nA6YXGrYwuKlz3F4ONAV/3+ISDEqayoRuTwSAFCxpAL6cPldD4IaZoQQWLRoETZt2oQdO3agX79+PtuHDh2KsLAw/O9//8PMmTMBADk5OTh27BhGjBgRjCI38Iw3U1cHDBvmXW2EEQ9O+hP+uHYe8szAhxkfIVoX3b7g4RkmuoXbO/ll+bCarRfWBqcppxOoKEekp9NKeTkQ3mjU4fBwad30mb7P+8UUYOsOIKaTwhN1Dbcblq++x6U5hThmP4boyATUVhThIlMKLEfr26DFxgJjx0qfbyIihQhqmFm4cCHeeOMNvPvuuzAYDN52MCaTCVqtFiaTCfPnz8fixYthsVhgNBqxaNEijBgxIrg9mTw8vY9cLqlHUz1jtR4ODZBnAXobewc8xbarDU69ynPlmLrAiLgqwNPXKmRLJhAW0bBTbKz0nqqbhKiqSqDaj/BE8lIfwBPdOhSazCgSVQgxmRGXaAM0RmnAR6uVQYaIFCeo31rPP/887HY7xowZg8TERO+yfv167z5PP/00rrvuOsycOROjRo1CQkICNm7cGMRSN9LK2DAd6YXU6jg0jbSrDY6HWo1yDWB0StMi2DVASZgT9nBIQcxul2qa+vQBVq70fe7LL7c8MjEpj80GfUwSErSxcIS4EBfbF0ZzgnfAR87VRURKFPTbTOcTERGBlStXYmXTC6xctDTeTCf2Quob1bf9bXDq5VmA1LNAqBso1wAP7l4GXZgO/7jq/8HouZAVFAALF/o+8fbbgU92MdB0B/UBvNfXJagxp6K3sb6NWkkJMHgw5+oiIkWSRQNgRfPUzmRnS2GmpARigA1nj9Rvr58Nu7KmEglPJgIAIus3nTx5GOEuoCYUKHeWwy3cvqPvnj0F8aj0b/1SoCocyJyd2f42OPXO6oA8MzC4WAozRRXFSDIkorb4JHDFaOm9uN2AtsltMZ0e0LY/PJFM2WyIPHIEg7U6QGPwDvjIWhkiUiqGmUDw1M7UjzfjTrUCn/jOhh1Sew5TDvs+7d9/moaRAHb0AzJzMxERFoFztee827cd3Yb5TV6qo21wPLUzBqcUaP445B5E65IbLmQxMcCm/wK2gQ1P2vIBG/92Jy0EcNbKEJGSsaVfIDQaGwZWq/ei4J0N226HMBq8bVU8S83Z097ZsB01Dhg1Rhg0Bu9hI8MjW3lB/3lqZ2LrK4BWb30CRXF63wuZJdr3SdEMMt1OCwM+EhG1x4W08ewqDDOBkpYGpKdLfxtpmA27DtVh8C6hbnh7PAGAMdzoHZnVo07UdUpR8yzSLat0VzSETouw/gM65XVIxloJ4ERESsTbTIHiGRsG8B0fxmJBdXIiFj4+Bmh0vYitBLLjG3o89TP3Q+6ZXCQZkrz7FDg6Z/RiT+3MP9J+C82VV8PcO+38TyLlczqBmpqGxwkJUvhOSOCAeUSkaAwzXcCdakVVeEM7FYNTqhlx9u0FuAoBAFazFScrTqLcWe593r+/+jcebnKs0qrSgIxbkxsNmK4YBe3goefd97jjuN+NjkkmPCNWl7Qwa/Znn0l/OWAeESkUv7W6gsXi004ltlKqGVkz7/2GXernzWk875Ib7qZHwjnXuWbr/FGmBdxXjZBqlJo4XeU7ncGk/0zCuDXjOCeUknlGrLbbpUa/TRfPOEMMMkSkQPzm6iKediq9HNLfPAvQy9DLZx+bJhG/Hb4Q4lFAVwP8bdzfvNsq/wqIR4HeIc3DR6A1DUz5ZfmorK30bwoFkg+brb79lgvVYSqM2TAFYzZMQXV1BQfMIyJFY5jpIp52KiYnWh0duOmsxY/sfKTZPoWOws4qolcvY69m6/yZQoFkpo0Rq9kImIiUjG1mOqDxTKIeFUsqWt0/NxoIq5P+Xgh9WPO2MRGhES3sGViFjkL0b7IuY1MGdszZwUCjdN4Rq6W2WQYnAJ2OtTJEpGismWkvp1Pq+VG/RDrhs8DpbPWpZVpgbx/pLwCcrm5om3LccbxZm5Q3xjafwiElKiUgb6MtTQNTR6ZQIJmpr51RnTwJbS2QbAdEQjwQFubzuW7rc0xEPUvja1NL1yo5YM1MezTpEdLSqL7qz/bCPXrUBR1u5oaZ3n9P+s8kxAk99jXaHjlnQfMnlZZKg5x1omidb9VRR6ZQIBmyWqHa+DZ+cRhwqwBVXh5w2u67D3s2ERGkIDPljSnex5P+MwmGcAO2zdkGbah8fuDym6o9mvQIaTqqr9EJacTfC7wAVNY2jEeTX5YPh9Phs/1U6dHmTzoXmN5MbWnamykiNIJBpjuJiYFItcJSLbXfEomJ7NlERC2qrq1udq2SY4cQflu1V6MeIdDpmo3o6061Qh+uh1gmIJYJ6MP1rVbJLb92uc/jx8c/7vN40YQWZhXv3Ttgb6UlpVWlPjVGADDljSmyrFYk/9VdMxKHooFTkZDazHgWl4s9m4h6OKfLiXJnOcqd5YiKiMK/Jv3LZ/sr17+CZFOyrG4/8TZTe9W3OTh3YD8m713oXe0Z0belHiGtjQ3z4NYHfR4v3bYU1zd6/HRmC086fhy46KJ2F/tCP2RNUzgAWaZwakPTkX6bCg8HrFZk9pdmUPfBSSeJejS3cGP3sd0oqZKaU5RWluKxnY/57HPzf2/Gll9tQcamDO+6xrefglGTzzDjD5sNyPm+2Yi+ea18/7fUAylz2n8x8VKpBkS/FIiL64swV5jPPlVhzZ4GRLS/N1PTe56N1zcdTTjZlIyVv1gJPDzVu+7lqS+zF5NStDXSr0dsLDDyCu8M6nCUA9FawOHgpJNEPZxapYZBY0Du2VwkG5MBAWnOwPrfsxatBfpQPdQqdbPbT1azNWg/fHmbyR8WC4S1X7MRfVsaO6a0qhQ/X/vzZuvvy7zP53Hm7Eys/7/1Puseui2x+QFj2p94W6ptAVquMSqwF2DhloU+625//3YU2DtnnigKsHaM9OsZ+0hVWl9rV1LC8WaICDaLDSaNCS63CwmGBDz+84YmEEuvXooPb/kQ6QnpeHnqyz7PC+Z4ZAwzfvLMt9R4RN+WVNdWNwsNIaoQRIT51rD0NvZG/xjf0V1emvN2s+P5c08y2ZTc7EPnec2mtGFaqCMNUD0KqB6V3hu7ZStMk3ZdbbWHybNA2lZYyFoZIgLQML1OSaVUw2vSmLzbLk+6HGnRaSiwF+D292/3eV7Gpoyg/fBlmPFX/XxLbY3oC0hBYtUNq3zWrZ2+Fh9nfHzel9CENJ/BeMp/2t8Yt6UPHSA12GoqRheDD371gc+6D371AXszKUkrI/22VPNyVgcIaz+pxoa1MkRUz2axQR+ub9bL1mq2ApB++DYe2DXY45ExzHRAbjSQFd/2iL4tBYml25biXO35u1g765oPXOZPY9ymHzqP1kYTbhpcGGQUyGbDufAQTH1xLMasHovq06darXlx21KB9HQgLS0IBSUiOWpaO9N4PdD8h2/m7MygNf4FGGY6pOmIvgAQuTwSlTUN7VNaChL6MH2z20wtSYxs3mbmtWF/RXJt+5JvS7UtnvXUTTVp1+Uz/1L9KNbeUatDQ4FLLpH+cvRfIqrnqZ05UX6ixe2NryG9jb2Dek1hb6ZO5gkS/Z/si/A6ad2WqesRU9dwC8k7DYLa97bSyYqTiGt6vJkZqElIQ/jOT9vVGJjBpedp3K7LO/9SfW+nkBMF3tGrQ7ZkAo3DNUf/JSI01M7sObYn2EU5L4YZP7Wn3UpMhAUjfwLiqqTHcTu+BOoatk/MlaZBwFW+0yCYI8zNjpVypg51pnNAtf/d3yqWVDTrkk3dUH27rmEn6tvFeNrDGAxAuQP2+uw8PfM2AMDGm96Gtqi+BodBhogApFnSmrWbkSN+Y/mptYHwWqRWo7x+ugO7BhBGg3RBqdfaNAhN50jyCHn9P0By13R/Y/BRNk+7LrcttWGlzQYYjIiobbJzeYU0oF58PG83EREAwKw1Y0TvEcEuxnmxZsZPLXVr9mhpMDrPAGWhbtR3k23Y5pkG4YJlZAA7dnRZoCGF8YwAXFMJlxrITkBDexgA0Osh+vbBiALgXHjD00K27wT6WYG9e6UVvN1ERPV0NUDlXwE8GglUVHT6hMftxTDjJ0+35nAXvG1hPG58dRI+nP2hVLMSHg6o4B2grNnw8QCOmiHdAjjZ5NbVmdPNd+7bV/oQaTnuC7Wg0QjAIRV2lNdP/3XO+i4QWT9WRGws3D+zoUwLJJUDBSYgogZAVP0YNEYjUFDA201EpBgMM36KCI2Ayg2ftjAescdLIUybAX2Md+h4AL7Dx+sabjMdNQM4XQpMaTLlwHTfCR8BAJmZQHS0XyMBUw/gGQE4NxciquEzJgwGwNAQUkp1wL5ewP99D4S4AZ0LEH37AAkJ0rQGnGySiBSEP7v8FKOLgVDDpy2MZ/nlVQsQk2j1GToegO/w8Xa791hntQBOnAQqm0w54KxGZd4h6Jc2Wte7N4MMtc0zAnBdo3uZOq13BODTSWZMeWMKDiQBJwyA7TQgVEDGzvsw+d9jce5ortRuJiyM7WaISBEYZjoozyK1eQl1A9Vh0vKP7JdQYi9q8ddtngWAuw544AHfA91+O/Dkk77rXn5ZCi9E7VE/ArDq9Bnf9fUjAFcZIlBZW4myCKAqFOhbBiQ6gItLgLFHAHXOj0BeHvDBB9ItK7c7KG+DiOhCMcx0kKe2JbZRpUpkWCQiyhwtDg9/VgeIhASgqsm9KYcduOce78PKvwL6uQuA482nHCA6L5vNt11Vebl3BGDPXF1CDRzoJbWZqdQAlWFAmBsQ/foASUnNahaJiOSK31IBkGeRJmQ01NfIP3zJb2EwJ7TY5qBiSQW0Y8YDy5b5bvjHP6WaHA9vQ9/zjxRM1IzFAtGvr/eh6vQZb7huPMVGVgKwqy9QUf/5LY+o71nXwqSURESN6cP1EMsExDIR9CE8GGYCoGntTEylaHvSvooK4B//8F33wP3SbSWPzExg2zYgmu1jyD/uRmEGWq03mDSeYuOsDvg2HjgXCuhrgcJISLUxLUxKSUQ9kz5cj8qlFcEuRpsYZgLEUzvTywFERsW1/YtWq23eR1+nBxIbzcXEhr7UUeaGEaRFv77eYNJ0rq48C5AfBZzQA4UmSL3tWpmUkohIjhhmAsRTO2NyNhk6Hi1UxcXESI0rG9vyAcMLdRq3tZ/P48ZzdZ3VAdnxwGm9dLvJZ1JKIiIFYJgJIM/Q8cfjteefu6lpcOHtJAqw01UNgy4Wqivb/Ew2rln0TkpJRKQQDDN+aunCUKYF9vYBJnwwC+PWjGvXZJREgVRaVYqZGxoGXZy2flqbn8m2ahaJiOSOYcYPpVWlmPLGlFa355flo7K2EtW1/s9sTdQR1bXVqKxtGC/gJ/ux834mW5yUkohIARhm/ND0QtGStdPXItkkn4kg5dSFjjpfsikZK3+x0mfd+T6TnprF4yFt35IiIpIbhhk/eAYda0vGpgwU2As6/Fr6cD0q/yIAUb/IbKZSkqcCewEWblnos+5CP5OT/jOJt0mJSFE40aQfGg861pK+UX2hD9NDG6bMma09tTikXI3HkgGAPqYUhF7gZzK/LB9Ws5W3SYlIMRhm/ND0QtFU5uxMROuifbq/EnWlGF0MNo5/GcBIAMD7o15AVJIV0Rf4mZTbbVIiCrLSRjW1x48D0dGyGk6Et5n80HTQsaZ6G3szyFBwlZbCMruh9jAh405EX3ej7xdSGwJ1m5SIuoHSUmBKo04vkyYB48Zd8PdJV2CY8RPDCsladTVQ3aiRev4xoLJSWn8eCZEJiAiJQJ2og9Pl7MRCEpEiVFdL3x8e+fkX/H3SVRhmZKByaQV7GFFgJScDK317M2HtWmn9eQghMG/IPHx+/HPsPrYbbuHupEISkSIkJ/vOHQhc8PdJV2GYIeqOCgqAhb69mZCRIa0/j1p3LWK0MbA77TBoDFCr+DVB1KMVFAC3N+n0coHfJ12FDYCDRa+XuloTdQatFtA2qu3rmyI91p6/N9M9w++BWWdGVW0VbBZOa0DU4zWdHLlvX+nxBXyfdBX+5AqAiiUVqFgi7+nRqYeJiQE2/bfh8aZ3gG3bLqj3wXNfPoec0hxYzVZYtJzWgKjHazo5cmbmBX+fdBXWzBB1V5bohn/36gWYpS8ep8uJcmd5q08LVYfCFGFirQwRNWgcXHr3lt0ArgwzRD2IW7ix+9juNrtd/8L2C6THp7NWhogUg2FGTtiOhjqZWqWGQWOAo8bR6j4JhgSkRad1YamIiDqGbWaIehibxQZjuLHV7cOShrFWhogUhWGGqIexaC3oZ+7X6vYhCUO6sDRERB3HMEPUAw2OH4w3Z76J9TPXN9tm1pqDUCIiIv8xzBD1QBatBVazFaVV8plbhYjIXwwzRD2UzWKDLkzns65iCafWICLlYW+mANGH6yGWsScSyUfjUNJSQDlf2xkiIqVgzQxRD5ZqTg12EYiIOiyoYWb58uUYNmwYDAYD4uLiMG3aNOTk5Pjs89JLL2HMmDEwGo1QqVQoKysLTmGJuiE29iWi7iCoYWbnzp1YuHAhPv/8c2zduhW1tbWYMGECKisrvftUVVVh0qRJWLp0aRBLSkRERHIV1DYzmZmZPo9Xr16NuLg4fPXVVxg1ahQA4N577wUA7Nixo4tLR0REREogqwbAdrsdAGCx+D/6qNPphNPp9D52OFoftp2IiIiUTzYNgN1uN+69916MHDkSF198sd/HWb58OUwmk3dJTk4OYCkbeHoviWWCXVmJiIiCSDZhZuHChTh48CDWrVvXoeMsWbIEdrvduxQUtD47MFG35pm4VAjp30RE/pL594ksbjPddddd2Lx5M3bt2oXevXt36FgajQYajSZAJSPqOThgHhEpVVDDjBACixYtwqZNm7Bjxw7068cBvIi6Egd7JKLuIKhhZuHChXjjjTfw7rvvwmAwoKioCABgMpmg1WoBAEVFRSgqKkJubi4AIDs7GwaDASkpKR1qKExERETdg0oIEbSfZSqVqsX1q1atwty5cwEAjz76KB577LE292mLw+GAyWSC3W6H0WjsSHGJiIioi7Tn+h3UMNMVGGaIiIiUpz3Xb9n0ZiIiIiLyB8MMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESkawwwREREpGsMMERERKRrDDBERESlaaLAL0Nk882g6HI4gl4SIiIgulOe6fSHzYXf7MFNeXg4ASE5ODnJJiIiIqL3Ky8thMpna3EclLiTyKJjb7caJEydgMBigUqmCXZygcDgcSE5ORkFBwXmnUafmeP46juewY3j+Oo7nsGOCcf6EECgvL0dSUhLU6rZbxXT7mhm1Wo3evXsHuxiyYDQa+Z+4A3j+Oo7nsGN4/jqO57Bjuvr8na9GxoMNgImIiEjRGGaIiIhI0RhmegCNRoNly5ZBo9EEuyiKxPPXcTyHHcPz13E8hx0j9/PX7RsAExERUffGmhkiIiJSNIYZIiIiUjSGGSIiIlI0hhkiIiJSNIYZGXr00UehUql8lgEDBni3FxUVISMjAwkJCdDr9bjsssvw3//+1+cYhw8fxg033ICYmBgYjUZcffXV2L59u88+x44dw5QpU6DT6RAXF4cHH3wQLpfLZ58dO3bgsssug0ajgc1mw+rVqzvtfQfK+c5fXl4epk+fjtjYWBiNRtx0000oLi72OcaZM2cwe/ZsGI1GREVFYf78+aioqPDZ59tvv8U111yDiIgIJCcnY8WKFc3K8tZbb2HAgAGIiIjA4MGDsWXLls550wHW0XOYn5+P+fPno1+/ftBqtUhNTcWyZctQU1Pj8zrd9RwG4jPo4XQ6cemll0KlUiErK8tnW3c9f0DgzuEHH3yA4cOHQ6vVwmw2Y9q0aT7b+T3Y+vlT1HVEkOwsW7ZMDBo0SJw8edK7lJSUeLf//Oc/F8OGDRP79u0TeXl54k9/+pNQq9Xi66+/9u6TlpYmfvGLX4hvvvlGHD58WPz2t78VOp1OnDx5UgghhMvlEhdffLEYP368OHDggNiyZYuIiYkRS5Ys8R7jyJEjQqfTicWLF4vvv/9ePPPMMyIkJERkZmZ23cnwQ1vnr6KiQlitVjF9+nTx7bffim+//VbccMMNYtiwYaKurs57jEmTJon09HTx+eefi08//VTYbDZx8803e7fb7XYRHx8vZs+eLQ4ePCjefPNNodVqxYsvvujdZ8+ePSIkJESsWLFCfP/99+IPf/iDCAsLE9nZ2V13MvzU0XP44Ycfirlz54qPPvpI5OXliXfffVfExcWJ+++/3/sa3fkcBuIz6HH33XeLyZMnCwDiwIED3vXd+fwJEZhz+Pbbbwuz2Syef/55kZOTI7777juxfv1673Z+D7Z9/pR0HWGYkaFly5aJ9PT0Vrfr9Xrx2muv+ayzWCzi3//+txBCiJKSEgFA7Nq1y7vd4XAIAGLr1q1CCCG2bNki1Gq1KCoq8u7z/PPPC6PRKJxOpxBCiIceekgMGjTI53VmzZolJk6c2KH319naOn8fffSRUKvVwm63e9eVlZUJlUrlPTfff/+9ACC+/PJL7z4ffvihUKlUorCwUAghxHPPPSfMZrP3XAkhxMMPPywuuugi7+ObbrpJTJkyxef1hw8fLu64444Ov8fO1tFz2JIVK1aIfv36eR9353MYqPO3ZcsWMWDAAPHdd981CzPd+fwJ0fFzWFtbK3r16iVefvnlVl+D34Otnz+lXUd4m0mmfvzxRyQlJcFqtWL27Nk4duyYd9tVV12F9evX48yZM3C73Vi3bh3OnTuHMWPGAACio6Nx0UUX4bXXXkNlZSVcLhdefPFFxMXFYejQoQCAvXv3YvDgwYiPj/ced+LEiXA4HPjuu++8+4wfP96nXBMnTsTevXs7+d13XGvnz+l0QqVS+Qz8FBERAbVajd27dwOQ3ndUVBQuv/xy7z7jx4+HWq3Gvn37vPuMGjUK4eHh3n0mTpyInJwcnD171ruPUs8f0LFz2BK73Q6LxeJ93N3PYUfPX3FxMX79619j7dq10Ol0zY7f3c8f0LFz+PXXX6OwsBBqtRpDhgxBYmIiJk+ejIMHD3qfw+/B1s+f0q4jDDMyNHz4cKxevRqZmZl4/vnncfToUVxzzTUoLy8HAGzYsAG1tbWIjo6GRqPBHXfcgU2bNsFmswEAVCoVPvnkExw4cAAGgwERERF46qmnkJmZCbPZDEBqd9P4AwjA+7ioqKjNfRwOB6qrqzv1HHREW+fvyiuvhF6vx8MPP4yqqipUVlbigQceQF1dHU6ePAlAet9xcXE+xwwNDYXFYjnvufFsa2sfz3Y56+g5bCo3NxfPPPMM7rjjDu+67nwOO3r+hBCYO3cu7rzzTp9Q3Vh3Pn9Ax8/hkSNHAEhtR/7whz9g8+bNMJvNGDNmDM6cOQOA34NtnT+lXUcYZmRo8uTJuPHGG3HJJZdg4sSJ2LJlC8rKyrBhwwYAwB//+EeUlZXhk08+wf79+7F48WLcdNNNyM7OBiB9ES5cuBBxcXH49NNP8cUXX2DatGmYOnVqqxeb7qSt8xcbG4u33noL77//PiIjI2EymVBWVobLLrvsvFPM9ySBPIeFhYWYNGkSbrzxRvz6178Owrvpeh09f8888wzKy8uxZMmSIL+T4OnoOXS73QCA3//+95g5cyaGDh2KVatWQaVS4a233grmW+sSHT1/SruOhAa7AHR+UVFR6N+/P3Jzc5GXl4dnn30WBw8exKBBgwAA6enp+PTTT7Fy5Uq88MIL2LZtGzZv3oyzZ896p2p/7rnnsHXrVqxZswa/+93vkJCQgC+++MLndTwt2RMSErx/m7ZuLy4uhtFohFar7ey3HTCNzx8ATJgwAXl5eSgtLUVoaCiioqKQkJAAq9UKQHrfp06d8jmGy+XCmTNnzntuPNva2sezXUnaew49Tpw4gbFjx+Kqq67CSy+95LOtJ53D9p6/bdu2Ye/evc3mwbn88ssxe/ZsrFmzpkedP6D95zAxMREAMHDgQO8xNBoNrFar93YLvwfb/gwq6TrCn6IKUFFRgby8PCQmJqKqqgoAmv0CDgkJ8f4SaW0ftVrt3WfEiBHIzs72uWhv3boVRqPR+59/xIgR+N///udzjK1bt2LEiBEBfHedr/H5aywmJgZRUVHYtm0bTp06heuvvx6A9L7Lysrw1Vdfeffdtm0b3G43hg8f7t1n165dqK2t9e6zdetWXHTRRd4q2O5y/oD2n0NAqpEZM2aM9xdx089jTzqH7T1///rXv/DNN98gKysLWVlZ3u7U69evx1/+8hcAPev8Ae0/h0OHDoVGo0FOTo5339raWuTn56NPnz4A+D0ItH7+FHcdCWhzYgqI+++/X+zYsUMcPXpU7NmzR4wfP17ExMSIU6dOiZqaGmGz2cQ111wj9u3bJ3Jzc8UTTzwhVCqV+OCDD4QQUiv06OhoMWPGDJGVlSVycnLEAw88IMLCwkRWVpYQoqFL3YQJE0RWVpbIzMwUsbGxLXape/DBB8UPP/wgVq5cqYguiW2dPyGEePXVV8XevXtFbm6uWLt2rbBYLGLx4sU+x5g0aZIYMmSI2Ldvn9i9e7dIS0vz6ZpdVlYm4uPjRUZGhjh48KBYt26d0Ol0zbrFhoaGiieeeEL88MMPYtmyZYrpFtvRc3j8+HFhs9nEtddeK44fP+7TPdSjO5/DQHwGGzt69Giz3kzd+fwJEZhzeM8994hevXqJjz76SBw6dEjMnz9fxMXFiTNnzggh+D3Y1vlT2nWEYUaGZs2aJRITE0V4eLjo1auXmDVrlsjNzfVuP3z4sJgxY4aIi4sTOp1OXHLJJc26an/55ZdiwoQJwmKxCIPBIK688kqxZcsWn33y8/PF5MmThVarFTExMeL+++8XtbW1Pvts375dXHrppSI8PFxYrVaxatWqTnvfgXK+8/fwww+L+Ph4ERYWJtLS0sSTTz4p3G63zzFOnz4tbr75ZhEZGSmMRqO47bbbRHl5uc8+33zzjbj66quFRqMRvXr1En/729+alWXDhg2if//+Ijw8XAwaNMgbOOWuo+dw1apVAkCLS2Pd9RwG4jPYWEthRojue/6ECMw5rKmpEffff7+Ii4sTBoNBjB8/Xhw8eNBnH34Ptn7+lHQdUQkhRGDreoiIiIi6DtvMEBERkaIxzBAREZGiMcwQERGRojHMEBERkaIxzBAREZGiMcwQERGRojHMEBERkaIxzBAREZGiMcwQkazMnTsXKpUKd955Z7NtCxcuhEqlwty5c737Tps2rdlzVSoVwsLCEB8fj5///Od49dVXvfPJEFH3wzBDRLKTnJyMdevWobq62rvu3LlzeOONN5CSktLmcydNmoSTJ08iPz8fH374IcaOHYt77rkH1113HVwuV2cXnYiCgGGGiGTnsssuQ3JyMjZu3Ohdt3HjRqSkpGDIkCFtPlej0SAhIQG9evXCZZddhqVLl+Ldd9/Fhx9+iNWrV3dyyYkoGBhmiEiW5s2bh1WrVnkfv/rqq7jtttv8Ota4ceOQnp7uE46IqPtgmCEiWbrllluwe/du/PTTT/jpp5+wZ88e3HLLLX4fb8CAAcjPzw9cAYlINkKDXQAiopbExsZiypQpWL16NYQQmDJlCmJiYvw+nhACKpUqgCUkIrlgmCEi2Zo3bx7uuusuAMDKlSs7dKwffvgB/fr1C0SxiEhmeJuJiGRr0qRJqKmpQW1tLSZOnOj3cbZt24bs7GzMnDkzgKUjIrlgzQwRyVZISAh++OEH778vhNPpRFFREerq6lBcXIzMzEwsX74c1113HW699dbOLC4RBQnDDBHJmtFobHWb2+1GaKjv11hmZiYSExMRGhoKs9mM9PR0/Otf/8KcOXOgVrMymqg7UgkhRLALQUTkj0mTJsFms+HZZ58NdlGIKIj4M4WIFOfs2bPYvHkzduzYgfHjxwe7OEQUZLzNRESKM2/ePHz55Ze4//77ccMNNwS7OEQUZLzNRERERIrG20xERESkaAwzREREpGgMM0RERKRoDDNERESkaAwzREREpGgMM0RERKRoDDNERESkaAwzREREpGgMM0RERKRo/x9neSXYmRwUJAAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABaV0lEQVR4nO3dfXxT5f0//lfSJmmSJmnS+9JCW1JBEFkFRGQqRRQY3jt1TgsoftT9UKfsxuGm6NxEUedvTqcfPyowBFEUEHXicIiCEwYiCopIW5C2UHpHkzZtc9Nc3z8OSZs2LVDaJjnn9Xw8zqM9Nzm5DiHpO+9zXe9LJYQQICIiIlIAdaQbQERERDRQGPgQERGRYjDwISIiIsVg4ENERESKwcCHiIiIFIOBDxERESkGAx8iIiJSDAY+REREpBgMfIiIiEgxGPgQEYWRm5uLyy67rM/ON3v2bCQmJvbZ+Yiodxj4EMmUSqU64TJ79uyTPg4AJk2a1O0x3333XfC5//znP+OKK65Aeno6VCoVHn744W7b+dFHH6GoqAgpKSlISkrCueeei2XLlvXzvw4RKVV8pBtARP2jp+Dh4YcfRmlpKYYNGxZy3IEDB/DQQw/h9ttvxwUXXBDcPnTo0ODv2dnZWLhwYZdzZmVlBX//wx/+gIyMDBQWFuLDDz/sth3r1q3DVVddhQkTJuDhhx+GSqXCm2++iZkzZ6K2thb33XffSV8vEdHJYOBDJFM333xz2O0vv/wySktLcffdd2P+/Pkh+3bs2IGHHnoIEyZM6PbxFoul230BBw4cQG5uLmpra5Gamtrtcc899xwyMzOxceNG6HQ6AMAdd9yB4cOHY8mSJQx8iKjP8VYXkYJ88803uOeee1BYWIgnn3yy354nNzf3pI5zOp2wWq3BoAcA4uPjkZKSAr1eH9zm8Xjw0EMPYcyYMbBYLDAajbjgggvw8ccfdzmn3+/HX//6V4waNQoJCQlITU3FtGnTsGPHjpDjXnvtNZx77rkwGAywWq248MIL8a9//avH9i5duhTx8fH4zW9+E9zW0NCA2bNnw2KxICkpCbNmzcKuXbugUqmwZMmSHs+3a9cupKamYtKkSXj33XehUqmwZs2aLsetWLECKpUKn3/+eY/nI6ITY+BDpBDNzc24/vrrERcXh5UrV4YEG6eira0NtbW1IUtTU1OvzjVp0iR88803ePDBB1FSUoLS0lI8+uij2LFjB377298Gj3M6nXj55ZcxadIkPPHEE3j44YdRU1ODqVOnYteuXSHnnDNnDu69917k5OTgiSeewO9+9zskJCRg69atwWMeeeQRFBcXQ6PR4I9//CMeeeQR5OTkYOPGjd229aWXXsItt9yC3/3ud8GgUQiBK6+8EsuWLcPNN9+MP/3pT6ioqMCsWbNOeO3bt2/H5MmTUVhYiA8++ACXXXYZcnJysHz58i7HLl++HEOHDsWECRNOeF4iOgFBRIpw6623CgBi6dKl3R6zfft2AUAsXrw47P6LLrpIAOiyzJo1K+zxNTU1AoBYsGBB2P1NTU3i+uuvFyqVKngug8Eg1q5dG3Kcz+cTbrc7ZNuxY8dEenq6uPXWW4PbNm7cKACIe+65p8tz+f1+IYQQ+/fvF2q1Wlx99dWira0t7DFCCDFkyBAxY8YMIYQQf/3rX4VKpRKPPvpoyPFr164VAMSiRYtC2nrBBRd0+XecNWuWMBqNQgghtmzZIsxms5gxY4ZobW0NHjN//nyh0+lEQ0NDcFt1dbWIj4/v9t+QiE4NMz5ECrBixQq8+uqrKC4uxsyZM0/rXLm5udiwYUPI0jE7cyp0Oh3OOOMM/PSnP8Xrr7+O1157DWPHjsXNN98ckqGJi4uDVqsFIN3Kqq+vh8/nw9ixY7Fz587gcW+//TZUKhUWLFjQ5blUKhUAYO3atfD7/XjooYegVqvDHtPRokWL8Mtf/hJPPPEE/vCHP4Ts++c//4n4+Hj84he/CGnr3Xff3e01f/zxx5g6dSouvvhirF69OiTzNnPmTLjdbrz11lvBbW+88QZ8Pt8J+1UR0clh52Yimdu/fz/uvPNOnHHGGfj73/9+2uczGo2YMmVKH7QMuOuuu7B161bs3LkzGIRcf/31GDlyJH75y19i27ZtwWOXLl2Kp59+Gt999x28Xm9we15eXvD30tJSZGVlwWazdfucpaWlUKvVGDFixAnb98knn+D999/H/fffH9KvJ+CHH35AZmZml/o8w4YNC3u+1tZWzJgxA2PGjMGbb76J+PjQj+Dhw4dj3LhxWL58OebMmQNAus113nnnwW63n7C9RHRizPgQyZjb7cYNN9wAj8eDlStXRlUBPY/Hg1deeQUzZswIybxoNBpMnz4dO3bsgMfjASB1RJ49ezaGDh2KV155BevXr8eGDRswefJk+P3+fmvjyJEjg0P+Dxw4cNrn0+l0mDFjBrZt24b169eHPWbmzJn45JNPUFFRgdLSUmzdupXZHqI+xMCHSMZ+/etf48svv8SiRYtQWFgY6eaEqKurg8/nQ1tbW5d9Xq8Xfr8/uO+tt95Cfn4+Vq9ejeLiYkydOhVTpkxBa2tryOOGDh2Kw4cPo76+vtvnHTp0KPx+P7799tsTtjElJQUfffQRNBoNLr74Yhw+fDhk/5AhQ3DkyJEunbv37dsX9nwqlQrLly/HxRdfjOuuuw6bNm3qcszPfvYzxMXF4fXXX8fy5cuh0Whwww03nLCtRHRyGPgQydSaNWvw3HPP4YorrsA999wT6eZ0kZaWhqSkJKxZsyaY2QGApqYmvPvuuxg+fHhwSHtcXBwAaRRVwLZt27oM77722mshhMAjjzzS5fkCj73qqqugVqvxxz/+sUu2qOP5A7Kzs/HRRx+hpaUFl1xyCerq6oL7fvKTn8Dn8+GFF14Ibmtra8Pf/va3bq9bq9Vi9erVGDduHC6//HL897//DdmfkpKC6dOn47XXXsPy5csxbdo0pKSkdHs+Ijo17ONDJENHjhzBnDlzEBcXh4svvhivvfZa2OP6a4j0smXL8MMPP6C5uRkA8Omnn+JPf/oTAKC4uBhDhgxBXFwcfv3rX+MPf/gDzjvvPMycORNtbW145ZVXUFFREdLmyy67DKtXr8bVV1+NGTNm4MCBA3jxxRcxYsSIkGxLUVERiouL8eyzz2L//v2YNm0a/H4/Nm/ejKKiItx1112w2+34/e9/j0cffRQXXHABrrnmGuh0Omzfvh1ZWVlhq1Lb7Xb861//wqRJkzB16lRs3LgRZrMZl19+OSZOnIjf/e53OHjwIEaMGIHVq1fD4XD0+O+j1+vx3nvvYfLkyZg+fTo++eQTnHXWWcH9M2fOxE9/+lMAwKOPPtr7F4KIuorsoDIi6g8ff/xx2GHnnZfOw9BPZjj7yJEjT/j83Q17ByA+/vjjkGOXL18uzj33XJGUlCT0er0YP368eOutt0KO8fv94rHHHhNDhgwROp1OFBYWivfee0/MmjVLDBkyJORYn88nnnzySTF8+HCh1WpFamqqmD59uvjiiy9Cjnv11VdFYWGh0Ol0wmq1iosuukhs2LAhuL/jcPaAbdu2CZPJJC688ELR3NwshBCirq5OFBcXC7PZLCwWiyguLhZffvllj8PZA2pra8WIESNERkaG2L9/f3C72+0WVqtVWCwW0dLScsJ/byI6eSohwuR2iYio1w4ePIi8vDwsXrw4OMHrqfD5fMjKysLll1+OV155pe8bSKRg7ONDRBRl1q5di5qamtOuuUREXbGPDxFRlNi2bRu+/vprPProoygsLMRFF10U6SYRyQ4zPkREUeKFF17AL37xC6SlpeEf//hHpJtDJEvs40NERESKwYwPERERKQYDHyIiIlIM2Xdu9vv9OHz4MEwmU9iZl4mIiCj6CCHQ2NiIrKyskPn8TpfsA5/Dhw8jJycn0s0gIiKiXigvL0d2dnafnU/2gY/JZAIg/cOZzeYIt4aIiIhOhtPpRE5OTvDveF+RfeATuL1lNpsZ+BAREcWYvu6mws7NREREpBgMfIiIiEgxGPgQERGRYsi+jw8REVGsamtrg9frjXQz+oVGo0FcXNyAPy8DHyIioigjhEBVVRUaGhoi3ZR+lZSUhIyMjAGts8fAh4iIKMoEgp60tDQYDAbZFeAVQqC5uRnV1dUAgMzMzAF7bgY+REREUaStrS0Y9CQnJ0e6Of1Gr9cDAKqrq5GWljZgt73YuZmIiCiKBPr0GAyGCLek/wWucSD7MTHwISIiikJyu70VTiSukbe6iIiIALh9bnjaPN3u18ZpoYvXDWCLqD8w8CEiIsXzCz+2HNqCmuaabo9JNaSiKK8IahVvlsQyvnpERKR4apUaJp0JDrcDZp25y+JwO2DSmRj0yABfQSIiIgB2mx0WnQU+vw8GjSG4+Pw+WHQW2G32SDeR+gADHyIiIgA2vQ351nzUuEJvd9W4apBvzYdNb4tQy2JHY2MjbrrpJhiNRmRmZuKZZ57BpEmTcO+990a6aUEMfIiIiI6z2+wwao1wup0AAKfbCaPWGLPZntrmWpQ7ygEA5Y5y1DbX9uvzzZs3D5999hnWrVuHDRs2YPPmzdi5c2e/PuepYudmIiKi4wJZn91Hd8OsM6PGVYNR6aNiMttT21yLyUsnw+V1YdnVy1C8phhGjREbZ21EiiGlz5+vsbERS5cuxYoVK3DxxRcDABYvXoysrKw+f67TwYwPERFRB4GsT6WzMqazPS3eFri8LpQdK8PEVyei7FgZXF4XWrwt/fJ8ZWVl8Hq9OPfcc4PbLBYLhg0b1i/P11sRDXw+/fRTXH755cjKyoJKpcLatWtD9qtUqrDLk08+GZkGExGR7AWyPg63I6b79uRYcrDs6mUh25ZdvQw5lpwItSg6RDTwcblcGD16NJ5//vmw+48cORKyvPrqq1CpVLj22msHuKVERKQkBbYCjE4fjQJbQaSb0mvljnIUrykO2Va8pjjY56ev5efnQ6PRYPv27cFtDocD33//fb88X29FtI/P9OnTMX369G73Z2RkhKy/8847KCoqQn5+fn83jYiIFMyqt2Li4ImRbsZp0Wv0MGqMyLfmh/Tx0Wv0/fJ8JpMJs2bNwm9+8xvYbDakpaVhwYIFUKvVUTX9Rsx0bj569Cjef/99LF26NNJNISIiinophhRsnLURLd4W5FhysGnWJug1+n7p2Bzwl7/8BXfeeScuu+wymM1m/Pa3v0V5eTkSEhL67TlPVcwEPkuXLoXJZMI111zT43Futxtutzu47nQ6+7tpREREUaljkDMQfXtMJhOWL18eXHe5XHjkkUdw++239/tzn6yYGdX16quv4qabbjph1Lhw4UJYLJbgkpOj7E5cREREA+XLL7/E66+/jtLSUuzcuRM33XQTAODKK6+McMvaxUTgs3nzZuzbtw+33XbbCY+dP38+HA5HcCkv759OXERERNTVU089hdGjR2PKlClwuVzYvHkzUlL67/baqYqJW12vvPIKxowZg9GjR5/wWJ1OB51ONwCtIiIioo4KCwvxxRdfRLoZPYpo4NPU1ISSkpLg+oEDB7Br1y7YbDYMHjwYgNRHZ9WqVXj66acj1UwiIiKSiYgGPjt27EBRUVFwfd68eQCAWbNmYcmSJQCAlStXQgiBG2+8MRJNJCIiIhmJaOAzadIkCCF6POb222+Pqt7gREREFLtionMzERERUV9g4ENERESKwcCHiIiIFIOBDxERESkGAx8iIiJSDAY+RERE1C88Hk+km9BFTFRuJiIioug3adIknHXWWYiPj8drr72GUaNG4eOPP450s0Iw40NERCRXtbVAYM7K8nJpvZ8tXboUWq0Wn332GV588cV+f75TxYwPERGRHNXWApMnAy4XsGwZUFwMGI3Axo1AP04aWlBQgEWLFvXb+U8XAx8iIiI5ammRgp6yMmDiRGlbfr60vR+NGTOmX89/uniri4iISI5ycqRMT0fLlknb+5HRaOzX858uBj5ERERyVF4u3d7qqLi4vc+PQjHwISIikiO9XurTk58PfPaZ9NNolLYrGPv4EBERyVFKitSRuaVFur21aZMU9PRjx+ZYwMCHiIhIrjoGOf3ctwcANm3a1O/Pcbp4q4uIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiIopAQItJN6HeRuEYGPkRERFFEo9EAAJqbmyPckv4XuMbANQ8EDmcnIiKKInFxcUhKSkJ1dTUAwGAwQKVSRbhVfUsIgebmZlRXVyMpKQlxcXED9twMfIiIiKJMRkYGAASDH7lKSkoKXutAYeBDREQUZVQqFTIzM5GWlgav1xvp5vQLjUYzoJmeAAY+REREUSouLi4iwYGcsXMzERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFixEe6AUQ0cNw+Nzxtnm73a+O00MXrBrBFRFHE7QY83b8/oNUCOr4/Yh0DHyKF8As/thzagprmmm6PSTWkoiivCGoVk8GkMH4/sGULUNP9+wOpqUBREaDm+yOW8dUjUgi1Sg2TzgSH2wGzztxlcbgdMOlMDHpImdRqwGQCHA7AbO66OBzSfgY9MY+vIJGC2G12WHQW+Pw+GDSG4OLz+2DRWWC32SPdRKLIsdsBiwXw+QCDoX3x+aTtdr4/5ICBD5GC2PQ25FvzUeMKTefXuGqQb82HTW+LUMuIooDNBuTnd73dVVMjbbfx/SEHDHyIFMZus8OoNcLpdgIAnG4njFojsz1EgJTVMRoBp/T+gNMprTPbIxsMfIgUpnPWh9keog46Z32Y7ZEdBj5EChTI+lQ6K5ntIeoskPWprGS2R4YY+BApUCDr43A7mO0h6iyQ9XE4mO2RIdbxIVKoAlsBvG1eFNgKIt0UouhTUAB4vdJPkhUGPkQKZdVbMXHwxEg3gyg6Wa3ARL4/5Ii3uoiIiEgxGPgQERGRYjDwISIiIsWIaODz6aef4vLLL0dWVhZUKhXWrl0bsr+pqQl33XUXsrOzodfrMWLECLz44ouRaSwRERHFvIgGPi6XC6NHj8bzzz8fdv+8efOwfv16vPbaa9i7dy/uvfde3HXXXVi3bt0At5SIiIjkIKKjuqZPn47p06d3u/8///kPZs2ahUmTJgEAbr/9dvzv//4v/vvf/+KKK64YoFYSERGRXER1H5/zzz8f69atQ2VlJYQQ+Pjjj/H999/j0ksv7fYxbrcbTqczZCEiIiICojzw+dvf/oYRI0YgOzsbWq0W06ZNw/PPP48LL7yw28csXLgQFosluOTk5Axgi4mIiCiaRX3gs3XrVqxbtw5ffPEFnn76acydOxcfffRRt4+ZP38+HA5HcCkvLx/AFhMREVE0i9rKzS0tLXjggQewZs0azJgxAwBw9tlnY9euXXjqqacwZcqUsI/T6XTQ6XQD2VQiIiKKEVGb8fF6vfB6vVCrQ5sYFxcHv98foVYRERFRLItoxqepqQklJSXB9QMHDmDXrl2w2WwYPHgwLrroIvzmN7+BXq/HkCFD8Mknn+Af//gH/vKXv0Sw1URERBSrVEIIEakn37RpE4qKirpsnzVrFpYsWYKqqirMnz8f//rXv1BfX48hQ4bg9ttvx3333QeVSnVSz+F0OmGxWOBwOGA2m/v6EoiIiKgf9Nff74gGPgOBgQ8REVHs6a+/31Hbx4eIiIiorzHwISIiIsWI2uHsRERE/crtBjye7vdrtQDLo8gOAx8iIlIevx/YsgWoqen+mNRUoKgIUPPmiJzw1SQiIuVRqwGTCXA4ALO56+JwSPsZ9MgOX1EiIlImux2wWACfDzAY2hefT9put0e6hdQPGPgQEZEy2WxAfn7X2101NdJ2my0y7aJ+xcCHiIiUy24HjEbA6ZTWnU5pndke2WLgQ0REytU568Nsj+wx8CEiImULZH0qK5ntUQAGPkREpGyBrI/DwWyPArCODxERUUEB4PVKP0nWGPgQERFZrcDEiZFuBQ0A3uoiIiIixWDgQ0RERIrBW11ERKRIbp8bnrbuJynVxmmhi+ckpXLDwIeIiBTHL/zYcmgLapq7n6Q01ZCKorwiqFW8OSInfDWJiEhx1Co1TDoTHG4HzDpzl8XhdsCkMzHokSG+okREpEh2mx0WnQU+vw8GjSG4+Pw+WHQW2G0sZChHDHyIiEiRbHob8q35qHGF3u6qcdUg35oPm56FDOWIgQ8RESmW3WaHUWuE0y1NUup0O2HUGpntkTF2biYiwO0GPN2PboFWC+g4uoXkJ5D12X10N8w6M2pcNRiVPorZHhlj4EOkdH4/sGVL++zU4aSmAkVFgJpJYpIfu82OsmNlqHRWMtujAPwUI1I6tRowmaQJGs3mrovDIe1n0EMyFcj6ONwO9u1RAGZ8iAiw24GyMsDnk4KdAKcTsFik/UQyVmArgLfNiwIbJymVO36FIyLAZgPy87ve7qqpkbbb+A2Y5M2qt2Li4Imw6q2Rbgr1MwY+RCSx2wGjUcryANJPo5HZHiKSFQY+RCTpnPVhtoeIZIiBDxHB7XOj0d2Ixpx0tGjUaDlQghaNGo056Wh0N8Ltc0e6iUREfYKdm4kUoKdZqP3Cj8/LP0eDuwEAYNNUwravDPVn5aO+7nOgjpM1EpF8MPAhkrmTmYW6rrkOceo4DLYMBgoK4FEnAENzYNaZUO4sR741n0EPEckCAx8imQvMQl1yrAQ55pwu+8ud5Tgj+QzUtdRJkzWmpMOTkg4tgFa3k5M1EpGs8CsckQKcaBbqMVljOFkjESkCAx8iBTiZWag5WSMRKQEDHyKFOFFg0zk4YraHiOSIgQ+RQpxMYBMIjjhZIxHJFQMfIgU5UWDDyRqJSO4Y+BApyMkENgW2AoxOH83JGolIljicnUhhTjQLdWCyRiIiOWLgQ6QwDGyISMl4q4uIiIgUg4EPERERKQZvdREpidsNeMJPVgoA0GoBnW7g2kNENMAY+BAphd8PbNkC1HQ/WSlSU4GiIkDNZDARyRM/3YiUQq0GTCbA4QDM5q6LwyHtZ9BDRDLGTzgiJbHbAYsF8PkAg6F98fmk7XZWaiYieWPgQ6QkNhuQn9/1dldNjbTdxkrNRCRvDHyIlMZuB4xGwClNVgqnU1pntoeIFICBD5HSdM76MNtDRArCwIdIiQJZn8pKZnuISFEY+BApUSDr43Aw20NEisI6PkRKVVAAeL3STyIihWDgQ6RUViswkZOVEpGy8FYXERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBOj5ESuB2Ax5P9/u1WkCnG7j2EBFFCAMfIrnz+4EtW9onJe3E0+aBN9kK/0UXAuquSWBtnBa6eAZFRCQPDHyI5E6tBkwmoKQEyMkJ2eUXfpTu+jfK1cmoL3WFfXiqIRVFeUVQq3hnnIhiHwMfIiWw24GyMsDnA8zm4Ga10wmNNRmH0w1I05m7PKzcWY58az6DHiKSjV4FPldffTVUKlWX7SqVCgkJCbDb7fj5z3+OYcOGnXYDiagPBGZj3707JPBBTQ1SR52HBGstfH4fzB2CH6fbCYvOArvNHoEGEw0Mt88NT1v3/d94q1d+ehX4WCwWrF27FklJSRgzZgwAYOfOnWhoaMCll16KN954A0888QT+/e9/YyInQSSKDoGsj9MpBT9OJ2A0wjLyHOS3lGD30d0hgU+Nqwaj0kfBprdFsNFE/ccv/NhyaAtqmsP3fwN4q1eOevVKZmRk4Oc//znKysrw9ttv4+2330ZpaSluvvlmDB06FHv37sWsWbNw//3393V7iai3AlmfQCfnmhpp3WaD3WaHUWuE0+0EIGV7jFojsz0ka2qVGiadCQ63A2aducvicDtg0pkY9MhMr17NV155Bffeey/UHUaAqNVq3H333XjppZegUqlw1113Yc+ePX3WUCLqA3Y7YDQClZXST7sU2Nj0NuRb81HjkoKiGlcN8q35zPaQ7Nltdlh0Fvj8Phg0huDi8/t4q1emehX4+Hw+fPfdd122f/fdd2hrawMAJCQkhO0H1NGnn36Kyy+/HFlZWVCpVFi7dm3I/qNHj2L27NnIysqCwWDAtGnTsH///t40mUjZ3G6gsRHQaICMDKCqSvqp0Ujb3e5g1qfSWclsDylG56A/gMG/fPWqj09xcTHmzJmDBx54AOPGjQMAbN++HY899hhmzpwJAPjkk08wcuTIHs/jcrkwevRo3HrrrbjmmmtC9gkhcNVVV0Gj0eCdd96B2WzGX/7yF0yZMgXffvstjEZjb5pOJEs9dtD0+6Hb/Dm09Q3SelOTtJSUSAEQAKSmwlZUhHxrPnYc3oGxWWP5gU+KYbfZUXasDE63E2admbd6Za5Xgc8zzzyD9PR0LFq0CEePHgUApKen47777gv267n00ksxbdq0Hs8zffp0TJ8+Pey+/fv3Y+vWrdizZ08wgHrhhReQkZGB119/Hbfddltvmk4kOyfTQTPfVYexjjiocwZLHZuzstp3lpdLfX3UahTYCuBt86LAVjAALSeKDoGsT6CDPzv2y1uvbnXFxcXh97//PY4cOYKGhgY0NDTgyJEjeOCBBxAXFwcAGDx4MLKzs3vdMLfbDUC6ZRZsrFoNnU6HLVu29Pg4p9MZshDJmVqlRkJ8AqqbqhGviu+yVDdVQwzNh9qSJNXxMRjaF58PsFiCfX2seismDp4Iq94a2YsiGmC81ascp91V3Ww2w2zuWvjsdA0fPhyDBw/G/PnzcezYMXg8HjzxxBOoqKjAkSNHun3cwoULYbFYgktOp0q1RHLjF35Uu6pRUl+CbZXb8HX118FlW+U2lNSX4LCmFf78vK7TVnQY2UWkZIGsj8PtYN8emet15ea33noLb775Jg4dOgRPp8kPd+7cedoN02g0WL16NebMmQObzYa4uDhMmTIF06dPhxCi28fNnz8f8+bNC647nU4GPyRrapUag8yDYNAa0OJtQbIhObjP0eqAQWvAIPMgqNPtQNmBLnV8AtkeIqXjrV5l6FXG59lnn8Utt9yC9PR0fPnllzj33HORnJyMsrKybvvs9MaYMWOwa9eu4K209evXo66uDvn5+d0+RqfTBbNQ/ZWNIoo2dpsddpsdGrUGbf42JMQnoM3fBo1aI+0z5kgjuNLTpT49zc3Sz/R0afvxW8tESsZbvcrQq4zP3//+d7z00ku48cYbsWTJEvz2t79Ffn4+HnroIdTX1/d1G2GxWABIHZ537NiBRx99tM+fgyiW2fQ2nJ1+Ng4eOwhHqwNGrRGOVgcS4hNwdupZsH3xrXRbq6kJ2LcP2LtXmrxUpwOOHgVSU4GiorCzsxMRyUmvPuUOHTqE888/HwCg1+vR2NgIQBrm/vrrr5/0eZqamrBr1y7s2rULAHDgwAHs2rULhw4dAgCsWrUKmzZtQllZGd555x1ccskluOqqq3DppZf2ptlEsma32ZFrzYVf+FHjqoFf+JFrzYU95QxpdnaHQxrNlZcH+P3Sz6wsoLZWCnhcLqmmT+eF2SAikpFeZXwyMjJQX1+PIUOGYPDgwdi6dStGjx6NAwcO9Nj/prMdO3agqKgouB7omzNr1iwsWbIER44cwbx583D06FFkZmZi5syZePDBB3vTZCLZ65j1afI2IVGTiLPTz5Y6aXacnd1uB+LjgdxcwOMBKioAIYCDB8OfODMTuPRSZoOISBZ6FfhMnjwZ69atQ2FhIW655Rbcd999eOutt7Bjx44uhQh7MmnSpB4DpXvuuQf33HNPb5pIpEiBrM8hxyEMtgxuH5LbcXb2oUOBUaOk7fv3A21twFdfAcnJXU9YVwcUFg7cBRAR9bNeBT4vvfQS/H4/AGDu3LlISUnBZ599hiuuuAJ33nlnnzaQiE5eIOvjafO0Z3twvLJzTjriv/sGovYoYDYBzkaodPHwjx0N3Yf/RrxOJ9X2CWhuljJBZ5zBbA8RyUavAh+1Wg2Px4OdO3eiuroaer0eU6ZMAQCsX78el19+eZ82kohOXuchuR0rO9s0lbB8Ww5XTjqM5UfhKMhBU3YGRiUBQ+vroO5Yz6eyUuoHNGZMZC6EaCC53dKt3+5otdJgABnrceobANo4LXTxsf9v0KvAZ/369SguLkZdXV2XfSqVKjhRKRENvMCQ3AC1Sg2TzoSSYyVIthdAW9UIbX0zYEqCyl6AGnUDfOeeA/XG3VIHZ6NR+ul2A+PHs7ghyZ/fD2zZ0rXAZ0cyH/l4MlPfpBpSUZRXBLUqtv8NetX6u+++G9dffz2OHDkCv98fsjDoIYo+dpsdFp0FLWY9/Pl5MDb74M/PQ4tZD4vOgowLfgIMHtw+aWlVlbTObA8pgVrdPvLRbO66OBzSfpkGPUD7FySH2wGzztxlcbgdMOlMMR/0AL0MfI4ePYp58+YhPT29r9tDRP0gUI6/xlWDltxBaDrTjpbcQahx1SDfmg/roKFSdsftlr71MttDSmO3S/PWnWA+OzkLfEHy+X0waAzBxef3waKzyGb+sl4FPj/96U+xadOmPm4KEfWnwCSM9QkCzrFnoT5BhE7GOGaMlOWprGS2h5QnMPJRwfPZdfyC1FHgC5Jc5i/rVR+f5557Dtdddx02b96MUaNGQaPRhOznEHSi6BP4UNt9dDfMOjNqXDUYlT6q/cPMZgPOOw84dkz6qYAPeqIQgXpXCp7Pzm6zo+xYGZxuJ8w6M5xup+xmq+9V4PP666/jX//6FxISErBp0yaoVKrgPpVKxcCHKNocH7Fi16TjkPcbHD1SAos6DnZNOtzHauGJgzRi5awzoI4X8A8/A3BLFdnlMpKD6IQ61rsym6Vsz6hRivoScMIvSDLQq8Dn97//PR555BH87ne/g1rGnb2IZKHDiBUbgB/VV6Ksvgz5tnwklX2Gb6q/QU2iCtXjRkidN1MA1P4HqJUeLpeRHEQnJZD1qaxUXLYnIJD1qXRWyi7bA/Syj4/H48ENN9zAoIcoFnQasZKeWYBB2WciPbMAaksSElv9OBbvg1mfJOuRHEQnJZD1cTgU07ens0DWx+F2yKpvT0CvPs1mzZqFN954o6/bQkT9pcOIFZM1HSNzx8FkTQd8PqRmDoXKbpf9SA6ik1ZQAIweLf1UqAJbAUanjw4WQpWTXt3qamtrw6JFi/Dhhx/i7LPP7tK5+S9/+UufNI6I+kjnvgsBNTVIHHU2sgcheE8/uEuG9/aJTorVCkyceOLjZKxzIVQ56VXgs3v3bhQen7hwz549Ifs6dnQmoijSw4gVux6yH8lBRAT0MvD5+OOP+7odRNTfehixYgNkP5KDiAjoZR8fIopRdruU5QkzYiVQ4FCuIzmIiAAGPkTy4HYDjY3dL263dFwPI1bkPpKDiAjo5a0uIooipzqzdEEB4PWGHbFSYCuAt80ry5EcREQAAx+i2Beo01NSAuTkdN1fXg5kZwMul7QeHw+cfbb0e6NUnRlaLaDTyXokBxERwMCHSB4CI7Z8vtDh6k6nFBTV1ADvv9/94ztmhIiIZIyfckRy0NPM0nY7MGhQsHJzl8XhkIIjBj1EpAD8pCOSi8CILadTWu84s3SHys0wGNoXn0/arsD5iIhImRj4EMlF56xPTU37yK2eMkIKnY+IiJSJfXyI5KSnmaV7qNxMRNQjtxvweLrff3yARCxg4EMkJ4HMzo4dwNixoZmcHio3E1F4bp8bnrbu/+Br47TQxcfGH/xeO9WSGVGOgQ+R3PRQp6fHjBARhfALP7Yc2oKa5u7/4KcaUlGUVwS1Kvr/4PfayZTMyM+PiaAHYB8fIvkJzCxttXbd10PlZiIKpVapYdKZ4HA7YNaZuywOtwMmnUneQU+AjAZIKODVIqIQBQXA6NHhM0JEFMJus8Ois8Dn98GgMQQXn98Hi86inDntZDRAgoEPkdL0lBEiohCBOexqXKF/8GtcNcqb066nkhkxhIEPERFRD+w2O4xaI5xu6Q++0+2EUWtUTrYnoKeSGTGEnZuJiIh6EMj67D66G2adGTWuGoxKHyW/bE8PQ9bdPjc8cQBy0hH/3TfAgRJAEwdfTjrgboyp0W0MfIiIiE7AbrOj7FgZKp2V8sz29DBk3S/8+L76G9QkqlA9bgRsmkrY9pWh/qx81Nd9DtTF1ui26G8hERFRhAWyPg63Q559ewJD1sPM6ae2JCGx1Y9j8T6Y9UlAQQE8Z48ACgpicnQbMz5EREQnocBWAG+bFwU2mY6IDNT58vmkoCfA6URq5lCohkIa3ZaSDk9KOrQAWt3OmBvdxsCHSOZYeZaob1j1VkwcPDHSzeg/nau7B9TUIHHU2cgehGA/p+CuGOzvxMCHSMZYeZaITkkPc/rZ9UDZsTI43U6YdeaYHd3GTzoiGWPlWSI6JT0MWe9c0yhWaxnx045I5lh5lohOSaBQYZg5/QI1jWJ5dBsDHyKZY+VZIjolPczpJ4fRbezjQ6QAgRoksX5vnqhf9FC4DwCg1QI6hQ0AKCgAvN6wc/rF+ug2Bj5ECqCYyrNEp+p44T5PVSXa2trCH5KWgvjJU6DT6ge4cREUmNMv3K4YH93GwIdIDk7iG2t3lWc53J0UTa2G35SI0q1fotqq7bJbf7QODZpcxFUYFDX60eVxIXFhIgCgaX4TjFpjhFvUdxj4EMW6HkrNB6WmwlZUhHxrPnYc3oGxWWNh09vQ4m3BR2UfodZVG/ZhcXFxGGQapKgPfFIedc5gaBMS4Wk4AktqTnB7nKsZcQmJqLJpMJyjH2WDgQ9RrAuUmi8pAXJyuu4vL5c6KKrVIffm/cKP/5T/B18d/QoHGw4iWZ/c5aGeNg+GJQ/jBz7Jl98PfPstMhv98O85AH9qI3QaKcOpqT0GR6oZOQcSYB+dBjQ2hj+HEvsAxTAGPkRy0EOpeVgsweGone/Nm3QmGDQGJOuToYvXwaAxBPcdchxClikLBcmx2YGR6KQc/+JgMCfDkJqFKl8D4s0WqFta4TMnwqn2IreuDbZNW7s/R2oqUFQknYuiHl8lIjnoXHQsoEPxsXDsNjuyTFlINaai1duKhPgEJMQnoM3fhjZ/G87LPo8doEn+7HYgKwuWIQUwuNvQ6m1FfKMLTQlxgM2G5DN+BFRXA/HxQEJC6CSeDoeUcWXQEzP4ShHJRaDomNMprXcoNd+dwGgvjVqDBE0CXB4XAOBI4xHkWHJwTuY5A9Fyosg6/sUhUWdCSqOA4YuvkXCkGvElpchqBMyOFulW8rZtQGmpFPwYDFKGtUNGlWIDAx8iueih1HxP7DY70hPTpSksWh1weVzw+r3M9pCy2O1AZiaMWTnQt/pwLEGNttQUWM8aC2RlSe+lo0elgCeQ3TnJ9xhFFwY+RHLSQ6n57nTO+hw4doDZHlKe418cDNl5iBs8BB54oT9jBEyD7VKwk5oKJCW196E7iYwqRScGPn3F7ZZ6/He3uN2RbiEpQQ+l5nsSyPrEq+LhF35me0iZ7HYgLw/G4aOQbEhBqn10+77WVqCwUPoJMNsTwziqqy+cZB0V9vqnAdFDqfnuBLI+Fc4KTMiZgDGZY/qxgUTRJVjE06iBOicD6jIjrMN+BL8qDs2eZsS7mqE1GoFx44Dt26V+PrfdJj24qUnK/FDMYODTF06hjgpRv+uh1HxPAjV+RqSOgFVv7YeGEUUfv/Bjy6EtqGmWvrhq0ARzjh9xrW0wfrsRrpx0ZBx1Yfjk66EeOhSoqwM++yzCrabTwcCnr5xkHRWiaBXr8+8Q9YZapYZJZ0LJsRLkmHOANDO8aVlAQyO0TTvRVFEBbXI+1PbjGdSCgvaRk3IUmP7G40JioIdGYyOg9UuZsTh0W6wxVqa3YeDTVwJ9K3bvDg18amqAUaN4H5giSs7z7hCdrsA8dj6/D2bd8c/vVAMas1Nh2VWD1FHntX+GW63AhAmRa2x/6tBtI87bihnfS5vj/rke/ngtvq/+BjWJKlSPGxH2DkaqITUmpreJ7tbFml7UUSEiosgK9HGrcYX20/whVQv9uAmwnKWQPm+BbhsOB4TZBIcOcOgAYTZBbUlCYpMHjV4XrG1aWL3xIUtz/VGYoYv6oAdgxqdvdc76MNtDRBQTAlkfp9sJs84Mp9sJTUoaMsdfCiipz1uw20YbWjTHtxkMgMuNdKcfmT4X1Bu3wqBtn96m2dMMU5sHw84aDOT6o74/a3S3Lhb1oo4KERFFVuesT42rBvnWfOWVdTj+BV5VWxu6va4OhuFnITUhGbUaL3yJhuBSq/EiUxhhThkU9UEPwMCn7/WyjgpRn+mmplSiG1JnRdaUIgrLbrPDqDWi0lkJo9YIu02hX1ztUtFGU+CjwtkofZG/8EKkZg6FQaVFY1wb/PoENMa1waDSIjVzaMx80eetrv7QizoqRH2im5pSHTsqqv/zOXDJ9Jj4ZkY0kAJZnx2Hd2Bs1ljo4nRQPaIC0MOggERp0ICs6vnYbBD5eUh1AY06SNmfwrHA0KFIrKtD9qcHsbe1AUatEQ2tDTjTrUPi8LNj5os+A5/+0Ms6KkSnrZuaUsKrgUMH5DghfVAz6CEKK1DPqsCm7C+u/qH58KmBTUsBLJ0LHDok7bDbkfZdLg7U78a9/7kPJjeweMrfYibbA/BWF5H82O1S7SifT+qUeHyJ9wNOnfSBRkThWfVWTEz+EawGG4y6RBg8YQ7q3P9Fjmw2HLCGrgd+Jg4/G4PcUr2eVBdgHB5bg3gY+BDJTedZ2o9LdQGlVsTUBxRRJLg8ru631dYCM2Z0fZDMgqHa5lqUdQh8DjUcal+x25GaMgSDnECzNva+TDHw6SNunxuN7sZuF7ePHUppAHWpKdWIZi1QypiH6PS0tACuroFRcPJSGahtrsWMFTPQoG/fdu2b16K2+XhwZ7PBMPwsWNzSl6nE/x0cNliMVuzj0wc6z/USTqxUtCSZ6FBTymNMgLuqAqVW4JgBaHQ3wi/8wUNjpcw8UVSw2YCDB7tuz84e8Kb0lxZvC1ze0EDG5XWhrrkOqU+mAgCqb92HXelASXIkWnh6GPj0gS5zvXRS7ixHvjWfQQ8NLLsd/tISfP/Vx6hzNwSzPetL1iNBkxA8jEE50SmoqOh++7BhA9uWfpJjycHLl7+MK16ZEtz2/E+eR3acFeJhab36Tg0+HxKZ9p0uftL1EbvNDovOAp/fB4PGEFx8fh8sOoty60FQ5NhsUA+1w9jiw5F0A44dL7Rq0plg1plh1pnhcDtg0pkY9BB11KHWVaD+laqxSaqJ5fOFf0xCQvjtMajcUY7b3r0tZNvcf85FpbMyQi3qW8z49JFA/YfdR3e3T3IHqfrnqPRRyqv+SdGhoAC2psnwx5UB5dImg8YAvUYPp9vJoJyoE1drI268dzDWHV+/ci/giQe0a94F9Obu+/KkpAxYG/ubXqOHURNak8ioMSIhXh7BHb/m9aFA1U+nW+pQ6nQ7lV39kyLK5XFB9awNSZt/guSsrv8HFVuSn+gE8o61/35GPTCsFojbvx/47jtg69bINWyApBhS8P7P3w/Z9vb1byPZENqhx+ABxMPSErbDd5RixqcPdc76MNtD0SI3KTdk3el2Ik4Vh/Evjw9u67YyLZGSqNUhHXYdCYAnDhDWJMCnnFyBPl4fst456IllEX0VFy5ciHHjxsFkMiEtLQ1XXXUV9u3bF3JMa2sr5s6di+TkZCQmJuLaa6/F0aNHI9TiE+NcLxSNrJ1ml65x1SDPmheh1hBFt68y2n93x0sLdDqgvh4YEqM9eikoooHPJ598grlz52Lr1q3YsGEDvF4vLr30Urg6pMzuu+8+vPvuu1i1ahU++eQTHD58GNdcc00EW92zQNbH4XbwNgJFjfSn04O/H248DKPWiHxraNGxLrWo6qsAlQpQqdBYX8VaVKQYxzokO/THKzermpulORjHjYtMo6jPRPRW1/r160PWlyxZgrS0NHzxxRe48MIL4XA48Morr2DFihWYPHkyAGDx4sU488wzsXXrVpx33nmRaPYJca4XiiZaH6Bta19vqa/G6JzzYPNpkOiW0vieeODzis/R6GkMHhfX3Irrjv++vmQ9bCk5HPZOipPuAhx6QFVVA+TkAj/6UfgDKyqA5GRZdXKWq6jq4+NwOAAAtuMl9b/44gt4vV5MmdJeS2D48OEYPHgwPv/887CBj9vthrvDUERnoHLtALLqrZg4mJOUUuSp/MDEH4C05vZtF6U3Ie9wKeJUP2DG90C1AdiUByRqE1HRWBGsRRXXpg0+xulxYgiHvZMCaduAFBeg8niA887rfsqXadOkCYI3bmTwE+Wi5lPM7/fj3nvvxcSJE3HWWWcBAKqqqqDVapGUlBRybHp6OqqqqsKeZ+HChbBYLMElJ6drQUEipRBqoFEHmN2AQyct9txzkJiSBWE2weyW9gs1kG/ND6lFpde05/vNWjP7q5EilZuBrEbAn5MFnHNO9wcePCiNbGppGbC2DajKStRXlARXjzQdiWBjTk/UBD5z587Fnj17sHLlytM6z/z58+FwOIJLeXl5H7WQKDaV2qRZ2eP9QIsG7TO2+9rg1LXP3xXon1bj6jr1Sp41j/3VSF7cbqkgYZglsUN3tu2DgDo9cGRkLmoT/D1PRrpsGSCXL9v1dSGr7it+gvqfTAqu3/DWDSEz1x+uKmmfyyvKRcWtrrvuugvvvfcePv30U2R3mO8kIyMDHo8HDQ0NIVmfo0ePIiMjI8yZAJ1OB52O8w4RBRwzSBMJjjoqZXcCVLW1qDQB9Yukddc9LthtdpQdK4PT7UQSNMFjO3eEJoppfj+wZQtQ0zXIj/O2Ymp7YgNfZQANCcA/Sv8M6/PPYuNi0f0fzuJiYNMmWQQ/xxpC76royqugba/NC09FBdChnuHP3r4B3mQrNs7aiBRDdN/qi2jGRwiBu+66C2vWrMHGjRuRlxc6vHbMmDHQaDT497//Hdy2b98+HDp0CBMmTBjo5hLFrFIb0KwFTIFvsk4nYDDgQOgod9jURtg16WioLkecq71jkM2nkb4Nuzmyi2RArZb64zgcgNkcsgRuAQc06IHPhwB7vBXwN7sAV1P4c+bmAkYjoNeH3x9jmlOTum6MVwV/fWNV6K5Djgq4vC60eKP/Vl9EMz5z587FihUr8M4778BkMgX77VgsFuj1elgsFsyZMwfz5s2DzWaD2WzG3XffjQkTJkTtiC6iaNQx61PTXAPr4XrEn12IY991OOj4t+DhlQfgqdoHuL9q37d+vTQXUWoqUFQk/eEgimV2O1BWJs29ZZZSGS3eFly/7KewhrlpYHUBi+5+HfE/bgE6DLgJWr9eVqO6BoUZF5TZIIK/Dwmzf9nVy5Bjif5sV0Q/vV544QU4HA5MmjQJmZmZweWNN94IHvPMM8/gsssuw7XXXosLL7wQGRkZWL16dQRbTRSbAlmfp1fNw6M7/oLarKSQe/RoaQFMJiS2tCE5Iw8N2vYPueC3Y5OJQQ/JgttshCsnAy2Hy9HsaUazpxkt3hakutAlEwoAOh/wq5evh+/W2eFPmJ0tm6AHAI74GkLWDyQBFeawhwYVrylGuSP6+9VGNOMjhDjhMQkJCXj++efx/PPPD0CLiOTH4AFcj0m/XzAbsFXX4YfhOjSbQicczP1rPg7+6hCMZWXIijfBl+lv39nWBlgs0rdkohjnF35sObQFDhxAhnMffPsOwpeoh3A40KwNH/hUW9SIa61FmyGn/Q/n4MHAoUMD2fQBo00L7Uf7yM/SsPCNOgBtYY/PNmWhTWMMGQ0arfjVjUhByqzArnRg/uxXkG3ODtlX8xSksvz5+TA5WjAydUT7ztpaID+/+xomRDFErVLDpDOhJqENYmg+kho9MGgMsDR6UWoNrdwckObwQ5OeibpVy9o3rl07YG0eaMn60Lm5Ft66EqnpQ4PrR6xxIft18Tqsum5V1HdsBhj4EMlWuKGlgY6aP/94LiqcFV32lzvKpayO0Sh1Zg4wGJjtIVmx2+yw6CxwZqci3mSBubYR8YnmYHmHztzxwPJrlyMrb1T7xkGDBqaxUSAzdyTiOwR6d89ODdnv9Xth0BgGuFW9w8CHSIZqm2sxY8WMsPtyk3Jh1BjR7G3usu+m1TehNsGPlpxM3Ln0hvYdeXnM9pCsBOpWHda0omVwFuIbXWgenIFj3fztPmaU+rBUOLp+YVAMW3sWaP5P/xay67nRv0eON/pvcwEMfIhkqcXbApfXFXbfhz9dh4+vWQej2w+jp9POpka0NDXAPzQfzZoO2xMSei7cRhRLjhcvtGvSYfGqUWuOR3NuNurMWiS6pfntOss2ZcOoMSJBk9B1pwI9vOaekHXbnP8PnosuiInPiagoYEhEfSvHkoOXL38ZU5aFDrtVCSBnzyHojzXC76rBJaWhj3tFcx1ydv8A1/D80A6eP/sZ5yEieehQvNAG4Ef1lTjkOARtYgZ0P3yLGd9Llc47e+mylzAuexxSRGxkNfqa0ZYOV3lZcD3Rrw3Zn9Qk0JzUDLezBtokE3Tx0VtImBkfIhkqd5Tjtndv67JdqAAkJqKxphLzty9EY+hnF97672JUqZqBYw3YvKTDjoMHpT4/cp2HiJSjU/HCtEw74ixWVKmbobJYpPnrtF0fNiZrTEx03B0oV0y6PWR9Yx6wfuGteL/5K2w5tAV+4e/mkZHHwIdIhvQaPYwaY9h9/qH5cBt0aPN6pLm7OlDHaaA5Y3j4TpsvvyyLUvxEsNul8gw+H8zWDKSl5sIZ50OGPgVOXfjh7JWNlQPfzggyasN/fgQ5GkJWE92A+f9/AY4jB2DSmaBWRW94Eb0ti2EujwuqR1RQPaKCyxO+nwVRf0oxpOD9n78fdl9tgh8po87F/YNu6LLv7i81SE6wApVhPuRvuw3gpL8kBzabVJ7h+Fxd2eZsDLUORZKz++HsCfHs29NRoj4pZN2QZINPp4HFmAy7LbpHgDLwIZKp7tLyM1bMwB5TK1Z/uTxkFmoAENVVUtCjD/MhL6N5iIiCZRucTph0JozSD4E60dTtcPbOdW2ULj/eFjI4Iq5NoCHOg6H6LNj00T0ClIEPkcK4vC60WS04lGVCSqcuOz6LFfV6hAxbDXr/fXZsJvnolPVBTQ1sI8d2O5ydIHUMP27YtoMhgyOMR47BXt6CYburQo6LRgx8iBTm5ctfxuiM0Xhw1suhQ9YBNHiO4YZVN6Cuua7rAxn0kNwEsj6VlYBWi0pDGxLdCMmEBtfd7q6PNxoBIaTFeII+MTEmXAFUY4Ip+Lv1jLNDOoHXJwCZF18J8/Czo34+v+huHRH1udvevQ3ljnIk6Sw4mBS6z9IMaB1NaPW1RqRtRAMqkPU5dgxwOmHZ+Q1mfA9MLWk/ZGoJMON7QPP5f6M+k9FXuiuAWqtqAerqgNdfBxwNIYMjEtqA1LfXx8TtcNbxIVIYY2AiwazMLqNXfjAB9177JAaZlVOKnxSuoADweoHWVpj2fQOHDkjoMA1Vow5IbQaEKVHKZASyPDLWXQHUVm8rkDoEyM+HanPo5KxZ6kQk6ixAZuZANbPXmPEhUph/Tl0mdXxOToGjUx/m30wFZq2dhW+qv4lM44gGmtUKTJwIFBYCJjPi/QjJZMT5pYKGumEjuj+HzAQKoDZrAeMD7duzLccnNrbbgbS0kFuCmbfdB3zwQUzcEmfgQ6QwyT8t7ras/LMfAP961Ytzh08e4FYRRZjNBpGfh9ROiY6UZqDUCkXNVdddAdTgPGXH/606Do5IPHeilD2LAQx8iJSm2dVtBeYcJ5CnSRvgBhFFB//QfDRrQzs3N2vQ7RB3uequAGrHecq6zOeXm9v/DesjDHyI5MTlAlQqaXGFL57Z8NzTPVZgvuMqfiyQMtUm+FFqlbI8AQesUNwQ9+4KoIbUBrPZQgdHWMOUu45S7Nx8qtxuwNN5SusOtFpANXDNITpVTTN/hvpPtkOXG7666uMrwwxlB4CKCiA5OSbu4ROdqsBIpsM2YOgx4KargTY18I1CE6BhC6B2+gz4tuO/TQwN52fgcyo6zOrbrdRUYOK5A9cmolPk0gCJ8UC4uZP9g9KQobUBdd913TltGmdoJ9kKjGQ6ZpD69Iw7DGzPUl62p0cdPwPMejRE/8j1sJjTPhWdZvXtsjgcgMmE2tb64EMqnBVhC0ERRUrjmpUYlD867D71P1Yg/oP14R948KB0+4wztJMMBUYyAUBJMrArXfpJHcjkM4CBz6nqMKsvDIb2xecDLBbUZVlDCj9NWz4Nk5dOZvBDA86oNeLQvYeQY84O2T57y69Q7pAmG23WhntkD5Yt4wztJEsdRzI16IHPhyBmMxr9SgafAQx8TlXn+V0CamqA/Hw0mxJCCj8dbDgIl9eFFm9sR8gUm8KNzggWMAxn9kxg6tTuT1hczBnaSZa6G8lEncjgM4CBT290mNUXgPTTaATs9pB0acCyq5chxxLbETLFphRDCpZfszxk2/s/f7/bmdtRfrjb0WDIzuYM7SRb3Y1kog5yc2XxGcDApzfCzOqL/HzAZgtb+Kl4TXHw1gLRQLPpQ4uQdBv0BCxZEn77Rx+xYzPJ2gnfG0q3fr0sPgMY+PRWx1l9j2d7gK7p0tyk3J5vLRBFm9mzu98X4x94RB25PC6oHlFB9YgKLk83mU5ql50ti88ABj69Fcj6OBzBbA/QNV26/qb12DhrI79JUFRq1gKpv+6wIScLPn1C2GPrRHPY7URy1jS/CWKBgFHL/j8dGbVGuB5oinQzeoV1fE5HYFbfTvOTdAxyss3ZfMNQVDJqjRALBFy7vwCeGitte20Vqg1qZI2a0OX4FjMLmhBR7GPgczoCs/p25nJBPHz813tcAAMfihIH7inrGohbO/QByspEljV8qdrgzMxERDGMt7qIKERwBuaT3E4kV03zm5ixlyFmfIhkruMHd8iHeGDeuaYO9+mbmqA/Fn5KFr3bBzQ2SvPR6cJNeEFEFP0Y+BApkd8vDUutqoIxUI8KgHHVWhifeSbsQ4z/3gIkWqT56IqKpClciIhiDAMfIqUqKwN27gwtRlZaCrS2hj3cqRVICIxiZNBDRDGKn15ESqRWA8OGASqVdOsqIDsbuOyysA9Z+Mmf4ExQBWtWERHFImZ8iOTOaITqYenXJmOHPj7nnANs3QpUdOi03NYmVWcNdxpHM5pzMmG22cLuJ5ITdmw+CUYjIESkW3HKmPEhUiqbDTjvPKmDc4DPB8TFhT38xnPnIONHYco3EBHFEAY+RHJSW9v+e0UFUFsbLFQYtvrsOedIt7cCGhuBW28NOWTaTcCtlwO/O7IM5XEs60+kJM1awOVukjI7RnlkwBj49INuhw8T9afaWmDGjPb1adOAyZNDg6EAt1sKcjQaYOTI9u0uF3DuuSGHZjZKH361mRbOOUdEMY99fIjkoqVFClwCDh6URmC1tIQe5/cDW7YANcfr9XQMjFyu9u3HWdzAnjTgH7es5ZxzRBTzmPEhkoucHODll0O3LVsmbe9IrQZMJmmCXbMZyMxs3zdqlBQYdfB1GlCSDCTrk/up4UQUbXq8RR7jmPEhkovycuC220K3FRcDmzZ1DX7sdqmOj88HJCcD69YBP/wgdXju2NkZwLYc6VYXEZEcMPAhkgu9PrTzYW6utK4P0y/HZpNug+3eLWV9TCbgrLOkAoas00MKFchykLzxVheRXKSkAO+/376+fr00LUVKN/1y7HYpMApMWeF0Suv5+cFDjA8w20NE8sLAh0hOOgY52dndBz1Ae9Yn0Jm5pkZa76ZAYV1LXR82lIgoMhj4nCK3z41Gd2O3i9vnDltLhSgqBbI+lZXSzx5uc1375rWobeb/ZSKKbezjcwr8wo8th7agprmm22NSvVoUFT/YHlFOmyb1n+jplgNRpASyPjt2AGPHSuuu8EUKXV4XWrwtYfcREcUKBj6nQK1Sw6QzoeRYCXLMOV32lzvLka/KgtrV3L6xu1oqRNGioADweqWfPXj4oodZwJCIYh5vdZ0iu80Oi84Cn98Hg8YQXHx+Hyw6C+xnTjy5WipE0cJqBSZOlH724LZ1t+GCxRfwdhcRxTQGPqfIprch35qPGlfo7a4aVw3yrfmw1brC11IpLx/AVhL1PT/8aPW28nYXEcU0Bj69YLfZYdQa4XRLw4CdbieMWiPsNvup1VIhijHLr12OHAuzl0QUuxj49ELnrE8w26O3nXotFaIY8vO3f45yB7OXRBS7GPj0UiDrU+msbM/2BJxKLRWiaGM0wuVugurh0OKFaqhxtOkomr3N3T6UiCjaMfDppUDWx+F2tGd7iGTCqDVi5+07Q7b54UdGYgYMGkOEWkXUtzp21K9wVrDjvkJwOPtpKLAVwNvmRYGt52HARLHojOQzumxjHx+Si9rmWsxYMSO4Pm35NJi0JmyctREpBmbp5YwZn9Ng1VsxcfBEWPU9DwMmikUVzoou24rXFLOPD8lCi7cFLm97sc6DDQdZpFMhGPgQUVgJ8Qkh64Mtg2HUGFnEkGQhx5KDly8Prbm27OplzGgqAAMfIgqrc7p/7Q1reRuAZKPcUY7b3g2tucaMpjKwjw8RBbl9bnjaPAAAlyd0zi6LzgKT1hSJZhH1Ob1GD6OmveZablIuM5oKwcCHiAB0nYS31dsasn9D6QbYk+0oyiuCWsVkMcW2FEMK3v/5+8j9ay4AYP1N65FsSGZGUwH46UVEANon4XW4HTDrzDDpQrM7jZ5GmHQmBj0kGx2DnGxzNoMeheAnGBEFdZ6EtyOT1hRaqJOIKAYx8CGSE6MREEJaOs4Zd5K6m4QXkPpAsFAnEcU6Bj5EFCIwHUujuzFke25SbmQaRETUhxj4EFGIQNan0dOI1devDm5noU4ikgMGPkTURSDrc6TxSKSbQkTUpxj4EFEXgayP0+2MdFOIiPoU6/j0h0AHU6IYVmArQHVTdaSbQUTUp5jxIaKwrHorivKKgutG7amPEiMiijYMfIiIiEgxIhr4LFy4EOPGjYPJZEJaWhquuuoq7Nu3L+SYl156CZMmTYLZbIZKpUJDQ0NkGktEREQxL6KBzyeffIK5c+di69at2LBhA7xeLy699FK4XO2TIzY3N2PatGl44IEHIthSImUyao0QCwTEAsFbXUQkCxHt3Lx+/fqQ9SVLliAtLQ1ffPEFLrzwQgDAvffeCwDYtGnTALeOiIiI5CaqRnU5HA4AgM3W+7L4brcbbrc7uO50cjguERERSaKmc7Pf78e9996LiRMn4qyzzur1eRYuXAiLxRJccnJy+rCVREREFMuiJvCZO3cu9uzZg5UrV57WeebPnw+HwxFcysvL+6iFREREFOui4lbXXXfdhffeew+ffvopsrOzT+tcOp0OOp2uj1pGREREchLRwEcIgbvvvhtr1qzBpk2bkJeXF8nmEBERkcxFNPCZO3cuVqxYgXfeeQcmkwlVVVUAAIvFAr1eDwCoqqpCVVUVSkpKAAC7d++GyWTC4MGDT6sTNBERESlPRPv4vPDCC3A4HJg0aRIyMzODyxtvvBE85sUXX0RhYSH+53/+BwBw4YUXorCwEOvWrYtUs4mIiChGqYSQ92yaTqcTFosFDocDZrM50s0hIqIo4fK4kLgwEQDQNL+JRTqjTH/9/Y6aUV1ERERE/Y2BDxERESkGAx8iIiJSDAY+REREpBgMfIiIiEgxGPgQERGRYkTFlBVEREQDzag1QiyQdUUXCoMZHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUIz7SDehvQggAgNPpjHBLiIiI6GQF/m4H/o73FdkHPo2NjQCAnJycCLeEiIiITlVjYyMsFkufnU8l+jqUijJ+vx+HDx+GyWSCSqWKdHNOmdPpRE5ODsrLy2E2myPdnAGl1GtX6nUDyr12pV43oNxrV+p1Ayd/7UIINDY2IisrC2p13/XMkX3GR61WIzs7O9LNOG1ms1lxb44ApV67Uq8bUO61K/W6AeVeu1KvGzi5a+/LTE8AOzcTERGRYjDwISIiIsVg4BPldDodFixYAJ1OF+mmDDilXrtSrxtQ7rUr9boB5V67Uq8biPy1y75zMxEREVEAMz5ERESkGAx8iIiISDEY+BAREZFiMPAhIiIixWDg08cefvhhqFSqkGX48OHB/VVVVSguLkZGRgaMRiPOOeccvP322yHnyM3N7XKOxx9/POSYr7/+GhdccAESEhKQk5ODRYsWdWnLqlWrMHz4cCQkJGDUqFH45z//2T8XfdzpXvumTZu6PD6wbN++HQBw8ODBsPu3bt0asWs/0XWXlpbi6quvRmpqKsxmM66//nocPXo05Bz19fW46aabYDabkZSUhDlz5qCpqSnkmFh8zU907QcPHsScOXOQl5cHvV6PoUOHYsGCBfB4PCHHyPE1l+v7/ETXHqvvcwCorKzEzTffjOTkZOj1eowaNQo7duwI7hdC4KGHHkJmZib0ej2mTJmC/fv3h5wjVt/rp3vtUfVeF9SnFixYIEaOHCmOHDkSXGpqaoL7L7nkEjFu3Dixbds2UVpaKh599FGhVqvFzp07g8cMGTJE/PGPfww5R1NTU3C/w+EQ6enp4qabbhJ79uwRr7/+utDr9eJ///d/g8d89tlnIi4uTixatEh8++234g9/+IPQaDRi9+7dUXvtbrc75LFHjhwRt912m8jLyxN+v18IIcSBAwcEAPHRRx+FHOfxeCJ27T1dd1NTk8jPzxdXX321+Prrr8XXX38trrzySjFu3DjR1tYWPMe0adPE6NGjxdatW8XmzZuF3W4XN954Y3B/LL7mJ3PtH3zwgZg9e7b48MMPRWlpqXjnnXdEWlqa+NWvfhV8Drm+5nJ8n5/Mtcfq+7y+vl4MGTJEzJ49W2zbtk2UlZWJDz/8UJSUlASPefzxx4XFYhFr164VX331lbjiiitEXl6eaGlpCR4Ti+/1vrj2aHqvM/DpYwsWLBCjR4/udr/RaBT/+Mc/QrbZbDbxf//3f8H1IUOGiGeeeabbc/z9738XVqtVuN3u4Lb7779fDBs2LLh+/fXXixkzZoQ8bvz48eKOO+44ySs5dX1x7R15PB6Rmpoq/vjHPwa3Bd4YX375ZbfPM9DX3tN1f/jhh0KtVguHwxHc1tDQIFQqldiwYYMQQohvv/1WABDbt28PHvPBBx8IlUolKisrhRCx+ZqfzLWHs2jRIpGXlxdcl+NrLoQ83+e9ec1j5X1+//33ix//+Mfd7vf7/SIjI0M8+eSTwW0NDQ1Cp9OJ119/XQgRu+/1vrj2cCL1Xuetrn6wf/9+ZGVlIT8/HzfddBMOHToU3Hf++efjjTfeQH19Pfx+P1auXInW1lZMmjQp5ByPP/44kpOTUVhYiCeffBI+ny+47/PPP8eFF14IrVYb3DZ16lTs27cPx44dCx4zZcqUkHNOnToVn3/+eT9ccbu+uPaAdevWoa6uDrfcckuXfVdccQXS0tLw4x//GOvWrQvZF4lr7+663W43VCpVSKGuhIQEqNVqbNmyJdjepKQkjB07NnjMlClToFarsW3btuAxsfaan8y1h+NwOGCz2bpsl9NrHiC393lvXvNYeZ+vW7cOY8eOxXXXXYe0tDQUFhbi//7v/4L7Dxw4gKqqqpA2WSwWjB8/PtimWH2v98W1hxOp9zoDnz42fvx4LFmyBOvXr8cLL7yAAwcO4IILLkBjYyMA4M0334TX60VycjJ0Oh3uuOMOrFmzBna7PXiOe+65BytXrsTHH3+MO+64A4899hh++9vfBvdXVVUhPT095HkD61VVVT0eE9jfH/ri2jt65ZVXMHXq1JBJZhMTE/H0009j1apVeP/99/HjH/8YV111VcibY6CvvafrPu+882A0GnH//fejubkZLpcLv/71r9HW1oYjR44E25uWlhZyzvj4eNhsthO+noF9kbhu4PSvvbOSkhL87W9/wx133BHcJsfXHJDn+7w3r3msvM/LysrwwgsvoKCgAB9++CF+8Ytf4J577sHSpUuD7Qm0obs2xep7vS+uvbNIvtdlPzv7QJs+fXrw97PPPhvjx4/HkCFD8Oabb2LOnDl48MEH0dDQgI8++ggpKSlYu3Ytrr/+emzevBmjRo0CAMybNy/kHFqtFnfccQcWLlwY1eXN++LaAyoqKvDhhx/izTffDNmekpIS8u8zbtw4HD58GE8++SSuuOKK/r3AbpzouletWoVf/OIXePbZZ6FWq3HjjTfinHPOgVod+987+vLaKysrMW3aNFx33XX4n//5n+B2ub7mcn2fn8prHkvvc7/fj7Fjx+Kxxx4DABQWFmLPnj148cUXMWvWrIi0aaD09bVH+r3OwKefJSUl4YwzzkBJSQlKS0vx3HPPYc+ePRg5ciQAYPTo0di8eTOef/55vPjii2HPMX78ePh8Phw8eBDDhg1DRkZGlxEigfWMjIzgz3DHBPYPhNO59sWLFyM5Ofmk/rOPHz8eGzZsCK5H+to7XjcAXHrppSgtLUVtbS3i4+ORlJSEjIwM5OfnB9tbXV0dcg6fz4f6+voTvp6BfT0dE6nXHDjxtQccPnwYRUVFOP/88/HSSy+d8Hli/TUPRw7vc+DUrj2W3ueZmZkYMWJEyLYzzzwzODI18LxHjx5FZmZmSJt+9KMfBY+Jxfd6X1x7QDS812P/K2eUa2pqQmlpKTIzM9Hc3AwAXb75xMXFwe/3d3uOXbt2Qa1WB1OkEyZMwKeffgqv1xs8ZsOGDRg2bBisVmvwmH//+98h59mwYQMmTJjQJ9d1Mnp77UIILF68GDNnzoRGoznh8+zatSvkzRbpa+943R2lpKQgKSkJGzduRHV1dfDDfsKECWhoaMAXX3wRPHbjxo3w+/0YP3588JhYe8076u7aAenb36RJkzBmzBgsXrz4pDJhsf6ahyOH93lHJ7r2WHufT5w4Efv27QvZ9v3332PIkCEAgLy8PGRkZIS0yel0Ytu2bcE2xep7vS+uHYii9/pJd4Omk/KrX/1KbNq0SRw4cEB89tlnYsqUKSIlJUVUV1cLj8cj7Ha7uOCCC8S2bdtESUmJeOqpp4RKpRLvv/++EEKI//znP+KZZ54Ru3btEqWlpeK1114TqampYubMmcHnaGhoEOnp6aK4uFjs2bNHrFy5UhgMhi7DHePj48VTTz0l9u7dKxYsWNDvw1xP99oDPvroIwFA7N27t8tzLFmyRKxYsULs3btX7N27V/z5z38WarVavPrqqxG79p6uWwghXn31VfH555+LkpISsWzZMmGz2cS8efNCzjFt2jRRWFgotm3bJrZs2SIKCgpChrjG4mt+MtdeUVEh7Ha7uPjii0VFRUXIENYAOb7mcn2fn8y1B8Ta+/y///2viI+PF3/+85/F/v37xfLly4XBYBCvvfZa8JjHH39cJCUliXfeeSc4lD/ccPZYe6/3xbVH03udgU8fu+GGG0RmZqbQarVi0KBB4oYbbgipdfD999+La665RqSlpQmDwSDOPvvskCHeX3zxhRg/frywWCwiISFBnHnmmeKxxx4Tra2tIc/z1VdfiR//+MdCp9OJQYMGiccff7xLW958801xxhlnCK1WK0aOHNklwOhrp3vtATfeeKM4//zzwz7HkiVLxJlnnikMBoMwm83i3HPPFatWrepy3EBe+4mu+/777xfp6elCo9GIgoIC8fTTTwfrlQTU1dWJG2+8USQmJgqz2SxuueUW0djYGHJMLL7mJ7r2xYsXCwBhlwA5vuZyfp+fzP93IWLvfS6EEO+++64466yzhE6nE8OHDxcvvfRSyH6/3y8efPBBkZ6eLnQ6nbj44ovFvn37Qo6J1ff66V57NL3XVUIIcfL5ISIiIqLYxT4+REREpBgMfIiIiEgxGPgQERGRYjDwISIiIsVg4ENERESKwcCHiIiIFIOBDxERESkGAx8iIiJSDAY+RBRVZs+eDZVKhTvvvLPLvrlz50KlUmH27NnBY6+66qouj1WpVNBoNEhPT8cll1yCV199tcf58IhIORj4EFHUycnJwcqVK9HS0hLc1traihUrVmDw4ME9PnbatGk4cuQIDh48iA8++ABFRUX45S9/icsuuww+n6+/m05EUY6BDxFFnXPOOQc5OTlYvXp1cNvq1asxePBgFBYW9vhYnU6HjIwMDBo0COeccw4eeOABvPPOO/jggw+wZMmSfm45EUU7Bj5EFJVuvfVWLF68OLj+6quv4pZbbunVuSZPnozRo0eHBFJEpEwMfIgoKt18883YsmULfvjhB/zwww/47LPPcPPNN/f6fMOHD8fBgwf7roFEFJPiI90AIqJwUlNTMWPGDCxZsgRCCMyYMQMpKSm9Pp8QAiqVqg9bSESxiIEPEUWtW2+9FXfddRcA4Pnnnz+tc+3duxd5eXl90SwiimG81UVEUWvatGnweDzwer2YOnVqr8+zceNG7N69G9dee20fto6IYhEzPkQUteLi4rB3797g7yfD7XajqqoKbW1tOHr0KNavX4+FCxfisssuw8yZM/uzuUQUAxj4EFFUM5vN3e7z+/2Ijw/9GFu/fj0yMzMRHx8Pq9WK0aNH49lnn8WsWbOgVjPJTaR0KiGEiHQjiIh6Y9q0abDb7Xjuueci3RQiihH8+kNEMefYsWN47733sGnTJkyZMiXSzSGiGMJbXUQUc2699VZs374dv/rVr3DllVdGujlEFEN4q4uIiIgUg7e6iIiISDEY+BAREZFiMPAhIiIixWDgQ0RERIrBwIeIiIgUg4EPERERKQYDHyIiIlIMBj5ERESkGAx8iIiISDH+H0pa67bQukkqAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADKEklEQVR4nOz9d3yjZ5no/3/Ue7VluVd5ep9MeiaZkA0JkEBoOcCG0JblR9tNlhbOHljOdw9ZFsgue2hLC9lQwkIogeEMAdJmkknCTCbJVE+xZ9y7rW713x+PJVtu4/HYY9m+3q+XXrakR9JjydJz6bqv+7pVmUwmgxBCCCHEMqFe7B0QQgghhJhPEtwIIYQQYlmR4EYIIYQQy4oEN0IIIYRYViS4EUIIIcSyIsGNEEIIIZYVCW6EEEIIsaxIcCOEEEKIZUWCGyGEEEIsKxLcCCHEBDfccAM33HDDebd76qmnUKlUPPXUUwu+T0KI2ZPgRohlRKVSnff0nve8Z9bbgXKgn26bEydO5B77//yf/8Ptt9+O1+tFpVLxT//0T9Pu5yOPPMK2bdswGo14PB7e//7309/fv8DPjhBipdAu9g4IIebPww8/PO11//RP/8SZM2dYvXp13nYtLS187nOf44Mf/CDXXXdd7vKGhobc75WVldx///2T7rO8vDz3+z/+4z9SWlrK1q1b+cMf/jDtfnzrW9/iwx/+MK95zWt44IEHaG9v52tf+xoHDhzghRdewGg0zvrvXSiPP/74Yu+CEOIiSHAjxDLy13/911Ne/r3vfY8zZ87wsY99jPvuuy/vugMHDvC5z32Oq666atrbOxyOaa/Lamlpoba2lv7+fjwez5TbxONxPvvZz7Jz507++Mc/olKpALj66qu57bbb+O53v8vHPvax8/2ZC06v1y/2LgghLoIMSwmxzB09epSPf/zjbN26lS9/+csL9ji1tbXn3ebIkSMMDw9z55135gIbgDe84Q1YrVYeeeSR3GXxeJzPfe5zbN++HYfDgcVi4brrruPJJ5+cdL9f+cpXuPrqqykqKsJkMrF9+3Z+8YtfTNruwQcf5MYbb6SkpASDwcC6dev41re+NWm7qWpu2tvbedOb3oTFYqGkpIR77rmHWCyWt81//Md/oNFoGB4ezl321a9+FZVKxb333pu7LJVKYbPZ+PSnPw3Atm3bePOb35x3Xxs3bkSlUvHqq6/mLvvZz36GSqXi+PHjk/ZZCDFGMjdCLGORSIS3v/3taDQaHnnkEQwGw5zuJ5VKTaqJMRqNWK3WC7qfbDBgMpkmXWcymTh06BDpdBq1Wk0gEOB73/se73jHO/ibv/kbgsEg3//+93nta1/Liy++yJYtW3K3/drXvsbtt9/Ou971LuLxOI888ghve9vb+N3vfsfrX//63Hbf+ta3WL9+PbfffjtarZbf/va3fPjDHyadTvORj3xk2v2ORqO85jWvobW1lY9//OOUl5fz8MMP88QTT+Rtd91115FOp9m3bx9veMMbANi7dy9qtZq9e/fmtjt06BChUIidO3fmbvfTn/40d/3g4CBHjx7N3W7Tpk25+/J4PKxdu3a2T7kQK1NGCLFsve9978sAmYceemjabf7yl79kgMyDDz445fXXX399Bph0uvvuu6fcvq+vLwNkPv/5z095nUqlyrz//e/Pu/zEiRO5++3v789kMplMMpnMxGKxvO2GhoYyXq838773vS/v8kgkknc+Ho9nNmzYkLnxxhtn3C6TyWRe+9rXZurr6yf9zddff33u/L//+79ngMx///d/5y4Lh8MZn8+XATJPPvlkJpPJZFKpVMZut2c+9alPZTKZTCadTmeKiooyb3vb2zIajSYTDAYzmUwm88ADD2TUanVmaGgok8lkMj//+c8zQObYsWOZTCaTeeyxxzIGgyFz++23Z+68887cY27atClzxx13TPobhBD5ZFhKiGXqJz/5CT/4wQ+46667ePe7331R91VbW8sf//jHvNOnPvWpC76f4uJi3v72t/PQQw/x1a9+lebmZvbu3cudd96JTqcDlCwJgEajydW+pNNpBgcHSSaTXHbZZbz00kt59zs+EzQ0NITf7+e6666bcTu/309/fz/XX389zc3N+P3+aff797//PWVlZbz1rW/NXWY2m/ngBz+Yt51arebqq6/mmWeeAeD48eMMDAzwmc98hkwmw/79+wElA7NhwwacTidArpA7e7u9e/eyY8cO/uqv/iqX8RkeHubIkSN5Rd9CiKlJcCPEMnTq1Ck+9KEPsWrVKr75zW9e9P1ZLBZuuummvNO6devmdF//+Z//yete9zo+8YlP0NDQwM6dO9m4cSO33XYbQN5Q10MPPcSmTZswGo0UFRXh8XjYvXv3pEDkd7/7HVdeeSVGoxG3243H4+Fb3/rWpO2effZZbrrpJiwWC06nE4/Hw2c/+1mAGYObc+fO4fP58uqEAFavXj1p2+uuu46DBw8SjUbZu3cvZWVlbNu2jc2bN+cClX379uUFKV6vl8bGxtz1e/fu5brrrmPnzp10dnbS3NzMs88+SzqdluBGiFmQ4EaIZSYWi3HnnXfmak8utC5moTkcDn7zm99w7tw5nn76ac6ePcvDDz9MV1cXHo8nl8340Y9+xHve8x4aGhr4/ve/z549e/jjH//IjTfeSDqdzt3f3r17uf322zEajXzzm9/k97//PX/84x955zvfSSaTyW135swZXvOa19Df388DDzzA7t27+eMf/8g999wDkHefF+Paa68lkUiwf//+XJACStCzd+9eTpw4QV9f36Qg5dprr2Xv3r1Eo1EOHjzIddddl8vu7N27l71792K1Wtm6deu87KcQy5kUFAuxzHziE5/g0KFDfO1rXyvoA2F1dTXV1dWAMuRy8OBB3vKWt+Su/8UvfkF9fT2//OUv8zImn//85/Pu59FHH8VoNPKHP/whr2D6wQcfzNvut7/9LbFYjMceeyz3uMCUs68mqqmp4ciRI2Qymbx9aWpqmrTt5Zdfjl6vzwUkn/zkJwHYuXMn3/3ud/nzn/+cOz/eddddx4MPPsgjjzxCKpXi6quvRq1W54Ke48ePc/XVV6PRaM67v0KsdJK5EWIZ+dWvfsXXv/51br/9dj7+8Y8v9u7M2n333UcymcxlUYDcQXx89uWFF17I1a2M306lUpFKpXKXnT17ll//+teTtpt4f36/f1IQNJXXve51dHZ25k0vj0QifOc735m0rdFoZMeOHfz0pz+ltbU1L3MTjUb5j//4DxoaGigrK8u7XXa7L33pS2zatAmHw5G7/M9//jMHDhyQISkhZkkyN0IsE11dXbz//e9Ho9Hwmte8hh/96EdTbtfQ0MBVV10174//8MMPc+7cOSKRCKAUx/7zP/8zAHfddRc1NTUA/Mu//AtHjhzhiiuuQKvV8utf/5rHH3+cf/7nf2bHjh25+3vDG97AL3/5S+644w5e//rX09LSwre//W3WrVtHKBTKbff617+eBx54gFtuuYV3vvOd9Pb28o1vfAOfz5fXI+bmm29Gr9dz22238bd/+7eEQiG++93vUlJSQldX14x/29/8zd/w9a9/nXe/+90cPHiQsrIyHn74Ycxm85TbX3fddfzLv/wLDoeDjRs3AlBSUsLq1atpamrKLW0xns/no7S0lKamprxGhjt37sz1w5HgRohZWtS5WkKIefPkk09OOWV74mniFO7ZTAVfv379eR9/uinjjJsqnclkMr/73e8yl19+ecZms2XMZnPmyiuvzJtinZVOpzNf/OIXMzU1NRmDwZDZunVr5ne/+13m7rvvztTU1ORt+/3vfz/T2NiYMRgMmTVr1mQefPDBzOc///nMxI+4xx57LLNp06aM0WjM1NbWZr70pS9lfvCDH2SATEtLS97fMn4qeCaTyZw7dy5z++23Z8xmc6a4uDjzd3/3d5k9e/ZM+vsymUxm9+7dGSBz66235l3+gQ98IANkvv/970/5HL7tbW/LAJmf/exnucvi8XjGbDZn9Hp9JhqNTnk7IUQ+VSYzLkcrhBCC6667DoPBwJ/+9KfF3hUhxBxIzY0QQkzQ1dVFcXHxYu+GEGKOJLgRQohRzz33HJ/4xCdy08aFEEuTDEsJIcSo9773vfy///f/eMc73sGXv/xltFqZcyHEUiTBjRBCCCGWFRmWEkIIIcSyIsGNEEIIIZaVZT+gnE6n6ezsxGazTVr0TgghhBCFKZPJEAwGKS8vR62+sFzMsg9uOjs7qaqqWuzdEEIIIcQctLW1UVlZeUG3WfbBjc1mA5Qnx263L/LeCCGEEGI2AoEAVVVVueP4hVj2wU12KMput0twI4QQQiwxcykpkYJiIYQQQiwrEtwIIYQQYlmR4EYIIYQQy8qi1tw888wzfPnLX+bgwYN0dXXxq1/9ije96U152xw/fpxPf/rTPP300ySTSdatW8ejjz5KdXX14uy0EEIIcYmkUikSicRi78aC0Ol0aDSaBbnvRQ1uwuEwmzdv5n3vex9vfvObJ11/5swZrr32Wt7//vfzhS98AbvdztGjRzEajYuwt0IIIcSlkclk6O7uZnh4eLF3ZUE5nU5KS0vnvQ9dwawtpVKpJmVu/sf/+B/odDoefvjhOd9vIBDA4XDg9/tltpQQQogloauri+HhYUpKSjCbzcuuCW0mkyESidDb24vT6aSsrGzSNhdz/C7YqeDpdJrdu3fzqU99ite+9rUcOnSIuro67rvvvklDV+PFYjFisVjufCAQuAR7K4QQQsyPVCqVC2yKiooWe3cWjMlkAqC3t5eSkpJ5HaIq2ILi3t5eQqEQ//Iv/8Itt9zC448/zh133MGb3/xmnn766Wlvd//99+NwOHIn6U4shBBiKcnW2JjN5kXek4WX/Rvnu66oYIObdDoNwBvf+EbuuecetmzZwmc+8xne8IY38O1vf3va29133334/f7cqa2t7VLtshBCCDFvlttQ1FQW6m8s2GGp4uJitFot69aty7t87dq17Nu3b9rbGQwGDAbDQu+eWEpiMYjHp79erwf5nxFCiGWjYIMbvV7Pjh07aGpqyrv85MmT1NTULNJeiSUnnYZ9+6Cvb/ptPB7YtQsucNVZIYQQhWlRg5tQKMTp06dz51taWnj55Zdxu91UV1fzyU9+kjvvvJOdO3eya9cu9uzZw29/+1ueeuqpxdtpsbSo1WCzwenTMFX9VVsb1NdLYCOEEMvIogY3Bw4cYNeuXbnz9957LwB33303P/zhD7njjjv49re/zf3338/HP/5xVq9ezaOPPsq11167WLssliKfD5qbIZmE8dMJAwFwOJTrhRBCLBuLGtzccMMNnK/Nzvve9z7e9773XaI9EsuS261kZw4fzg9u+vpg40bleiGEEBctGAzyoQ99iF//+tfY7XY+9alP8Zvf/IYtW7bw7//+75dsPyQXL1YGnw8sFiVbA8pPi0WyNkKIZa0/0k+bX5k13OZvoz/Sv6CPd++99/Lss8/y2GOP8cc//pG9e/fy0ksvLehjTqVgC4qFmFcTszeStRFCLHP9kX5ufOhGwokwD9/xMHf96i4sOgtP3P0ExebieX+8YDDIQw89xE9+8hNe85rXAPDggw9SXl4+7491PpK5EStHNnvT0SFZGyHEshdNRAknwjQPNXPND66heaiZcCJMNBFdkMdrbm4mkUhw+eWX5y5zOBysXr16QR5vJhLciJUjm73x+5WfkrURQixjVY4qHr4jf23Gh+94mCrH8u/cL8GNWFkaG2HzZuWnEEIsY23+Nu761V15l931q7tyNTjzrb6+Hp1Ox1/+8pfcZX6/n5MnTy7I481EghuxsrhccM01yk8hhFjGTDoTFp2Felc9z77vWepd9Vh0Fkw604I8ns1m4+677+aTn/wkTz75JEePHuX9738/arX6ki8lIQXFQgghxDJUbC7mibufIJqIUuWo4qm7n8KkMy1IMXHWAw88wIc+9CHe8IY35KaCt7W1YTQaF+wxpyLBjRBCCLFMjQ9kLkWtjc1m48c//nHufDgc5gtf+AIf/OAHF/yxx5PgRgghhBDz4tChQ5w4cYLLL78cv9/P//7f/xuAN77xjZd0PyS4EUIIIcS8+cpXvkJTUxN6vZ7t27ezd+9eiosXbihsKhLcCDFRLAbx+PTX6/VgMFy6/RFCiCVi69atHDx4cLF3Q4IbIfKk07Bvn9LBeDoeD+zaJSuJCyFEgZJPZyHGU6vBZlMa/dntk09+v3K9BDZCCFGw5BNaiIl8PnA4IJkEs3nslEwql8uyDUIIUdAkuBFiouwyDROHpvr6ZNkGIYRYAiS4EWIq2UU2AwHlfCAgi20KIcQSIcGNEFOZmL2RrI0QQiwZEtwIMZ1s9qajQ7I2QgixhEhwI8R0stkbv1+yNkIIsYRInxshZtLYCImE8lMIIcQFicfj6PX6S/64EtwIMROXC665ZrH3QgghloQbbriBDRs2oNVq+dGPfsTGjRt58sknL/l+yLCUEEIIsVz190Nbm/J7W5tyfoE99NBD6PV6nn32Wb797W8v+ONNRTI3QgghxHLU3w833gjhMDz8MNx1lzI54oknYAEXsmxsbORf//VfF+z+Z0OCGyGEEGI5ikaVwKa5eWx4vb5euXwBbd++fUHvfzZkWEoIIYRYjqqqlIzNeA8/rFy+gCwWy4Le/2xIcCOEEEIsR21tylDUeHfdNVaDs4xJcCOEEEIsRyaTUmNTXw/PPqv8tFiUy5c5qbkRQgghlqPiYqV4OBpVhqKeekoJbBawmLhQSHAjhBBCLFfjA5kFrrUBeOqppxb8MWZDhqWEEEIIsaxIcCOEEEKIZUWCGyGEEEIsKxLcCCGEEGJZkYJiIeYiFoN4fPrr9XowGC7d/gghlp1MJrPYu7DgFupvlOBGiAuVTsO+fdDXN/02Hg/s2gVqSY4KIS6MTqcDIBKJYFrmPWkikQgw9jfPFwluhLhQajXYbHD69NRTK9valGZZEtgIIeZAo9HgdDrp7e0FwGw2o1KpFnmv5lcmkyESidDb24vT6USj0czr/UtwI8Rc+HzKYnTJJNjtY5cHAuBwKNcLIcQclZaWAuQCnOXK6XTm/tb5JMGNEHPhdivZmcOH84Obvj7YuFG5Xggh5kilUlFWVkZJSQmJRGKxd2dB6HS6ec/YZElwI8RcZbM3gYAS4AQCyrotkrURQswTjUazYAHAciZFAULMVTZ7ky0s7utTzkvWRgghFpUEN0JcDJ9PydZ0dEjWRgghCoQEN0JcjGz2xu+XrI0QQhQIqbkR4mI1NkIiofwUQgix6CS4EeJiuVxwzTWLvRdCCCFGybCUEEIIIZYVCW6EEEIIsaxIcCOEEEKIZUWCGyGEEEIsK1JQLIQQQiwzsWSMeCo+7fV6jR6D1nAJ9+jSkuBGCCGEWEbSmTT7WvfRF+mbdhuP2cOuul2oVctzAGd5/lVCCCHECqVWqbEZbPhjfuwG+6STP+bHZrAt28AGJLgRQgghlh2f24fD4CCZTmLWmXOnZDqJw+DA517eS8VIcCOEEEIsM26Tm3pXPX3h/KGpvnAf9a563KblvVSMBDdCCCHEMuRz+7DoLQRiAQACsQAWvWXZZ21AghshhBBiWZqYvVkpWRtY5ODmmWee4bbbbqO8vByVSsWvf/3rvOtVKtWUpy9/+cuLs8NCCCHEEpLN3nQEOlZM1gYWObgJh8Ns3ryZb3zjG1Ne39XVlXf6wQ9+gEql4i1vecsl3lMhxAWLxSAYnP4Uiy32Hgqx7GWzN/6Yf8VkbWCR+9zceuut3HrrrdNeX1pamnf+N7/5Dbt27aK+vn6hd00IcTHSadi3D/qm77OBxwO7doH6PN+xYjGIT9+MDL0eDMu3GZkQF6vR3UgilaDR3bjYu3LJLJkmfj09PezevZuHHnposXdFCHE+ajXYbHD6NFRVTb6+rQ3q688f2MxnkCTECuUyubim+prF3o1LaskENw899BA2m403v/nNM24Xi8WIjUt3BwKBhd41IcRUfD5oboZkEuz2scsDAXA4lOvPZ76CJCHEirJkPhF+8IMf8K53vQuj0Tjjdvfffz8OhyN3qprqA1EIsfDcbiXwmJh16etTLnfPcuzf51OCoWQSzOaxUzI5+yBJCLGiLIngZu/evTQ1NfGBD3zgvNved999+P3+3Kmtre0S7KEQYko+H1gsSrYGlJ8Wy4UFJPMVJAkhVowlEdx8//vfZ/v27WzevPm82xoMBux2e95JCLFIJgYmcw1I5iNIEkKsGIsa3IRCIV5++WVefvllAFpaWnj55ZdpbW3NbRMIBPj5z38+q6yNEKIAZQOTjo65ByTzFSQJIVaERQ1uDhw4wNatW9m6dSsA9957L1u3buVzn/tcbptHHnmETCbDO97xjsXaTSHExcgGJn7/xQUk8xEkCSFWBFUmk8ks9k4spEAggMPhwO/3yxCVEItlaAiOHYN168Dlmvv9vPgiHDgAl10Gl18+f/snhCg4F3P8XjJTwYUQS5jLBdfMQ5+NxkZIJJSfQggxDQluhBBLx3wFSUKIZW1JzJYSQgghhJgtCW6EEEIIsaxIcCOEEEKIZUWCGyGEEEIsKxLcCCGEEGJZkeBGCCGEEMuKBDdCCCGEWFYkuBFCCCHEsiLBjRBCCCGWFQluhBBCCLGsSHAjhBBCiGVFghshhBBCLCsS3AghhBBiWZHgRgghhBDLigQ3QgghhFhWJLgRQgghxLIiwY0QQgghlhUJboQQQgixrEhwI4QQQohlRYIbIYQQQiwrEtwIIYQQYlmR4EYIIYQQy4oEN0KI5SkcBpVKOYXDi703QohLSIIbIYQQQiwrEtwIIYQQYlmR4EYIsTz194/93t6ef14IsaxJcCPmn9Q6iMXW3w+vf/3Y+VtugRtvlABHiBVCghshxPITjeYH1mfPKuej0UXbJSHEpSPBjRBi+amqgu99L/+yhx9WLhdCLHsS3Aghlp+2NvjAB/Ivu+su5XIhxLInwY0QonDNtX7LZAKLZex8ba1y3mSa910UQhQeCW7E/JNZKmKxFRfD7t1j5/fsgSeeUC4XQix7EtyI+SWzVEShGB/IVFZKYCPECqJd7B0Qy8xUs1Tq62WWipibcUFxsOUEuIugqChvE71Gj0FruNR7JoQoYBLciPmVnaVy001jly32LJVYDOLx6a/X68EgB8eC099P+vWvy6WX93zkFlIWE/zjP4LdzkhihPc+9l4AAp8JYDPY8m9vsUAmc2n3WQhRECS4maNYMkY8Nf0Bc8V+m5xulspTTy1OgJNOw7590Nc3/TYeD+zaBWoZpS0o0SjqcCR31t7eT6rcCxjAYEen1uWuU6vktRNCjJHgZg7SmTT7WvfRF5n+gOkxe9hVt2vlfegW2iwVtRpsNjh9eurgqq1NGTaTwKbwTMgCJtVg+fQ/QnkNAKFYaDH3TghRwOQTfQ7UKjU2gw1/zI/dYJ908sf82Ay2lRfYQGHOUvH5wOGAZBLM5rFTMqlc7vMt3r6J6U3IArbbIfKlfybSeY5IIkJTf9PYdYF2+iNStC6EUEjmZo58bh/NQ80k00nsBnvu8kAsgMPgwOdewQfMibNUxmdyFoPbrWRnDh8G+9hrRV8fbNyoXC8Kj8lE2mLOfQM7VWvllCGJefBVBgZH+OnRn+Y2fe2PXovdYOeJu5+g2CyzooRY6VZgamF+uE1u6l319IXzh6b6wn3Uu+pxm+SAWVB8PiXICgSU84GAcl6yNoWruBj17t/nztb89UdJvPXNmJ0eoskomXHFwuf85wgnwkQTMitPCCHBzUXxuX1Y9BYCMeWAGYgFsOgtKztrU6iy2ZtsYXFfn3JesjaFbVwW0FPmw+EqJRgLUumo5EOXfShv04fveJgqh6wdJYSQ4OaiTMzeSNamwGWzNx0dkrVZKkanc7/Y/gJhPZRZywgnwhg1Rr770nfzNr3rV3fR5pe1o4QQUnNz0bK1Nx2BDsnaFLps9ubAAbjsMsnaXIDFbn2QfZ+Z0iYaXA3oNXqMWmPu+lpnLRadBZNO1o4SAljx/b0kuLlI2ezNgc4DXFZ+mWRtoLCbpzU2QiKh/BSzUgitD7Lvs8M9h9no3ciZwTN843Xf4E0/exMAe961hyJzkRQTCwHS3wsJbuZFo7uRRCpBo1sOmAXP5YJrrlnsvVhSsq0PTg+dpso+uaalLdBGvat+wVsfTMySbivblruu0l6JRb/Is/KEKBTS30tqbuaDy+TimuprcJlci70rQiwIn9uHw+AgmU5i1plzp2Q6eclaH2SzN/6YX2rbhDifFd7fS4IbIcR5FUrrg0Z3I5u9myVLKsT5TJwhmrVCZorKsJQQYlayw0KBWAC7wb4orQ+yWdKszOcLtLZLiELg80Fzs9LXy25fUf29JHMjhJiVRWt9EItBMDj9KRZb2McXYqlawf29JHMjhJi1S976QGZ9CHFxstmbFdbfSz4NhBCzdsmLerOzPvx+Ja0+8eT3K9dLYCPE1LLZG79/xWRtQDI3QogLdMlbH2S/eSaT+QufBgIrYtaHEBdtBfb3kuBGCHFBJhb1LjhZ1V2Ii3O+/l7LsJuxBDdCiMK3gmd9CLGglmld26Lu6TPPPMNtt91GeXk5KpWKX//613nXh0IhPvrRj1JZWYnJZGLdunV8+9vfXpydFUJcmPmc5bSCZ30IsaCWaV3bomZuwuEwmzdv5n3vex9vfvObJ11/77338sQTT/CjH/2I2tpaHn/8cT784Q9TXl7O7bffvgh7LJaEZZhiXXIW4tvgCp31IcSCW4Z1bYsa3Nx6663ceuut017/3HPPcffdd3PDDTcA8MEPfpD//M//5MUXX5TgRkxtmaZYl5yFWNtGVnUXYmEsw7q2gv50v/rqq3nsscfo6Oggk8nw5JNPcvLkSW6++ebF3jVRqJZpinVJWoi1bRobYfPmFTXrQ4hLwudTMqKBgHJ+ide1FfQn/P/9v/+XdevWUVlZiV6v55ZbbuEb3/gGO3funPY2sViMQCCQdxIrzApfMK5gLMTaNtlZHy5ZpFaIebXM6toKPrh5/vnneeyxxzh48CBf/epX+chHPsKf/vSnaW9z//3343A4cqeqqVLiYnlb4QvGFZRl9m1QiGUt+35dBnVtBRvcRKNRPvvZz/LAAw9w2223sWnTJj760Y9y55138pWvfGXa29133334/f7cqa2t7RLutSgYclAtDMvs26AQy9oy6mZcsH1uEokEiUQC9YTaCI1GQzqdnvZ2BoMBg8yEERML5JZwYdySJ7OchFg6lkk340UNbkKhEKdPn86db2lp4eWXX8btdlNdXc3111/PJz/5SUwmEzU1NTz99NP813/9Fw888MAi7rVYMuSgWhhklpMQS8f5uhkvEapMJpNZrAd/6qmn2LVr16TL7777bn74wx/S3d3Nfffdx+OPP87g4CA1NTV88IMf5J577kGlUs3qMQKBAA6HA7/fj338FDexMrz44thB9fLLF3tvVq6hITh2DNatk2JgIcSsXMzxe1GDm0tBgpsVTg6qQgixJF3M8btga26EmBfLJMUqhBDTupRd2ZdIB3gJboQQQoilajZd2W02eMMblN9DIaUGcaEeq0A6wBfsVHAhxAoXDoNKpZzC4cXeGyEK02y6slutl+6xCqQD/OLvgRBCCCHm7nxd2evrL91jFcisVAluhBBCiKXMYoHSUmVB2khk7NTWplw+12GoqYxvzBmNKkNQu3ZBe3tBNf6Tmhux5MWSMeKp6Qvc9Bo9Bu3iF7gJIcS8y9bBtLRAUxOcPQsmkxJ4xGJKce98D+tme4gFg2OXmc0Fk7UBCW7EEpfOpNnXuo++yPQFbh6zh111u1CrJFEphFhmsnUwqZSSOWlpgaKisSUUUqn5q7nJGt+YM6uurmCyNiDBzdwtkelwy51apcZmsHF66DRV9smLpLYF2qh31UtgI4RYvrKZFKsVBgeVjIrDocxc0mjmt+Zm/GMeOzZ2fiEe4yJIcDMXS2g63Ergc/toHmommU5iN4w1egrEAjgMDnzuwkmVigvQ3z/2e3u78m20uHjx9keIQjV+Lb3ycjhxAtasgZERZU298esxztd7ye1WsjXjzxcQOfLOxRKaDrcSuE1u6l319IXzg82+cB/1rnrcpsJ604lZ6O+H179+7Pwtt8CNN+YHPEKIMT6fUjhstyu/2+3KeZdr4d5LDQ0Xfx8LRI6+c7VEpsOtFD63D4veQiAWAJSsjUVvkazNUhWN5hdBnj2rnI9G87eTXjhCKLLZm2gUNmxQftbXg9E4u/fSXBTwkjYS3MzV+Olw4/X1FdR0uJViYvZGsjYLbKGDiqoq+N738i97+GHlciFEnlgyRjAWJFjlJapTE205TVSnJljlJVjiJPadb+bfYAW8l6Tm5mJki7gCASUFGAgoaUDJ2iyKbO1NR6BDsjZLXVsbfOAD+ZfddRc89dSy/1AW4kJMnDHq1nXgbmpmcEM9gwP7oakf7//6/9g1/kYr4L0kmZuLMTF7I1mbRZXN3vhjfsnaLLSJxb7zXQtjMuU3HqutVc6bTPP7OEIscdkZo/6YX5lQ0dhIfNM6aGzEbrDjJ4ZNu/LeS5K5uVjZ7E1Hh2RtCkCju5FEKkGju3Gxd2X5mqrY12aDJ56Yv9lMxcWwe7fyQQywZ4/MlhJiGuNnjJqLvcSLveiBkVgAR3EF9T/4Fazeomw8n++lAp7RKJmbi5XN3mQbJknWZlG5TC6uqb4Gl2keC92kaDXfbIt9L9b4D8nKyoL50BSi0Jx3xmjFuC/d8/VeKvAZjRLczIfGRti8WfkpxBKVK0qc5hRLxpQNF6PYVwJMIWZ0yWeMXqovOXMkw1LzweWCa65Z7L0QYs4uaBmL9g4p9hWiwGSzN4d7DmM32OkL97HRu1GpPVzIGY033TR2WQHNwpLMjRBiUlHixJM/5sdmsCnLWMxnsa9kZISYN9nszSWZMTrdjMa2toV7zAsgwY1Y+ub7ALlCD7g+tw+HwaEUJerMuVMyncxfxiJb7Ju1Z8/8FhMLIS5IdkhZp9bhtXjpCffgtXjRqXX5Q8rzqcBnNMqwlBACmJzWzspLb2dNLPYd/yE3XywWyGSU31dQkCnEhZg4pByKhwiOBDkzdIaecA8wOqScTl3cAsLh8Njq4qFQwc9olMyNECJnKSxjkVf43HUud3mw5QTBzrML8y1ViAI1cUi53FbOjsodlNvKJw8pz7cCntEowY1Ynlbo0NLFmvUyFtmsSiazMFmbGTzX9hy7T+1m98GfsufDN+cu3/ORW9j9gZ3sO7ybdGZ0FWT5PxArwKyHlFcQCW6EEHnGFyXqNXq8Fu/5p4dfQrlvqRiwhxK5y+3t/fjTUWwZ3cJ8SxWiQJ23z80K7NY+p5qbO+64A5VKNelylUqF0WjE5/Pxzne+k9WrV1/0Dgqx6Aq4C+dCyH5QvtjxIipU7G/fP+22uenhlzCYqHfVczrWRdJqxnrvp+BtnwAgqQbH33wU31ppyyBWnmyX4kAsgN1gL8gh5UtpTp9IDoeDJ554gpdeegmVSoVKpeLQoUM88cQTJJNJfvazn7F582aeffbZ+d5fIS6tAu/CuVAa3Y1sLd3KmuI1s5sevtDGPd/ugQj1Kjd9bU3w5S+PbWKG+i99B3e/DD+JlWfWQ8pztdDryc2zOX0qlZaW8s53vpPm5mYeffRRHn30Uc6cOcNf//Vf09DQwPHjx7n77rv59Kc/Pd/7K8SlNTJS0F04F0p2GYutZVsXfyx/igDT9+6/x5JSE7TqchebncX4Uo6CmYoqxKW2YH1uluCXvDkFN9///vf5+7//e9TqsZur1Wo+9rGP8Z3vfAeVSsVHP/pRjhw5Mm87KsSiqKy89EsNFJCCGMufos27ezhGvWcV/Z/6aO7iui9+E/cfnlnWQ4ZCzCT7fvXH/PP7/pxuqYWRkfm5/wUwp+AmmUxy4sSJSZefOHGCVCoFgNFonLIuR4glpb29oLtwXgoLNj18fN+MmUyzlpVv7TWYXd7cRfWrr5TARqx4je5GNns30+iex7UOp1tPrrJy/h5jns2poPiuu+7i/e9/P5/97GfZsWMHAH/5y1/44he/yLvf/W4Ann76adavXz9/eyrEpTI+1To0BEbj2PkC68J5Kcy4Zs2lME2bd/dTT1HnqsvbTyFWuuyQ8ryabqmFp54aa7RZYOYU3Pzbv/0bXq+Xf/3Xf6WnR+mA6PV6ueeee3J1NjfffDO33HLL/O2pENOZajbTXIOPiWPL73gHGAxj5wusC+elkp2JsaBr1kw3E22GNu8NpoaZ73OFzXQTYkEU+FILU1FlMhcXdgUCSqrabrefZ8vFEQgEcDgc+P3+S7uPE1tVX+JGZytGfz/ccAMcPaqcr60Fmw1++9uxtuATn/+ZXpu2Nti5UxlTzqqtHTu/gl/LFzte5EDnAS4rv4zLKy6/+Ds8d27sNYKx126qdarGb3vixFiQMtNrOd3/hqyDJcSFm+49uIAu5vh90XM47XZ7wQY2YgWY70K3qcaWJ55foeZ9LH/iazTTTLS5tHmf7n9jmc90E2JBFPBSC1OZ88KZv/jFL/jv//5vWltbicfjede99NJLF71jQsxKNhi56aaxyx5+OL9O5kKGI6YaW554foWa97H8qYoR53Mm2nT/GytkppsQK9mcMjf/8R//wXvf+168Xi+HDh3i8ssvp6ioiObmZm699db53kchpjdVMPLOd8LNY2sOzdiTYeLaQ9ONLa90sRgEg9OfYnNYhqG9ffJl8zkTbboiyBU0002IlWpOmZtvfvObfOc73+Ed73gHP/zhD/nUpz5FfX09n/vc5xgcHJzvfRRCEYvBhCwhqdTk2UwGQ/7Qw9mzUF8/u+GI4mJij/0KQ8MqAIK//QUYTdgalZl/wVgQvUGLQWuY6V6Wl3Qa9u2Dvr7pt/F4YNcuGNf7KpaMEU/Fp72JXqcm71mc7yLFJVgEKYSYH3MKblpbW7n66qsBMJlMBINBQJkifuWVV/L1r399/vZQCJj5APvhD8PHP678/vvfKwfaV16Z03BEOpPmuUgTu0bP74kchgi8LXv+9B7cxVWT11NazgXkarUSMPb0QEXF5Os7OpQhpnGBTTqTZl/rPvoi0wdEXqy55xlGA0l3EdgMEAvmbatPJpgUTmazSbk7CCr/J1k2G+zePVYEuUJnugmxEs0puCktLWVwcJCamhqqq6t5/vnn2bx5My0tLVzk5CshpqZWKwer06eVICUahbe+Vbnuxz8e2666GgYHp+/JcJ4AR61SYzPYcufthvxi+UA8QM2lWk+pUKTTSlB55owypGM2j10XiSjZtOpqZbvRACf7PJ4eOk2VffJz3hZow2cvy7tsT+QwKYwwRfJ3YiCUC3bHDzHt2ZOfxfN44PJxs7oqK5dX0CnEpWSxFGxPm6nM6RP6xhtv5LHHHgPgve99L/fccw9/9Vd/xZ133skdd9wxrzsoRI7PBw4HJJP5B9hkMn+7ixyOqLRN33VTr9ZPebBe1tRqJWNjsUAioTz32VMioVxeUZGXuQGlN85M61LVu+rztg+FBnEltJNOkcEeHAnN5H2y2WC0FQWgnLfblZPfr5xXr6AgVAiRM6fMzXe+8x3So+nfj3zkIxQXF/Pss89y++2386EPfWhed1CIHLdbqZ05fBjKy8cun1jnVVw883DE+MLijo68m6YzaY73H6d09PyLHS+SMOl59on/RXeom+pkP8f6juG1eldW9sbng4YGaGpS6pwsFmUoTq9XLvdNbuo3sbNxVq7DcTidt33dS81YVZ2Y9WOBayQewZaKs8o5IbjJ7lNzM/zmN0pAkxUIKEHwFPskhFgZ5vTprFarSSaTvPjii/zud7/DZDJx0003UVNTw549e+Z7H4UY4/MpB9bxtRZTZWSm68kwsQPxm96Ud7OJw1JkwKwzQwZcRhdmnRnbShuWAiWw3LRJqb0ZHlYuGx5Wzm/apFw/hWnXpcq48l8HoOThXzLS1UrSas6d+nUJikrrsGZ08MILSlo8m5XLBrsT67D6+pTLp9knIcTyN6fMzZ49e7jrrrsYGBiYdJ1KpcotnrmiSdv3hZE9oB04MHbZ+C635zOxsVtr66RNxg+XRFNRbNpSBiIDeC1eym3lC7P0QKGZqkDa51Oe66amsYCitnbGDMm061KljfmvA1AWVjFsNhONBjG4PYTjYfQ2B2XmEtBrpn6cbPYmEFCyN4HA2L4KIVasOX39/NjHPsbb3/52urq6SKfTeScJbJicHZipz4q4cD5ffs3NhQQ3U3Ugzhrt2eJO6nIXWTM6+sJ9mHQm9Fo99a76lbtA4/jsTTh83qxNVjZ7k7cu1RSvg+s//wv7FdcT61aGCodHhimzlmH3j0yfiZmYvZGsjRCCOQY3PT093HvvvXi93vnen+VB2r4vLLcbXK6x89lhEshvLJc1vsHcVI3dsvbsUWp1xg2trj45SCQWwq63U2IpWRlZm5lkszd2+3mzNlnZ7I0/5h8LDqfpBF3hbURrtTPU04pJZ6JCZT9/JiY7VNnRQdyoI1jlJRgLKidtmuBIQDlp08SSc2g2KIRYcuY0LPXWt76Vp556ioaG86zIu1JJ2/eF1d8Pn/nM2Pnbbhv7PTsdePy6Rfv3w623KjNnJs6kKi4ey6jFYsptbWM1Nxmblfoi5cC6orM2WdnsTTw+q6xNVqO7kUQqMbYu1cTXAcBiwVW7Bvv6rfTu/xNl5Y1K1mbjxpkfZzR7k/7Li7xcrqJ5YD9MHjEHwGP2TO5RJIRYduYU3Hz961/nbW97G3v37mXjxo3odLq86z+ebai2Uk3X9n0WfVbELESj+cHL+IJSm005cI7/n7Rax6YET5xJZbONBTef/7wy3PXFL+Zuqm1YhdvkQqPWzJy1WUk1Vo2NyhTwxtkvoDlpXaqJrwPAz34GBgOVvu0Yjp+irC8OJiN4vUrgaZihK3RjI+pEAo0zin/kzLS9depd9RLYCLECzCm4+elPf8rjjz+O0WjkqaeeQqVS5a5TqVQS3Ejb94U1VWYsy2xWnudx/5PU5/dTyQs6xteI9fRAWZkSCH3ve7BxI+UVcKDzAJeVXzZ91maqGiubDZ54YnkGOC4XXDMPC2hOfG7+8hc4fBgn4Bwxw7FXlNdu//4pl3eYap/qooOcOtNPMp3Mm34eiAVwGBwyrCjEXC2xLuxzCm7+5//8n3zhC1/gM5/5DGppkjXZ+fqsiIszITMW1IJttI9fJBEFTQYSI+RKjmca0vjGN/KHtT77WWVoKp0Gn49Gkyp/OGUqU9VYzXYtKzEmEICSEuX3xkbldaiqUmqq6utn1ZDvvL11VvqwohArxJyCm3g8zp133imBzUwm9lkp8Ci3UE25+KImBXYj2cqYPVcXo9HpKb3uVpLn9pO0mtAP+Ll29Pp0Jj195fxHPpJ//otfhHvugeuvB7cbF+QPp0xFaqymdN6FM8evF9XaSvyZJ0lGgmC3gcsGrnUQCKIy6UlWedEnY7NasNTn9tE81EwgFsBusI/11pGsjRCzMuV7NxbOfebGkjEMFPYxbU7Bzd13383PfvYzPvvZz873/giRM9Pii5oHPszbblKGP/3/8FHKy1eTOdeNs6mFiKsIvb8rt200EcWCbdJ9AJOLizWaC+9uuxxrrC6yhuhCF85Mu5y8bA6SOfws4aqxWZiWth78jVUMDuzHE51dMfC0vXUkayPEeWXfuwPDnagTY0vbaCIjZBdXeuHEn7h2822ojYVbajGn4CaVSvGv//qv/OEPf2DTpk2TCoofeOCBedk5sbLNtPiiplif+91Q7CVgBF11GebWLgw9/QTMWtyfgiEzhGbKmj36KKxbp/z+zW9CSwts2TJpKGvGLIQmhd5qGstCLPUaq4k1RDffrIy1796tBDnj6fVTFvpe6MKZapUaTeMqBo+/hDMGKasZTSiC1uZE5WvEHxum3lVPIpWYORuk0WPQGnLZm7zeOkKI81Kr1Nh0FiIvHKRyZOy9rYolcr9XPHcEdaho5jq4RTan4Obw4cNs3boVgCNHjuRdN764WIiL5XP7ONvTRCYQyKuhCI/rY9Mz0MrJgZcotZZSYeyn/EQnhyq1DI0W3aQz6Yl3O2b8wfqqq5Q1qybMAppVFuI//5Fd17xLObPUa6ym6uLs8cDvfjf5b5qh0DcbYExX3Dtx4cy6hu0M1L2AtrkHndON0T9IeE09UbsJRyJDvav+vK9Ddqp3Nntz3mJwIcQkvuJVDDuLUZ3qRF1VDYBqZOxLRWnaVPAL084puHnyySfnez+EmJJFY6LxWC+9Z49gtZTkLh8Z6sz9Xt/UQ//GIshApLaS7kSakTIjHFOun/XUX5dLqY+aYFZZCM+asQuWeo3VVDVEn/rU5FlnbW0zFvpeaHGv2+SmaOMVDJ39OaXdfaTNRqI15bnti83F530dxk/1ntRbRwgxK9n34uDZn+NJpUhZLXmJC0tRWcEvcVK4YVcBiyVjYx1QpzhJF9T5kc6k2df+HOfSgwz1nONg6BSHR1o5GDrFudRYlzaru4xiawnRZBSVy8XJNcVYvJODlIvhc/twGBwk00nMOnPulEwnp8xCLGlT1RB95SvK9E+zWTklk7OqTZp24cxphonqGraTrK0mOThAtLqcQRN525/vdRh/v9neOi6Ta8rHEmK5mc9jU+692NMNQCQRGXdlXcEvcTKnzM1KNpshCo/Zw66SyyVyvEiJVAKNSkOP10qp28tgfAit1U5gJEyFc6zo1LPxCvTpFkw609g6UBr99HdssSirS8OkxRuns6KmGE/s01RaqhRaj6+t6es7f+dglOet0l7JK92vUOeqo83fxjrPOnRqHcFocFKZt9vkpmjTlZyL/hlXbQV94d6853dFvQ5CXIBZH5tm2aF7fCbVEwrjH/GPXTkxi1uAJLi5QLMZopAuqBcv+0ZtGW7haKoLvzOJ+UQvp1UhVKjQmDQ8eu/ruPHW/x81NRs509JPJhmgM9hJia0cQwasMYhroD3QTpG5iGLzxdXAzDjFeIayniVnYp+mX/8aXnllrDHiBay8nc6k6Qv30dTfxPG+46hVagxaAz3hHjSREd42brvsO6aufhunMv0E0lNnec431fu8U9BHi46FWE4W4thU17CdA7UvEGo6i9E7rj6xwLM2sMjDUs888wy33XYb5eXlqFQqfv3rX+dd39PTw3ve8x7Ky8sxm83ccsstnDp1anF2dpyJqXFLWostBplAgKKkHp/OqzSBCwSUk1ZiyAuVfaNmYiOs1pcTdllxGJ3Yh0YoUzvQ9PfjsZbgGorifmI/Ww52sPr50+w6GqFm3xGO/vBfef1JuOYc3Prwa7nxoRvpj1zcquzZrEFfWPlm1BfuW77rTY0vHK6pgVWrlOGqSET5WVqqLHERmznNrVapqbBXYNFbSJOmzlVHua0cu8Gel3kZ/4E75UKb48z0OmSD4t2ndk972te6b+YicyGWqAsZtp2NbPYmqE1R3TfuC0N7e367iAK0qEfdcDjM5s2bed/73seb3/zmvOsymQxvetOb0Ol0/OY3v8Fut/PAAw9w0003cezYMSyLWLCZlxrXWXEcOIJ+cJhEqJvVjmrcLfvzb3C+1vFiSj5nPaE9j6HvH6Yz5McZSFHXM0JkoB/zUIg125zQ2wsaDSVlPjoIksqkSMTC+A0Z7ENwxgUtgXPUa+qJJi6+Y/BymmI8Y4ZjXMMu9uxRamyamuD4ceX/2GCA7u5Z/W/73D4a3A30h/vxuX2Ydco0toAxySOHf8rNDTfjNuW/n89XDDzd6yCZVbGSLcSwbX3DZWjqj+D95JfGLlwCS8wsanBz6623cuutt0553alTp3j++ec5cuQI69evB+Bb3/oWpaWl/PSnP+UDEwseL7FcajwRwmY1Ez9zGk2xi5IyH4z7pzrfjBIxPbelmJLSBoabn8TiKacnmWBNUkMg2IPNW01xUZWSURgYwK4xU+KppWmgidVVm7jXWs6/PP45zoy+lx++42GqHHNvqBeOh7Her6yr8tTdT3G07+iSnmIcTUT5U/Of6A9P/e3LEE/yzuyZQEAZggqF4ORJ5ffy8ln/b7tNbjZ5N3G45zA2w1iVzfgP3ImBllatZZN3EwDBWHDSUNJMU73PNwV9KQekQpzPfHfodplcuDbeBKlxwc0SWGKmYMdLYqPpbqPRmLtMrVZjMBjYt2/ftMFNLBbL3RYgEAgsyP6Nj5DdNeXEj71EhcmD3VU6tlEgcOHdbkWeii07CRw9hFmlpafERUswjCego7x+s3KA3b4dTp+Gw4eprKwkmU5i0Bh48MmvccZFrtfNXb+6i6fufuqiApysBlcDWrV2yU4xTmfSPNf2HK/0vMLZ4bMUmYombxQOjwU3druSuWloUIZYa2pmPVsqa6YP3LkWQk6X3ZGiY7GSLUiH7o0b4cc/XlJLzBRsOmHNmjVUV1dz3333MTQ0RDwe50tf+hLt7e10dXVNe7v7778fh8ORO1Ut4JOfneZ6Th0kWVtNRWzCDJ2+PiW6XQLFV4XKVVyJs24N+s4evCo7XboY5vpVeExF4PWOFbZaLNhiGaUfSkpP2mTMZW1qnbVYdBZMuvnpGLzUpxhnh27MOjNFpiIMWoPy7Wz0FIwH8z8I6+qU/2WbDTZsUH5e4P/2THUy2f3xx/y5WpzxJ3/Mjx0D6lAYgsHcyZXUco1rE66kdlLtz4VOQRdiOcn+/8/b8Pl0S8y0tV3c/S6ggs3c6HQ6fvnLX/L+978ft9uNRqPhpptu4tZbbyWTncY7hfvuu4977703dz4QCCxYgJP9wN7ftp/qNRvRHB4k0t+jLPwXCKLSqS9owT8xQToN+/ZR3RdH0zaApbMXq0rLKrtdeVO5XMo2u3YpB9rDh8Fuxx6I8Q/v+gZf3fcmAPa8a8/0s6UsFmKJkdEhkTTEgpM2mXFa+bj7YYb/y0KTzaSkM2l6Q725YCYcD5NKp9hRsWNs45ISaG5WamzsdiUjqVYrwWUsNuXyCzM95lQfuDMOJelsrD7RBy/unv7OJ9T+yPpSYiWb9w7dE9tDLIElZgo2uAHYvn07L7/8Mn6/n3g8jsfj4YorruCyyy6b9jYGgwHDLD9s50ODq4H9bftpyvQR1XXjONZGuMo7pwX/xARqNdhsWDUmDKvWED3xMnV1G3BFtMqbK5UaawHu8ykH4I4OsFiwr98G+5S7qbRXYtFPXYA+2yGRyysuX4A/cPFkP/x6Qj0YdUbC8TAWvYWuYBdVjiq2lG4Z2/iFF5TntbVVmSXV3Q3V1bB//wUVy8/0gXu+oST7CNB2aOo0+DS1P8up+FuICzWvHbontodYAkvMLImjrcPhwOPxcOrUKQ4cOMAb3/jGxd6lnCJzEVdVXUUqk0Lla0Rvc+IajKDPLfjnx2awSWAzVz4fOBwU16zDXVKLJ21Qaj1KSpSfVVXKMIVON3bgHZ2mbI2BPjnz3avjCRwJNZHBHlwJ7aRTMNi/bF8/n9uH1+pVhn5G/ITjYRLpBFdWXom7uErJRL3wgpKd8fmUTFkkovz0+cDvv+D1ZRrdjWz2bp7yA3fGoaTR/wOSybEuyefplHy+KeVCLGfzPnw+PpCprCzowAYWOXMTCoU4ffp07nxLSwsvv/wybreb6upqfv7zn+PxeKiurubw4cP83d/9HW9605u4+eabF3GvJ8t+Q4zqTKTr67C9eoLgJl9uwT/5xjizGackW3QYaqqwHjuBde0VynTk2jIYGYH16+HYMaX+A5TZPKEQnD6Npu0srz8JvWaUoaupjA57reloId59Br2mDbPenLs6Eo+gcxrxbSr8bpxzMTF70zLUQq2rlm1l28Y2qqqCo0eVBn5lZcrzv3q1cl6vn11BYSxGLBIknoqjBTaZ6yAcJRgenWmh16M322YeSjKRN/SYNdLVznUHPsKBJgjdF5qUoZP1pcRKIg0sxyxqcHPgwAF27dqVO5+tlbn77rv54Q9/SFdXF/feey89PT2UlZXx7ne/m//1v/7XYu3utPJmTtVWoEokiU7ROl5MNpthoTKDgevMJtQmkzJjx+FQsgWrVikzpU6fVg6ydrsygwrIJKLYY0qfm2kzC9lhr2iKotI6WobPUm4dC25GTp+lZM0u3JZiwvHZLdOw1GQDc/+In3QmrWRtsv+v6bQSPHZ0KEM/drsy9bOjQ+l3U1WlXO/1Tv8cp9PEnvozR448STA+uZ4JIF7kQHPjTexqeM3MQ0nZocdAYKz2x2zOFY5PJfvtVYjlbr6XX1jqFjW4ueGGG2YsDv74xz/Oxz/+8Uu4R3OX/VAe1GVIXrZBSaknZJz/fGbVdK10K+okyrf2jRvhzJmxdY2yB7xkMu8bPQMhAgZmPPABuduXaa10pIYIalJY9BZig32oHU4qtuyc17+30GQD8/ZAO1dVXcX2su1jV6rVxM1G0noNKquJjE4NvjqIRJTzeg1qsxH9DMNSaRW8Emmhr+skp8wj2PX5q0k5+oOcM7vZMVr3o1Pr8Fq8HOo+xNbSrcoaVNk+N253fvamr4/MGh9DzQv17AixdGQ/S5t7jlNtLJ10fUewA4fOizqemPUkgKWsoAuKlxKZnTF352u6VmYtw/1oNTefgR++4XsYx69rNPGAN8o0HOSRT70Al5+nEHj09vbDhymzl9E81KwEN90duK+4HldFg7JdLIY1O9s4GAT9hKEuvX7JfmBkh27Wedbljc+nM2n2G3rR0YWRQYxdfkZKXBh7hxhxOxghTcLQy3WZ9LTfBNUqNZrGVXD4eZxoSFvMGLVK7yp9eIRhvZ9kfQ39kX52n1JmQ4XiIYIjQc4MnaEn3AOM+8Y5oXA83VAPf1rgJ0iIJSLb1d0+fHbSELstFWdNqQXa0yuiY74EN/NIZmfMzWyarg2ZlSEmVSAA6yasRj3VcMUsF3Ycf/sKlZEunYmhnlYMVvtY1iadRv3cfl5/Ujmr+f0e0Bnz72MpLrERi0E8jgulXwxJlMBtlFqvx+StoM1rZk0ghs6cQheIgdlKxmShxWumyltx3hR3XcN2BhpfoPTVVzlriudeY8NQHz1eK5evvwm7wc6h7kNU2auwG+yU28pzt89bMiEbzB44AJddJj2khBhnfFd3vW9d7vL+oJ86Tx3WaOqCJwEsVRLczKN57y2wgsymZfjpIkhv2giNE4pDpxiuyA1bzcaE7E3XmX3Yr7pJydqMBgCo1ZSEod0GGZ1ubDFUrRZ6epbeEhujxdS5YuypeDz4rtxMu89HtP8E+owKY1c/I2Uuoi4rKp9vVgF8dvG9ntMnscZiRPVR7HEVfZkw+tWXsc29HuJxWpN6MoHApOydS2XOf5zGRkgkJv8fCCFyXd2j0SAGt4dwPIze5qDMXAJ6zYrpmC/BzTyT2RlzM9OwXraYd9gE6auvgql61kwYrrjgN/Do7atCSdTeVXi3XJ8XAIR7ztIwAJV+CP1lH2mdWZmZo9MpRc5L7QNjtJg6V4w90WjvGLelmMraTXScOYs9ECdaUw5p6PAYqazdNOsAvq5hOwO+Fyh+9VXOGsI4+2N0ey1cvuYG3AeVGW9bBjto9bdSZB2rF0iEuqmv34x7i3PszlwuuOYaYskYwehQ7uJgLJi32vdKmhkiRJarogH7+q0MvvA0BreH4ZFh6l312P0jF/alb4mT4GaeyeyMubuoYb2LHK4IWw3c8Od3sKMTvvqJxzHZPRAOg0ZDqK2Z/6/pm+htUBOAHx7/KVq9kb+tvgOzvUgJbJbiB8Z0xdgT1kTzuX20N9QS6DuBWWMgkoqRaqi9oNfHrbbgqd9I79GjeLsD9MUDWKouZ5t9NWhaYGCAknJlZfeABsx6M5F4BOtImvLy1ZOyYtmZIW3+sfbve07vwThuuHAlzQwRYrxs9maopxWT3UqFyg6WlZO1AQlu5iY7VDGdJVxcupgueljvIocrTheNNv0bGFC6cQKEQqRPnWTtmQCBGJSGYCjhZ7gcIskRVBVeklVemGLl6oI3TTF2bljPYoFgEDc6qosb6LE2sbp1iJZqC9XFDbjVU3d9nmQ0A9bY0YfanyJ1uoOUS82OLiPuJ/YrvYk6O7FXVFDiqaV5qBmjyU1guJ16by2O9dsm3aVapcaOgehQb67Q25XUYhz9SOsIdmA3V0pgI1akbPamd/+fKCtvnJ+szRJbYkaCmws1y1qFJVdcWiAualhvdLgC5tbMatgEz9WiNKs7ciLXO8e+bgu3xPx8s+PXlI1OlLrKvo7u5DBdlgH8rU9AKxSbitlZuzP/gFroge50xdj19Xn/52viIVJdfsKDAxTriljzwpnZz7pQq8FoxDocwVK/hs6YH3d5GbWeRqVmKRJR2roPDFBRWUFXqIu+cB+OYALPZVdO/YGcTrP6RB+RV1pyhd41+46g1+pzM0NWb6iG2rS8D8WKVLnlenTNrVSE1HMbql/iJLi5ULOsVZAP1LmZ07DehExaOpNm/9ln6I/2K+d1WtJ6Xd5NZhqySDfUQ1tXbrimz2vnN11PYI1Blw0MCWhqPcSa19yJK5Si+LkT9Ef7qXTWoT42odlfoQe60xVjFxfn/Z9bseNkLaecp2h0N17YrIt0Gnp74fRpKtRp9MYyPDEPphPNSlPAWEwZStRqscegzFpGc+srFBVXjWVtpsiW2s0uXKEEcTUk1dCvi2PR6fBnEqxOWrAXVxTu8y7EAnNW1OO84lZlqH59/dIcOr8IEtzMxSxrFcQlMEUmTQ1UDp4mMdxCsamYmNvB4JWbcge6vKnFU5lwwNe7ihh2m6k6HuCFSlgVNRJHT3LjBowGK6pXXkVfXExJmQ/GzfQp9EA3l92q8qI9cRRaToNOMzbMVluFYdz/ebnXR9ygpVxTBHr17P/PEwklq6bTYYpEqC6tG7suFAKrFdasUc4fPkxlZSXa9DlKNl6lvBbTZEsDA128vO8XXJmALit88/CD6LR63tvwFjxlS7DIW4j5toJnFkpwMxfnq1VYYRHyRZlF/VI2AwPQHminyFxEsXl00bZpMmklBqU4VdUfRFdfh9lgBcYaA563GHbccI3epOdEvBunATIqWL39Fty+jaRXryaayRA/9hIVJg9217iuoAUe6E5s1e7WdeBuamZwQz2DA/thYDS7VVmB+pVXoa4OGxo22hqgpQXWrVNmisViMw+7ZQOTlhalh05nJwwOKreJxZSi7VWroKJCCaKOHsXW1oOteDVU+8b67hiNykKd417jmDpGs0tFXYvSA2kwNoxDZac0qsW6ZpO8D4UYN1S/0khwM1cX2zhOzKp+adim5w0tY+uJ3fLjW7DpbTxx9xNjAc4UmTS72UzpsIcO3RD6mrGGcLPuHD0+gK0ux5SEl8rAkoTMpo30X34ZdoONQCyAsbaaCr8+//YFHuhOWvaisZG42ggNVdgNNiW75ahF3delLJbZ0qKswh2JKMGowaD09znfsNto8JmIx0g21qMZHIB4FKwmCEZRJeIkV/vQHD2MfnBYmcrf3Kw89/v3j92PwaAEseNeY4+5hrdc/yGe6PwXAqPx1Z1Vr8NXtUneh0KscIWZL18Ksge/7IG5r085X6AHs4KUzbr4/coBa+LJ72fEpCOUiuRucnb4LOFEmGgiOnY/E1+LURUxPcnaagZNyvmpGgOOp0+izLwJBpXT6IKQyZNNpFXwfBW87AXj2g20+duIxCO0+dtwrN+O1VmiBLiwZAJdn6WKotHGeSajjdT6dZiMNjKBAEVJPT5bjZJRsViU1LbZrPysq1MWKPX7Z1V3k26o50Sik0Opds5YY3RG++joOU23v5Oz1iR/qk7wcvgMaf+wkj5fu1b5Oe7/gIoK5fkc9xr3hnp5+MXv8lIZmJLKZQde/X+EKr3yPhRihZPMzcW42MZx4rz1S6VbruF7td/jpodvyl318B0PU+Womvp+xmXSrM4Sijas5eVw6/nX+0qnueYclETyl1dId7QzdOgZyoNQEYCn6qAp1cvJgZMc7z+OGjXldeWk6+tQHz4ytw7JiyGdxn3wGFuapm6ct9pRjTt0DDZvVpoUNjUpAZ/DoZxPJmc97KYuKiZZV0P4hScxVJdhHPCjHUmgTqYZ2raWZjd4THWoYwEwmWDHjrEbTxzeG/caG6Nx0iYjez1weSesi9tRmS3oVq2Z72dLCLHESObmYmQzBn6/ZG3mapqsSzYT1qYJ84HffiDvqrt+dVde87Yp76ezE7xe6kpW4Uio6ek6jSOhxqfzKgfpWCzv5i3+cwQNYI/BqWQPZ9ODDGgSDJc48VcUk1JBSgWWBFSpnazWl6MLj2BDT4W9ArWvUQlwl0qgO5o1K0ub0ThcBPSQtJrp18T58pHv8q//738RNWqVzEz2bxkaUsbwtVqlWLq0VPlbzyOdSdPhMdKRHOJ4rIN2U5LBZIAOW4Y/lY9wZuAMXboY6fq6vP+DaCLK+773Rnb8+R2ErYZJr7E9EOMf3vUNWoqUmpvPbfk7/vG9D1JUufKKJ4UQ+SRzc7FWcDX6vJmhfsmkS2PRjR1Aa521WHQWTDrT9PfT1gbt7aDV4u7pYctgB82DzdS763G3jNZxjKsV6Q5185r/eg0JNzQMwf9+4vPETHquq7qWhnMBjL2DlAfBNwRlYaWfSmU6RWUwjLbUge/6erAswQUdfT4szc2URtOcTvRgNLkZHBlBm4aAAdJ1tWPFwH7/WEFwZ+dYIXEqdd6p7mqVmpLqNZyr8uI63UG4yotrKErPpgZ6Sq1YdGYlQPT6oLll3P9BkIgezox/KidkS+3rt8E+pQGj4/KdmDZuX/CnTQhR+CRzc7Gy1egu12LvydIUiymzbrxeJSiJRJSfXi/odBRrbOx+5+7c5nvetSe/mHi87Df7YFAZOkmlwG7HW9ZIReVavGWNYzUc42pFEqkEyXQyt/K4zR8jTRqTwYzO5sA8HOaMCzpt4DdAwmpG5y6iKKGjpmoDbsvovjQ2KsM4SyXQHX2+KmJ6TDoTfeE+jFojnrDyPOR63aRSyuyokhIoKlIKiuvrlctn2evG5/ZhX7+NtMlIigyBmlLOba5Gr9HT4G5Q6qBG9yfR3UkkHiHW3c4ZFwyZlXWjgrEgQYuOeE3VpGxpbt0xeR8KIZDMjVhM42dLhUJKXcfx48rBctxsnOJrLs/dpNJeqSxYOZ1sJq2sDF58EZJJbC4v611e5foppmhXOar4t9f+G3f/5m7OjGZvbi/bhdtaStBwFqPNQp8BoqN9AKM6iAYGSFvNFG+4Yuyxl+K0S58Pa3MzFdE4xxPtNGg9+dmSqio4elQZijIaob9f+ZkNaqZqZDkFt8nN6lVXcfD4K5iPtXL2qo2cc2swaA1s8o4twJluqOfE/t8QeukI8Uwqtx+/bfotWo3ycVWmMXLt2gYy1aWEY8H5fkaEEOPMpdt7IZDgRiyeiT1qgkE4dUrJupSXX1ATvNwb0KyFyzYpd19VivrwUTLGOrQaLXqNfspi3zZ/G59/+vMAueyN5+gTbHW8haG+Zvy1NkzjSnxe7n4ZR+cAyXVrSKW6KMmsWbprGGWzNy/1EXc1UNEXy2VLSKfh2DFlCKitTSki7uxUXpvhYeU1O3YsN6vsfHxuHyfWbaYzNsJQkQpQhhnHz15TFxWj8vlI7n2c1NbNDJ1QLm8PtjOSHKE/2k+ds45hjwr6n2OkayR32/ErggshLt7EflhTKdQFaiW4EYtr/Gwpn0/JENTWTjsbJ5aMTTqIpTNpnjn3DP3hfjQajRLEAHpClAaaSDadxVJUylZLA+opin1NOlNeXU9vqZV4RI2+q4+02cQPzKdo0IMtBkEDPH/sj9xcdg2xuipsBlvBvakv2Gj2ZmMyxYgjkcuWxNIJMGrQ6DWorCYy6QwqdRkZqxWVWoXaoEc32yUYULI3axqv4rF0H6F4CKvWnJe1yarYej1dg62EKktgNLhxGV2cHDxJsalYGeIa7QStU48tq7HkXwchCsykflgTnLfb+yKS4EYsrvHN8hoalKwKwJkzYxmW+Nh6Tfvb9xOMTx6KOD14mrPDZ6lz1rG5dDNqlZpEkYloTTnpV1/B6PbgbztDcv0aEtoRCHTm0qkGjYFfvv2XbPzaavQpuLrxeq4p8qB++QglWzbRFzyL2Qqr+5XgxhlKEK0ux13hO3+n46Ug+xocOEBm83qGmpWL97fvJ0YXpXRhZBDjsJ+REhfG3mZG3A50egvrG+ovqHDP5/ZR66yldbiVamd13vOXzb5pizzorr2elq6Xcte5TC5iyRj1znpKx01bD8VCF/vXCyFm4HP7aB5qJplOYjfYiafiJNNJArEAerUer8VLcNzwcKEMU0lwIxbfBXR7tuqttAfbqbJXEU1EeevP3wrAg298kJbhFgwaA1a9lXQmzYm+Ewxp2qhPDNLzylMcU6U54Wkisu8PANgMNtaXrFe+nWgt3NACZUHYFQqhjQ3jjqTZHqumIn4rv+r5MRVBCOvgssadJHyN1Lvqz9/peKkYrVVK+2rgT8pFVr2VdmMKb0M9hkAMnTmFLhADs5VBdQKnz4e6aIrC7mnEkjF0ah0NrgYCsQANrgZ0ah3BWFBZ7LRtP8OxYQBC8RCnBk7lbvtS50ukM+lc3U1Wf6QfIcTCsegslFpKOdp3lBpHDa/2vIp/xE9vpJcqexVPq5/OZcuhcIapJLgRi2+6lamnmE5d76qnK9RFMp3ErDPnLjdrzdQ569BrlTeZWqXGrDPzsjrImlVrKTvRzsFKNSZvBSagL9JHsbkYp9FJ81AzDoeNukHY1g1rbWra/D2UuOpQtbVz4uiv2eyHASM4YvCzkQPc5rx9eWRtsrLF0OOyZNnnOlBpxdU5CBkVxq5+hovNqIttVGzZOeu7Hz92H4qHCI4EOTN0hp5wT26bgcgAGrWGakc1doOdfudY4NIb7eXqyqtxGp10h7qxG+wEYgFUKlVum2AsiFatLYhvjUIsB9n3bctwC039TZwdPsvgyCBtw20YtAbsBjtt/rZctryQhqkWfw+EACVLM4smeG6Tm3pXPX3h/AK3/kg/V1RcQYmlhEBMWQbBZrDhNDrRr1mHbvsOEvU1aNVatGotbpObBncD8VSc7lA3Z4ZbOFWk3FdCqyLttBOx6jnNIEmd8jZ5vhJa61y0e4ysKl61fLI244zPhEQSEdwmN526EaLV5WS0eqI15QQzI9jXb8VV0TDr+82O3ftjfspt5eyo3EG5rRy7wY5Ja6In3EOlvRKD2kBwJAgZKLOV5W7v1Du5xXcLgViAJ1qe4Pn253mi5QkGogP89C0/5adv+SlPnXuKfa37pLBYiHmSfd+mMinqXfXEU3EqbBWo1Wq8Fi8atQa3yY1VbyWZTs5uUeJLRIIbURhm6PZs0VvIfD5D5vOZ3NpQFr0lb5xXp9axqmgVpZbS3LpPwyPDrCteR68+QfTyrbjLGvCP+BkeGabMWobdYGcgMkCDqwFVPM6pYui0QmlUwwbvRopGe+m80XUVbTbYWwfXv/M+/u51/8Rl5Zdd8qdoofVH+nn9T16fO3/Lj2/h7/f8PalMit5SG8liJ0GzFjyeWWdtYslYrkeN1+JFr9Lnghcyyofnqz2vcmbgDH2RPjpCHTxx9gme73ieg50Hc/dT6ajEZXKxung16UyaSDyCy+jKFRfbDXb8Mf/yKPAWooD43D4cBgceiweH0UEqnaLCXoFKpcKqt1JhrwCURYkLaahehqVE4Zhlt+ds9uZAx4HcZcF4kP3t+wnFQzT1N+XWfWpwN3Bm8AyD0UE2ejdyevA0KpWKCntFbiHNHaXbOf3It7ixGUwJcLR0kfZHianBEhvBM6IhZoBhI2jVWraUbimYN/B8iiaihBNjw1Jnh89S76qnzFpGZ7iXkupyRvbvxXHdTbPK2kycRqqOJ+jrbabd306JtQQAu95OesSPK6Ol0uDBprcRjAWJxqP87OjPcvf1rQPf4mdHf8ajb3+UWmct7YF21hWvy82amqq4sVAKG4VYyrKft4d7DlNuLefEwAnWFa2jabAJu96eGyKeaVHixSDBjSgcF9AEz+f2caz3WO58Y1EjnaFOquxVhGIhTg6exOf20VjUSFeoi1gqhtPoxKg1ggrsBjtnBs+w0buRBncDycE0V7dBWAukUhjau0mYNNijGbR6M6nR1R42ejfS6F4iHYgvUJWjiu/dNnmR0jXFa3j8zOM0FwVwrl/Fuq3Xz+r+8qaRWitwH3yVyh4/Z4cH0Gr8jCRGcJlcbBhtymgYfBXjzmuoc9bxcvfLxFJj6391BDswaA0YUyqudW7mz0P9jAz18dJABwA9oR6qHFW8kNGS1ivTwwulsFGIpS47YyqdSeNz+3Cb3ERT0VyN44yLEi8SedeLJcltclPnqsud31K6BYfBQTKdpMHdwDrPOiVoSSdz0487Ah3Uumpzv+e+aajVuNZuRZca7T5cVUo6nUaTAoNKR9rp4IgXMmrY4NmAVq0dWw4gFiSWjM2wp0tHm79t0iKl7/rlu+gJ9VBqKaVVHUR37fVoizyz/ruzKe0kaXRON0VJHY6Savq1cXA4iJkNfPnId3nkue/SmQmCWk25vZwSawlXV12dd18Pv/Ehqg6f47KXe7i1Kc3aF5up2XuEVftPcdUrg1z7qp/qw23YdVYZohJiHmWzN9FElA0lG4gmorkax7zP0gIimRtRsM7X9nt8U6nxqdMGdwMbSjYAcGbwDJu8SsfiA50HcrUy2d/dJjek09hUBowJ2NINakeCZCKGIzSCVmekWxXFmARVGvac3oNRZ8zbj+WSIZjYzLDEXEIileCPzX9EjZqByABHeo/QMtwCQKm1lNf6Xjvj3z3+dXHXlGNq7aRYY+S4DswmA1ZLSW6hzkRdNYFYALvBTjqtNGYc767f3M2zG/6d0miKotI6evtHyOjT9MeC1DhrKIroCDndJEkXVGGjEJdULKas/zYdvV5Z3ma6m0/zueu1eDnKUVqGW7DoLWwv387pwdP5n6UFRIIbUZBm0/bbprflnc+mTrMHyPHjwCpUJFKJ3JDS+N9RqzFV1/OmXR9k8OXniaozZEqLcPaNoLbZSdZU0al5EV0aXEktRrQk00kS6QSdwU7KPTbCA915HxpLsd6j2FzM7nfupvZrtQD87WV/S/NgMx2Bjtw2bQFlHYr+aD/bSrfN6n6zr8ugDkzV5eiPHMVr9aJVaym1leIJw2EvVNQqNVEOjDiTGkrTFnpiSg1QjaMaa8qIvrwK2ocoM1vpcA3h9yeIZkIU652kNBqiNeUFmSIX4pIYv17fdDwe2LVrys7i5/vc7Qh10BXo4i3r3oJOraPUUkqju5FSS2nB1bpJcCMWzwzfMNSAHQOnY/5p236XWcemChOL4UaHT+flWO8xXK46hofaWFeyDndSB3o911SP1fOM/x0Anw/T1h3oO88RHepCV1mDjiEoLcWyfgu9rY9y0xmo/dNBdBotrcOtBEf82NNJUkUnOWz4AyNFdnp3rAO1eslmc8avtr6jfAedwU4MGgNm/VhPoUg8ggoVq4tXz+rvm5i9iR97iY2mWjQOJ2Vpa26hznpzBX1dp0k/+weuHQ7zdtuH+dxf/gmAL970t1hNTuwvn4BgEHvcQJmjjN5QLyWWEvRDAaIb1jNoAkui8FLkQlwSE9frm+g86/Wdb7kFo9aIQWugebiZ3khv7vLn2p/L/V4on30S3Myni0wHriiz+Iax2m7gTKUt1/Y7KxAL4DA4qHfVA8pwkfq5/TAUZE08RLy7iXTmOD6VmjWlBtD3zPhtBVCmnm/ahPXVQ6gDAawYwOmEqiqsWhNXdUD9ILgSx8kUuSiJDJEItFNi9eJQJUi4UmScxdhNzoJqZHUxtpRu4ZWeV+gOduM2j2VB2v3t1Dpr2VY2i8zN6HvCp/PSmjhKR7qXYq8XX8CAtbKBkZbTnHEpM9GKDzWx5UwX/UdOUh9Q4yw3sWa07U7x2T707gwk1bBqFQwMUKlKkyxZT8o/zGCkDb1kbYTIX6/PPva5SSAw5Xp9k24+YbmF3M1jASrtlWwp3cKZoTN512UV0mefBDfz5SLTgSvOLL5h2Ou3Ul8Eh3sO48CIOpEEyMvIWLM1rQYD+NuxVlVRRJBTg6dodDdgLb6A1cV9PkybtmIaGIaBASgqgnXrMNTW8n3NV3k5epbYiXa0eh0YXKTVQWwpExqTlbSriExDfcE1sroYbpObKyuv5OdHf044HsaitxCOh0mkE1xZeeX5A4hx7wk3sGWwg+bBZuoMpVjb2uF0K2qrmWaXUqyN1UpZ2kJy42XYmgfIGPQMjs5SI5VUXmOnE7Zvh9OnsR0+zMaGjYSGXuW5WhVd6iAWrWRtxApnsUBpKRw9CnVjky5oa4P165XrZzA+05oNYFSxOMO9yuduvbWe4b42MoFA7vq0ToufkYL67JPgZr5cZDpwRZrFNwyfCZoHTqPd/wKuYIJIPIIvFWdNqQGN6hyvPzl6m41dyorigQDltnKS6STltnLlvvT6qV+TiUazNxw/rmTgSkuV8z4flv5+iqNpekoGqR6ME7NCpbWMkVgcnV5DtLqcpNNO3+j08uWSOdhWto3n25+nK9iFr8hHV7CLKkfV7LI2E94TXkMjMbMBj6MadF3wwgukN29gsFPZPN1Qj6WtizXmBtB2Ej91grgWTHHAbFFex2yDx+z/TkcHVmcJRRvWcjp6qiALG4W4ZNJp4k8/Ser0KTRHjpI51QQmE0SjqGJxUqo0mvgI+ptunvFYlFe/qLOi3f8Cvt4+1pQasOp72DLYQau/laLRRWzjbienV9vYWLa5YN5/EtzMp4tMB644o12JEy+/RMI49q+o6mwjvXE9aYsOHVDlrKFffYziYJR+a5I6Tx3W4nKiiSh+A1T7Qd3bB8EItLZiKy1lPQBHobsbqqvh2DHwemeVvWHtWuXbTXW1cn50Pyte6qWnvIzhgVOYEwaqVcW0OCL4bQZGasoLspHVtKYbQo2HscYgrlHOjs/e9IX7Zp+1yRr3nrBZXKw3jBaB20JQV0dq2xasLaPbWixja4yVl0PrWcxxcIxAxm6DkpKx99C4lcy57DLqGxoZ6TMv2x5EQsxGOh7jcN9RaH0VtT6GtaufkSInxoFhQqXFpDpeIl2m5jLVzH1g8rI3bjv96hibMhYlEw6UGHx0ECSgAddAmECpHYvRVlCffRLcXITclLlxBwq124b62AkydTVo1Tr0Gh10dsK2bVMuBLnSpRvqObH/Nww1nSFpNaENRdFGY3RjIH6qGwCDxkCqvpq+rlfRZ3Q43GVEtDCCCm0a/EYIVXjJHD+FxqRHF4uB2QyRiPJTowGjcfrAZvyBXqdTDqB+v/JTp1Ou9/mwNjfjjcbpcrexuieNq6qUYW2YVz1GHEspazPDEKomMcLrT0KveXQ7xrI3pwdP43P7Zpe1GRWzW0hWlaJ+5TCqYBDVsB8AVW8v6eoq/Aefy2XfBn7/KLGN23Gr1RCNkna7qPRDwAiZTEbJvo1/D43raO0yufKLxKX+Taw06TTqZ5/D1TlAqOUcNp0V42AY60AIVCq0OiODIT8an29WNTHZ7E1HoANTQy0eyH1xt5vNlCRraWs/it3m5lyxjtUFtPQCSHAzZ7kpc6EeSv5yDOOAslijNjKC42Qr6UNaDDYntUYvaoMR3vrWRd7jwqQuKkbl85F+4UnMrnWYg36Cq+sxlpRjRClQ21q6FewVtJw6iedMF8fsSmfieDKOJwxHSuDl1uepPH4KWzhOacqM2u2GwUGlRiOdht5e5efEAGeqA30opJxOn1YyP9laqfp6Kl7qI9W4BWffCdBo8NSuJdVAwTaymtIMQ6iZhA57DM64yD1XbpObqyqvYjA6yFWVV836Ayz7HvHTQmnoFMbeQUz9QyRNBjTpBB06LT8+8O1c9u07P/808cetfK7yXVi7B1GbjTQOwqAJ1G0dk1/D6TpaS/2bWIlG39deUzFDNdWku4dIlnkxdvUxUuZB4/eTWLOKVb4ds7q73DI3nQdorL0Mqw4lq2q3E4+GcGeMDPUM01xrBF0ppWkLwX5ljFlvsmKwTC44vpQkuJmjvClzzmJsnX6ipcXggkQ8Q6rlDBZbDeqOPuVDtLj4/He6QlVs2Ung6CF0Xb1obQ4yDfWYdebcrKhsn5rM9tdgDuyjfagfV0k1hnCMiB5OF4GqooLw4VPYVQ7UaaPyzd1mU4Y6zGaoqJj6QDbVgd5uV4ZFIL9WajR7sy7lhrok6PVY12yisoKCbWQ1remGUAdCBAzK1OzxtpVtw6g1ss6zbtYPkXuPGFN4G+oxBGJorSmMgRAhXw291hgBTTKXfTtrGOKqIfBvtqEb8hOPhumxKBOkYuo0uJ3oZxOMJBJKtq63d+x1HK+nR+rfxPLk82FpbsaeCeEffBG3yUZMoyGjURMwqTDuuvmCPqMa3Y1jPcFMGWhuJj00SMtfHifV2Y420E9foAVHZyvt1hO0j97OWF7Nlnf8PWrN4oUY8u6+CNnW8oFKDxqnC5NKi97mIFxZgsbhpDicVjIHO2e3gvJK5apowL5+KyMDPbnCXMhfZdZlcnHFplup3rYLdyhFKp3CFohxxgVDZghUlpCsqcbhqVCe81RK+WmzKQfymeqdfD6lJiqZVAKh7CmZzK+VGr9y+ZVXKlmDxkYa3Y1s9m5eWvUe2b9lQnZD1d+fe07Hyw77uEyuC3qY8e8RldeLRm9En4KIx0GZrYx7rrwHTxianWBMwi34CBx8jra2YwwffoGUGrRp6Og8wfHje0mnkjM/YDZrc/q0cnrhBXj11bHTCy8ow8T19Rf0dwixJIy+r8t0TlJlXhKRECNVZWQGBghtaKR6264Luru89/3ofasHh9DbHGj6+tH4VmGrW01RaR1aVxFaVxFJ/yB6V9GiBjYgwc1FyabtOnUjRKvL0Q0o9QT92jiWmkbMAwHYuhUazr+C8kpXsfV6IutX0Vs2tsrzVMM8jvXbKCquIt7aQkibzmUYjqa6SG/aiNnqVOpkysuVn0ajMuNppnqnaQ709PWNzc7JamyEzZuV6cjXXAMu15wP/IvO51MyWwFlSJVAAKPDzV++NEDm8xks+pmnjM6GW23Bp/PSFx9mpNgNKhXxIhdhfz/mOPz4qf+by7512mH/0GHSiRipijJiFWU0u6DPAgGbDk1V1fk/MLOZuFRKee3i8fyAtadH+bslkyqWK58Pq7MEZ0kNQVUCfWcPQQMXnLWZ7r6xWCi2esHhJOMpxle1CYe7DL3NQSYRR+twU7Fl8b/Qy7DURcoWXfWWpqhpNRIb7MNkMlFUVglxM1w/uxWUVzpXeT2OG29V1oZi8iqzueJtiw7L6o2w5xX+Of4bhkbfq//+/L/zO9z8oexDmCIh0jotxOKky70kq7wQC+aKTKdsD+71wokTyoHebld+WiyTMz4XsHJ5wcsGdaPj6PT1wcaNY8HcxRbljmZR1nS0EO9uQhVLo8pkiMWjVB3swF2r5fLWFN+uUzJFI7ZyOv0R0OrQmSyk1xRxd001qYF+hqpLZv+BmR1ys1qVuqtUSnkt+/okkyqWv2z2ZriX4TIvyZdOELpqA6suMGsz033bBgfR7NhBZKgNO9W5q2PdHbivuB5XxeJ/oZfg5iLlpszFD1NSXU7s4POUbbwCe0ADt94q6e+ZjB48s4FLadpCUyTGudAR9Go1Xq2TYCyIVq3lubbncuud6IwhOsu0HB6M5u6qP9qPzWkjvKae/mMHSPQNEjcZ6XKVMDiwH/rSucJvm8HG+pL1k2cMBIPKwXyqA/1yNa5fTF4wl+2X0d017U01pWUz98sYzaJYRxe6bBk+i6ZyNX3dLaxRGykajHLHle/hE8kHAPjFh55g6JnHie3eg23IT0KtRtc/RCAVxbp+Cy57ifIawcyB1figrbxc+fssFuVvvP56yaSKZSv3JbDKi/aEDZvRQZfXivq669GpdcSSsYtf92l0lmKx80p6d/+Q2GAfBreH2GAfWqu9ILI2IMHNvMhmb5rdfiqsdipD6qm/9Ysxo9/q0709nOw9mlt0zRLqpifcg9fi5UxTJ/t3rMNj9WLVW3PrnSSKTNh2vZYdJ2K0n/xV7i7/87b/xGpaRejAfoKnhtHXVKPyNWIf7a1icBaTbD6LfnUdaoczf3/a2nJt/Scd6JezCf1issFcWgUvh8/AmUNEvUWTbmbqGQDb1vP2y8gGT2VaK+fifbTFB1AXOzGmiomfbCV9+eUMvaxs6jF7KLnidZx65VXULxzD3tpFMjaC1WOntC8Ou3eP3e/5Zjtlg7ZUShmabG1VglbJ2ohlauKil25dB+ZgN8cur0Zti3Du1O75WfdpNHvtBOxnX2HwhaeV4KaAsjYgNTfzIpu96TOmsK/fii2amlyrIfKNfqtXB4LoXcUMGdJoXUUUldbhKW2gSuXA4CzGnwhiM9hoLGrEYXAQT8U5M3iGQ12H+EPzH/Lu8l2PvouHWn9Le62btNfD8KoqdB4vZp1ZmX1V6UHrcFNmLpm6cHj79rGC4ZX0+mXriBrHCqLVKjWaxlX4DRnMagMGuyt3MqsN+A0ZNI2rzv8hORo8WYejhBNhjvQdoT/ST0u4g0P1Rv5o7sIaA2sMXjzxZxy2YqwbthFRJ9H6g4R0GbQbNmGtXaUEJ3a78voYDBAOK5mcqU7ZhoAjI0r2pqdH6t/EsqZWqTFoDfSEe9CqtQSqvQTXNuBYvx2DxsA5/zlSmRTheJhgLEgsGTv/nZ5HxZadaK12Qs1NBZW1AcnczJvslLnKinJwduYdKMQ0xn2r70gNkdBocdjKcOvtaIwx+is9OAwafG5fXsdMs85MIp3ApDMRSUYA5Vu/WWcmloph37ANo8FFkzPK+C4unboRqtZvxd49AuPrSccPQY1rDLdiTFNHVNewnYG6F9A296BzjgV6mYEOMvV11DVsn939+3yom5upCxTTbeymRu1GU6Jm6OotlB05kWviV/7MIWJHQrgGBhgmzUhwCJXRibqugf5MBJ1ahy48gtZsQN/Xp2RyEgklOJ2ouFh5TXU6JXuzapXUv4llLZ1J0xfu48zAGVqHWumN9BI2hqHzKLFzMVKZFD2hHvoj/ahV6mmzOLmhrWmMr1nMznQdeHoPzutvKZisDUhwM2/yOqSW1828sVCMfqu3Hz5Mmb2M5qFmLHoLugE/4TXKLLSNrrGi4uzwXyqdothSzP9Y/z/4xoFvAPCVm7+CGjVajZa6+m1Qvw3dmceVtVEMdgKxADb0VPg2Qe9LSnO+bOGwWq0UFMdiy6tg+CK5TW6KNl7B0Nmf4wmFSVktaEJh+tQxijZeMfuZF6Ovs++lXgaLVmPrHCK9YT06bxm69h7sMWizw6AuyfPBY7RF20h64mxo8RNJwfGzj8NZMGvNrA2bUG/YyDZnNeojR5Usjd+f/3j9/cqCgdnMTiYj9W9i2VOr1FTYK7DoLUQSEewGO6FECIfBwWBqELPWTJW9CqfROe3q3ROHtqYyMSiq3HoDqZERKrfesHB/3BxIcCMW12j2pkJlpEtnUorTdFoGbFocCTU+nTdXROpGh0/n5fBQE+XWcs4MnsndjcfsoTPYyariVbmD7viVbfuCPVx9Jo4rc1ypqWltVRbGzK49tX+/dK2dQl3Ddg7UvkCyuRuVtYFkTzfJ+urZZ22yRhsgVvcN0ZaOYCx2oglFGClyElcrw1JF5iLaAm1YzS763U6SRS4sRjMbj/UTUCfwqKwYUmB1lqOONJPo7CDpsKIeiZDJTu2ORlA5bKRqK9ANDqBbvVpZOHAlZeLEiuVz+2hwN9DU34RVbyUYD5JMJTHpTFQ7qmlwN5BMJ6ddvTuvOa198mLDbYE2GsyVqEPh3GVOWzHOm/9aORMMFszSJhLciMU1IXvT1/w8ap0L7QsvssVRjbtlf97ma+IhAol2Tm2swK4f66wbjAWVvjiWqlww5NN5aU0cpafrNA61lnJnCZxuVwKqYFBZe8rlGltLaiV3rZ1m2rcbHZ76jfhPt1DS3Uf3hWZtcnekvM6lnWcZGkmjev4ADr2ZwfAg5UFl+YXSw2dJBTsYsRpJZUx0Xb2J8s4g2pEoGrsda0RHpMZLceMm0r3DNLlSjAyewhgLkurrJWUyYOwdIlxZQnToGK60nvVb70RdJD1txMrgNrnZ5N3E2eGzxJIxikxFHOs7RomlhHpXPXaDnTPnWQMvmyFPppPYDWOfsYFYAIfOxuoTffDi7ilvCxTMl0QJbi6ULMg3bwIjAULxEKoSCwZVDGtfgDaDhqOOBK7OIIZaD5HsauGjtRXavkFc5cXE/INssTRgHa2JGxzuYlvNFbgPHss143MDWwY7aB5spt5dj0OfUrrTVlRAbS00NSkFpubRdrwrYXbUVM6zFlNjPMTxWAZ/+Byh9XU0VK7KzW4bb8r+QXl31Ig1kcDSZmXw8ItoG9ZwePAcp9xgi0F7qIORwABtySSDRSYOlMW5PpqmsjNFcVJP1KzFunYTdo0ZHJBatZ3AU7/HbLJiHhwmkVaj0RoYKfKgaj+H+spdEtiIFcfn9lHrrKWpvwkVKnRqHQ6Dgwp7xbTNUcfLWxF8XHCT7T1mHwHaDk1alw7IX65mkUlwcyFkQb55k0wn+c7B79DqbwWgOtBD9ckeDlVqOUKU14RTHDsyyKr6y9CgxnXiLIa+ITTxJMHhEspVEdwmd64YtbamA99WH9ia89aJ8hoaiZkNeB3V0DusBDADA1BZqRSiVlYqaxCthJ4205lhIU0Aa5sf84Yt/KHjGdLuNJH2/VPcyeSx+ElG65nKOkoZbj3JULAfq7OEO6/9IGt601ib24mY3QxqAvR7vQxZh+go0VPVn8CcgFCll7LyVdDeB+vXUzfYBYMjWNr6MY8kUDV3ES/zkHnlBJbYCGXbjFMvlirEMjY+exOKhyixluA0OWeVtcnKZm/G1yzmgiITU69LFwjkL1ezyORdfyGyBwG/f2xa6viT369cLx+m56VVaykyFzE4MkiRuYhUQx3BdfUY12zAU72a7jIz3hENgVgAjVpL2mjENBggUlWKuqwSnbMIl6cGvwHsMfCU1uO2FE9aJ8rm8rK+dgc2jUm5fOdOZZpwJqMENJnMyulpM5PzrK9Vcd0bsN3wWjTuYuwG+6STP+bHZrDNqn+G2VuJftVa4j0d1DlqqDo3jLqjC8u5ThxdQ1T4wdnWx181xXF2DuBQmwg6zdjr12GPobxeq1ZhL67A4S5nyKEnaTSAWkWsrJjoSAiry4u9bo28F8WKlM3e2PV2Nns3U+uspSPQcd6sTVauvUlY+SI/fp2/C1quZhFJ5uZCTbeacoFFrUvBzpqdHOo6RDwVx+EpJegpxQGUhftI1mlwpNI0d7fQa+ulKBUjronSrhmmPxwlkUpgU3vRpiFggNLNozOcJi4pkJWd7t3QoGRupltyYKU6z/PmrKjnLW4nj595fOqx+GkKFCfKzsbodMQxaVKohnpJqqJE+poZsWlIq0L0e8voc2Ww6ayYY2qGfJVYNEbKyhuVrE329fL5KG7YwGC4n5GRftLeYuKxKFqDEcf6bfJeFCtWNnsTT8W5rPwyAA50HuCy8stmXS+Xzd50BDrQa/R4Ld6x4egqL9oTR8n094DdhjYcQV9gXxIluLlQ5zt4rvSD5AVocDewtWwrT599Go/Fk7u8I9DB9auvp8wGw0/8nG5LEmtaQ/+aGizpDN3pJEadkSKdnSo/HPWA0+YZa83v9cLRo8qU4OLiyetETbfkwIVYjrVX2edldH2t+FA/KZ06tzaXTq2j1FLK0b6j1Dnr0Gq06DX6SeuAzSQ7GyNiN1K/5VpsTS0M161G13SOwQoXfpMKVVUpbqMaczSJx22np8pFba8G+6lWJRNjsSi1U4C1qgHXueN0qdN4dA7iLadwFVdjvewqeS+KFS3be63RrcwUHP/7bGSzNy92vIgKFfsnDEe7dR04jrURrvJS2hNmzY1vR11A7zkJbuZiwkEgd/CsGpupM6WleMBbYNnsTV+4D4/FQ1+4D7vBzs6anbhLoPfV/cQH2okZbQxt8uF69TSWaAxvaTnVJ7pZ3Q8xLWh+vwd0xrE77uiAoSF4/esnB57TLDkwa8ux9ioWUxrelZbC0aOka2tofuUZOqodDLVCuktLWq8jFA/R1N/E2eGzlFpLaXA3zDrVnZUbz6+04uocpDiVIlhZwxDDBBtrcRisrHPWYj/XQ3F3Nw3nzlEcTEL/C2MLnGYVF+OpWkVbSE17JoUzUoJz1eaC+gYpxGLI670Geb/PVjZAGkmO5E0PT6QSRGsqsHf0EzvXTMZdR7iqVFmgmFlMLrgEJLiZi6lWU16/Ho4dW14HvAs1h2zGxOxNR6CD62uvp8GtdLos2XQVoT/8jLNVetKVHkJdrVSeDVO/vgHz2RZCeui0QcZuA51p7I6zM6C6uqbOzox2Io7VVROfYuZPbpcnvEmz3TvVRg2agV7SFeV522s1WvSdPQUzY2BWxgdroRA0NaE+fhxnpJeu5CAN/jgxt4PBKzcpjcFiIV7qfol6Vz0DkYFZZ22yst8IX4q+hL3cjePwScKXbaT/xD4soQhmSxmVKgeuag96WzWu558HXwU4+pT3UPa1PXUKtm7Fun49lc+08ao1RE1FPdbtkrURYj5kA6TB4S6G+lrJBAJY9VZe7T6KP+6nI91FaXsHZ6oqODywHwaU283LGlYXSYKbuZo4tLFqlTLbZJoZJ4U0RW5BXEQ2Y2fNTg63HuBs62E8aiPXu7flMmAVjds5d/Ywg+4IiXAf6jI7G0ImKkNqMjXVNB8DbRrlgJcNbgIBZT2h4mI4eXLq7IzLRfrqq9jX8iR9PbPrxjm+e6eeEKXh0yTb2khax4Iqd0LHJnsD6qWUOZg4WyoUgpMnsa7ZhNoaRNUfRFdfh9lgBcBj8eA0OFGr1Bectcmqd9XzWNNjnEv1U+UMcs6eJO1SUdd+joTFhLWjl8yGDey46bWYTp4ErRY2bRq7g74+5TXduRNcLkpO1LJ2qJWSkmrJ2ogV7UKWT5iVdBr3wWNsaeqg1d+Kx1rKGn8H3aFuNCMjeDMW9DE9fTorqNXTdj++1CS4mauphjZWcrHxeaYTzxTcNTjr+KtuMyePvcTm0s3UJ48DxwFwAatVbno6ejhk02C0mbGvrUd7LkRo8zpefQk29kA0ESWdSaNChepcM+k1q0jXlqOOh0m7rdDfOfamHs0gzaYb5/g3ad72JVVkGkI4m1qIuJRVs3vDvdQGzai3+JZe5mD8/25DAwlVBnVlOe7B03Sqe1GXuUjElXW8hkeG2ejdSCKdGJtBcYGKzcXUOet4tHk/3UUuhgM9lLotqLtGMJ3t5CRxwhSRzLRxw9YtqJ9+RgmOQdnHs2eVZTJKSgCwVvtY3eeHap/yZUOIFWguyyec1+hne1naTIfDRUADNk8F5zJDYDFgcZeSqqjAbLBe0OSChbaowc3999/PL3/5S06cOIHJZOLqq6/mS1/6EqtXr85tMzIywj/8wz/wyCOPEIvFeO1rX8s3v/lNvF7vIu75qImLLK70YuO5BndqNZuqd2A9eZZVZRuVb+njlEU0uJ3lDMe7MWUSHHPGGQqG6FM1c8YNDUNwsOlJBrVJvCkTxUebiQweI3lotAbnyJ8BsBlsrC9Zj7rEm8sgzdiNc4o36fjtMw31aDsHsYykCOjBGddQUlK7NIPYcf+76fo6XvWk8QeOom07x2H3CD3DBzCFTUQTUWLJGDsqdrDWtfaCChQnuqF6Jx2//i/UfSewGWyUWe1443asbb30ldpIHe/BFTtK75YrsT6/j3RHMxmnC+0rr6AeGCIW6EP/q59j1puVbFMopATXqdTyHv4VYhrjv4CVWkpJpBN513cEO/BavITj4fwMzvlKCqqqsDSXUxpNczrRQ4W9AlXIgj4aQ+8sZrBGGZ6/kMkFC21Rg5unn36aj3zkI+zYsYNkMslnP/tZbr75Zo4dO4Zl9NvXPffcw+7du/n5z3+Ow+Hgox/9KG9+85t59tlnF3PXFVMtsjhdsfFSPOBdqLkGd+k0FSM6KhJlcPQsmHrGrotGscRirHVVUm4GtVZLcUUjiQowJKIMmeGMC+jvx15bDW1dJBvqMCWSREczKgB9kT6KXMWoA0Fo8OUOfOO7cTowok4oK0wPD7WxrmQd7qRurEhcr8/v3uluIFpdjuVEM8OuDGtjBqxrNi3dIHb0f1cdDGHWmelvP0mRyYWzxk5vsA+nzcpIMIRTZ2StsZLLvDvmVCCfTZuX2Eqpr9xCW/NjZIorwGZnUGtgOBNFVVVDSULHX4JNHOlqZYe5Fd+hDjrri2lsaSNsN/Fy7AAlPa28ae2b0NjtylBkW5v0mhIrms/t4/TgaV7teTUvuInEI8RTcSw6Cz3hnrEMTobZlRTU1VFxqJcOg4m+cB+ltlJs/l76S+2knfZZdT++lBY1uNmzZ0/e+R/+8IeUlJRw8OBBdu7cid/v5/vf/z4/+clPuPHGGwF48MEHWbt2Lc8//zxXXnnlYuz2zKYqNl4JWZusuQR3arWyJILZDNEoFI0FJfj9YDZTtmo7N5TG6Qh25LIsKlQAnHGD3upkY7qEZmuU/i1rKG/qwKTSkrJaCMfDmLRuyswloNdM2hef20fzwGm0+1/AFUwQiUfwpeKsKTWAflygNVozNL57p7amnMzp07gHRygpX720g9hx/7sV5WVkju4Gp4Mtei324R7S6S48qQQVjgrWDJ+B9vQFZ0gmps1DNV4SNhOhQCcRfYYECbRVRjaYjRRbarGsdTA4+AKDl61DdS5AZU+UmNfNUG0JkWgQc/k6NFabcucrYfhXiPNwm9z43D6O9R4jmozm2mz4R/zUueoot5XnD7mrmF1Jgc+HtaWFimic44l21hoq0ZQ62F+so4rCytpAgXUo9vv9ALhHA4GDBw+SSCS46aabctusWbOG6upq9u+fugV8LBYjEAjknS453+i4/8X0UVmqJnavnG3XSp9POel0yrCC0aikSjMZqKzEXu3j1tJr2WJpYLi3DU0ogjqufCsZMoN13WZKUybs67dyrlhLtLoc3YDy/zQ8MkyZtQzTYJBwVSlBi45gLJg76dQ6Sm3ldKvCaIJh+nUJikrrsBaXT9l9enz3zqTTTofHSGnKtLSzNlmj/7v2wTA2bwV+TRK9uxhLUTl+Y4aMzUZFxVqs0dScMiTZtLk/5sdusFNdv4WKzTspCmcACMaD2Aw2SqMaPBuv5MpNr8NtdNNbamN4XQPOcJKBLas5u7aM0qiGtZ61ROIRIvEI0c62Sa9vLBlbiGdJiMIUi0EwiE/npVFfijGSQBOKoAlF8KSNNFqrp14V/DwdyvH5cp/tFTEDDa4GKmIGPBuvROfxXlD340ulYAqK0+k0f//3f88111zDhg0bAOju7kav1+N0OvO29Xq9dHd3T3k/999/P1/4whcWendndrF9VJa6uTTJc7uV2TBnzyqBhMmkTK2Px6GkhPiTfyIVi1GbDBPtO44+8zI6u42yYciooai8EcxpKmq8OIYO0l9kxGQ2Ehvsw2QyUYGNo+EjHI0niB9tmfTwoXiIQWsUjzqBWWWhzNsAhtEpx+MzAqNj0+NXHDeWleJ2lyo9YmKxpd3LaNz/ruP619J29Cmi0SAudzl+TRyHwTFtBmy2JtY5lW+9jsTpEwwN9GKy2yjPWCkqrsKxfhsOtzvXKqBjqw9tPEHHVh+vBpt4k6eK3s7THNceRxeOoh2J0xFPEz/agkajQa/RF8SUVCEuiXEzVt3ANYPDGDvaSKZbyJDBa/HiGT7HwdU2NpZtzs+wzLakwOfD2tzMxmQKnBpYv4366OkL7n58KRRMcPORj3yEI0eOsG/fvou6n/vuu4977703dz4QCFA1VartYp2vAKu6Or/YeCWZa3Dn8ymrdZ84oSyRoNWCXk+6vp5zB/9EYqgfAHVkEOPJc2RsFj4dVW6aiHyH9LW34xoYYMtgByfVQ0QrG4gdepGyjVdg9Y9w0pniyeArFCWLJj30QHQAl81Fl1fHjgFDXnFx7g3udMKTT+Y+PPJWHHcXw3PPLY9eRqOF8vZ167DjZ/CFp7Gv24LD4KDeVY/dP3JRQ60TVx02eSuwrt6M6dnd6D2VVCVMeDZembv/bKPHZkOakZsvw9/fwUjYT8TkQH30AM3WOFXDGXqr3JzznyaeNGI32CkyFxXElFQhFtT4Y5FGQ6Krg0RZCXa9DYfGyrmRDjR6A65QgoGRYUxxCz6dd/IXsdmUFEzx2d4Ybbzg7seXQkEENx/96Ef53e9+xzPPPENlZWXu8tLSUuLxOMPDw3nZm56eHkpLS6e8L4PBgGGhvzkvxw61823iTLKpTAwQdTrljdTUpHQXLi4Gjwe11Yq22EO4pxVjaSV2vZaYa4iEXsWamqspjoDOW4ba5QKgrN9MswuaizVUWO1UhtSorVY8jVeS6fg9Bq0Bs86ce9hIIkKGDFdVXkVFqYmSlzumfoNPmO6et+K4wbZ8ehmNK5Sv2LKTwNFDDPW0YrJbqVDZwTL3rE3WxFWHjWvXU9x0mKKInqIKJWuTlW30uPf0k9z09CCxMyfZqbPiUAVw9QapHAmgVmsoa/dT3RHi8TesxWA24DQ6CypNLsS8m3AsSgcDdB3aS/hQAuOgn2r/IPq0H7/TRELfT3voLKVdDTjP2WDcrFFg9vWiEz7bJ3ZCLhSL+imcyWT46Ec/yq9+9SueeOIJ6urq8q7fvn07Op2OP//5z7nLmpqaaG1t5aqrrrrUuztmmtXB4xYjEaOWkYFewkYNwUQ4r7ZjRY3/Zw+QowHHJNk35e7dyunnP4eHH4a//EVZN+jsWRgZURa6PHWKovJGtFY76WQSR1pPbMMa/C4zdgwYirwUrd+RK0i2WFx46jcynArjrFuLbTAEpaVsrroMn7mKoegQRq0xdxqKDlHnrOOGuhu4YtOtSu3MdDVD48amcyuOu7z5Y9NLWCwZy/uf1RaXYFi1jnh3B26jG9NgcF5W/p246rDfrGHLNW9ms6mWko2TOwzvrNmJxezgUKINnT9E0u2k1Zqi1akirk7TbEsSDw5xThvGaLKi1+rn3INHiCVDrSZuNjIy0KscezxuYtUVRGMhklYL9jiYi8twaC30eC0MuY14ShuUWaNT1czNpl70fJ/tBWJRMzcf+chH+MlPfsJvfvMbbDZbro7G4XBgMplwOBy8//3v595778XtdmO32/nYxz7GVVddtfgzpSb0dEln0hzuOk54oBttNEY3ZuKn8uuClu34/1wWkRyfBSkrg8cfVxa6BCVr09U1VlDc2oq9rAxLQz3hwy+R9laiW+3DYNRiP9KC+dod2DwVSsD03HPgctGoSWH2B6nQanL9T9zd3fxVwsx37R2E42EsemUmVSwV44qKK8YOhDPVDLndUFlJ4qUDJKrHsoyqs+dIr19LOj0CgX70Ztuir61yoaZrAJZwxDDpUujPHOGEzcv6hrfOy7ei8asOW/QWGq/YhaukC9atAyAwEmAgMpCbzlphq+C5GjWNZw2Uqw2MOPT0aYfxmIwk434GEgmOrymm3OCkxFIiWRux7KUzafYbetGN65aeLFKROhPBHwtRokuhMVuwmc0cL85QVFSBz1kHyWmyr8uoXnRRg5tvfetbANxwww15lz/44IO85z3vAeDf/u3fUKvVvOUtb8lr4rfoJqTw1Co1Zp2ZYF8Pmc3bMJaUM24Zx4JpST3vLmaILhtEgNJptq1NmRKu1YJGAxs2KM9zaysAjsYNjBz6C4P6NGm7FYPLg8o2gLW4nEg8gjYcQe9ygdmMtbic1cWj6z7VjD5eWxuN67ZRlYnTHeqmwd1Ad6ibakc128u3j+3XTG/wdJp0by9dB54i9FKStFGPeiSOJp7E728ieWgPI0V2Mtdfz66G1xTu6z1FQKoGHAk15wZ7KC+qJa3XKVdU2nFszpD+ywuotvpQFxXPyy5kszfZYkRXeT2U1wOQTCf59oFv81zbc4wkRwClT0ePNcK+4ihXH3+B1hoXDqMDU3kpRcf9PFtvRtPYKFkbsWKoVWpM3gravGYaO6JEXEWonHqiJRWYXzlOr8dC2WCERK0PszHABms99v4gbNs2feAym5KCJWBRg5tMJnPebYxGI9/4xjf4xje+cQn26AKNK8CKW4y4kzp6TGZ6vTYM4/60YCyISWtant8kL2LZhbwAceNGZR2oZFKpvdm6FWpqlKCpupr0urV0djTR69TSHWhmpE+NpvMsztoigl3HCGsHKO0JU3/ZjWR6e8lEgvD/b+/Oo9u8zgP/f/FiB4gdBMAFJEGConaJkmzJa+RE8VKnTdJMkpNf0hk3OZm0406bE6eTSaedZM6cTnIynfkjaeo0nRMnTZvNnaRp4m2cKo43Wd4kWxIlSiRFiRtIcMNC7Hjv7w8IECmREiWRJgHdzzk8EoEXL9+L5X0f3Pvc59ptF/9WPIHGbMDUtYW9CcHjPY8TnYte3mtTttQHXFFQmpvR2h0UpoYweL0YUtOk21qgsQlbZJIxXYGg2bF+A5srBKQbc0lykX6EL07+7jsqr1s86EOX2khT97tW9FDKqw5fmoyoU3TUW+vJFDPotfpKgnDQGWS8+zyzw2/jSqnYnU6UqSlyFiMDWwM0GOpkr410Uwm7wwyHw+QmT2FN5dEPDuGcSFFMpEEDtqyJ5OAQ3XUmQpFz5G0J9P/m3yy9w8WK01ahdZFQXLUuXJzVt9/mmCVGoe80/T54deZV/PmLy0OMJ8fZ7t+O0+Rcu2NdTcEgnDhxMQm3LB4vDUldabbahQAxZ9ShhlrRvvEmorER1WmDfAbl/CDFu+9Cu3Ub1oP/zNT2MIyPYRybRFPnRLlrP4ZToySHh9G7Qxz25cjOjODoGWIuePE1sA6NE+sMok320N3QzeGRw/RN9xF2hxf22pRd6QMeDuPY3E388BSa5ByK04na3ooZyFqMaMLh9X1xvUJAWoedhrF+3layOOYFpKO6NNve/UCpd2UFLZqMeKFWx35DFyfyHiZTk7gtKqYLw3xjDidnm+28Z0yH2daI2v8mJ7cG8Gy9FbPeLHttpJuK2+ymuW07I/2DdI7GGMpN4Z2KcM6nQ1/IkfM4SM+NodgasJ8/ydCd+9jsca+vInerQAY3NyocRhkYwBEd4ayugHvb7ThTpwGw6C2k8ikKosAGz4b1+03+RqhqqR7NyEhp+Gj+LLZIpDQlvqcH/P4le2/U9hB9B3/CbH2eUGqSuZSGeEqPYSSOvpjhdHMWuynKjn37UUxjFHvexnT0GJpbbsW2aQeJZB7H0Si+7bcx47dzdvYs9REnShaKdRa0yRQ6m5NRv4XNRhtei5d9zfuYSc+wr3nfxQvhcnOH3G7q9tyOrfctZqJDsDlIsc6K6dwoAw0mmtu2r/+L6xXWAatv6KDYQWUm04Ky6teTX3UtVBWefx5+8xtC8TifnBjnzPQZ9Fo95gurvo8xx2iDG61dT2AswXmrhdEd7dwTugezzkyLvYXJucklV0Y2aA3YjNWXEyVJl5lXd2ss4CczfAaTqhBXCuRamigKmHbZCQxP05jRkTRrUe/YV5vXokvI4OZGXei9CUTOMxAKofXWE4rnGZgZwG12MxIfIeQMLd47UAvKvQAWy8XseYsFUqnS7xbLVSvZKuFODK+7SE8NkGlvxZycI6czYZscZerWbYz6TPh9jTi7byU48ipHU1NYcgJ7axfaZIoRq2DH1m4crRsI6wXnrS6S/hz1Q9NknG5MsWkm2n2YfI2VHpXdDbsx68xsri8lry43dyh71+3kRAGCfkzhjWTUBDMOLeaZaVKaDOm2tvXda1N2haJdddu209xEpQ5Npay60Vmp87OkGy2BoCgXK6UKgb91C6c1M8zkkuQMeszTcQyKwLdpN0VXluLhU7Czg1vD+9lFIw6zl+cGDvHi0IskMgmKei0FvXbBn7AZbdwTuod3h959U5zkpRp1SdG+LdMxZobP0xJJ0I/KhrEcc+1BjrgErZoQ1p4RRm/dyIZd96z1kb8jZHCzEjo7qcvn8TjTHJ07R6O9kdHk6JVzOmpJuRdAVWF8vHThnJoq9dY0Nl59erTbTf22fcw+PcDkrZtpfKMXR98ImM3MbGzDUzCUik4lEoStQQb8QQIjOVzHB0nlemgp5ggGtsPLL1eK651Nj6Ka3BgiUVSLiXNePV3zhisuGw5ZRu6Q2h7ixeGXK7OJ3N482eEipxOnaJ+BkwEdDlNX9Qw/XqFoV9jMgplMYffldX4us1J1fspLcZw6hcdio6k+xPHxYxhyaTzRGCaHg5aEC0XJIFJzdA4lqf/Jq8CrYLPR0mAiPNZLtpBF8fsZ3BmqHFM0FUUVKnajXQY2UnW75PPoM4YZT0WZNE2Q0NmoPzWOw2ijyWHHqtMRbUhiuue+2r4WzSM/3SvhQn5GqH0XVkNpNfPGukamUlOXz8SpReVeAIOhtGxCNFr612BYdk0Ux9bdmHfvZYYMAg3W02cRaBAnT7DzjRHcBw/BE0/gfqOHdlc7k0p2yXWgGlQLorGRyUYnusQckwE7+nr/1XtUrrK+ihLuXLAukibciccTpDEuSOpUIgFr9Qw/ZrOlxO1AoBSUpFKlfwMB0OtxK1baXe3EsrGFOSzLWYPmRpWX4jAaoaeHDeMFusaLNPVHsabyNBZMBGYK+DI69Bs2YvM0lhZbVVXwevE1deL2h6hLqxQsFhyW0qwqnaLDrDPT4e6ojt41SbqaeZ9HuyuAu3UjQxv8tHTsQm1pQdXpCLlCKNkcU/tvpWXX/rU+4neM7LlZQfPLyjfZmzg3e25hTkctK/cC5HIwPAzNzaXp3cu92LlcNDzwYUb+OUrcN0tBbWOizY3Q6bBb3aREHmV0jKLHToAAg431RMfOYNGYL1sHyuptxLPVQ8/kSeo0Yc551QW9NlAqVndZToZVjxIMoBw7gdbaiUFrKN0+r1JnOH1xXSRLvR9j12aaXprgJX8OX3BjdQSy84fgkslSReiTJ0vfBI3GUq5UfT2d+3ZePpNpOWvQrEReTjgMoRAMDuJIZvDW1TOWmCXd7CXQ1IVZb4K5OZq69kAiUWqH1QoNDditbkK2IEdt5znv1VMuNTabmcWoM7LdXwU5UZK0HJd8HpvtzRTUAqEZGN67l/H+t/EPDjOeT1DffgB3QV/6vMDVP4ernV+3ymRws8Lml5Xf0bCDXQ27rv6gWjB/NfCOjtJt11jJ1m1249m2l0hvP+bpHDOnjuAw2Jk0DzOTyaHkC8Smesi/bsFg1zHiNXLLzOLrQIU6wpxhipPuInpFu+Cb+lLF6gAMJAnEe7H0T7O98w6URHJBIb9L10VKtzWhpLrJGSPcUS2B7KXDS8lkaRp+OFwaRrwwvOSyerjDusiMsSutQbPcuke3317q7VmK1Qrbt5M/fgwxM4UPM2l3E+lbdmKdhNzhV8BiRYNAH0+U2lJ+37ndNNmMnOzazJwtiyE3V9ltm7NKcqIkabnmfR5tdjvbzK1QTNKopsmPxdAPn8Hd7CN09Dz0/NPFxzU0wL33Lj6MXANLDMngZoVdWpisKi52K6X8ISsWS0X4rmOIIhTqpj//A6z9w5jTSZx+C/r4LLr4HDm3A000ydzgeRo/9EFEZ3jJdaCu9DooGgWb0UbfTB9B+yW5Iz47Y/4+usfmUNKZ0oV+8+bSEM6FbzxhvZ9BekuziRx24rs20ZVvra5Adv5sqY6OUuHE1tblDS9dbQ2aq+XltLWVKklf5cSpbt/GGZ8Wa880htkkhs3txPz1jJ8+gm/wDOl6J0JJERBWlGy2VNl6agqCQere9S6C27dgGv8NsUwMgZC9NlLNyRay5Ob1OAtTCM3oEGpnB/rX38Q/Fmc2m6Y+raHuZP/FB8ZipQKlS3mn8utWkQxuVsFShclq3g2U7i4PE+l1RrQbt5B/9U10oogABFC0mig2+tFOTqK4HXRuvRtX20bIvLXkRfZKr0O5h62gFhb0/MSzcTTt7QR6euHJJy8O1YyPX2wmsE0T5+WOzMLZRNV00ZwfoHR0lKpBA/T3L2/F7ystUXGFaeY4HLBhQ+mkeZUTp1LvQ92xjdm3j+AvgPAHMHi8FJsaEKfOkdOCyeFASWtLQ1jZLGg0UFcH4TChjjBtuXMcHTsKGujydsleG6lmzO+BLvc4a948iUBD4fgA7jP9+CITuNxu7GnNxXNYNgvpdKlA6ZWCk6t9jtf5OnrrN+yqYuWZOC7z+l5YbFV0dsKOHddUurv8IX3izBM8ceYJTjTriQbdmBJZiv19FM/2k45NYTo/hv7cEC6DA9eRk6Vu0/b2JRd6u/R1mL8opF7RE7AGGIoNkcqlSOVS5Io5onNRmtt3Ytm4tdQLEAqVhmrmLZCan57C6W1G0erom+pD0Sj4rf7qWyC1vEhePF76ff7w0tWUg6NY7PLhx/lDlPPNX4R0icTkXDZF2mwgESw9n44tu4ncsZORWzah6rVoNVq0ThexzhZ0ig6HaigFM11dpZO2xQKbNlV677b7t2PRWzDrzbLXRqop5R7oWDaGydeI6GjHllERnR1om4PE7XoINlOvt2N0eUo9MTZbqYezpeXKPTewvM/xOiZ7bqSVUU4+0+lKM13gYuIaXDH57LJhomY7trsPYDwzi2ZkmJS2iOpyoKbmyPq8+G658+JF1etdVm/RYnk2yVyS3sleBmcHMevN6BX9xZk07/KWihL6/aULZnk/sVlO5Uc5YzIykogwMD1Au7udQ8OHKttUzQKpiw0vdXUtGIK7zPzXcaklKrLZ0vN24kQpObk8ZKgopduz2UUTk1Wh0td7iOFWF9NTh2CqtLu+HR6mPNPcdjKK9XQCs6edwTu62P2rIqa5LHQ0l14jq7U022v79gW9d/eE7kGD5ubrSZVq3vweaBHuICd0iHAr03NT2Os96ExBckd7IJcBkwliMTRCRbz33RiWE5xcKb9unZPBjXTjViD57NJhovzObRS3nUQfnaCoqJgtdnLJcbTdt2Nz+shpZ8kG/ZBNQEsAJdWJ2hIo/U6pCu38CrSL5dnYjXaS2SRnZ89SFEUsegthd+kbf7bFSuHAu0rj2F5nZT+asRFyrUHG9Fk6HZ0YtUZaHC3YjKV1rKpugdT5w0vlafxPPLH09g5HKRlYURYPZHW6i/k086tWl6tVHzp0MaH4kgBIiccxKgamtXk8KVD1pdPTJmMzR62TDFtmuCWaZ3qrk2RjG+YJM5weKJ10z50rDa/ddlvp7104HpfBwgOdD6zmMyhJa8ZtdtNhaebkyFu4XCHmNrajCpVXxt+gy5LHHo3g0KUwDJ0k7XNhGxgh0RpgrN3AXUK9+nnqavl165gMblbQotOL57n0glszViD57NJZSAWnnZk7ujGe7kEfT6Abj5LxuvFvvxV1YoKjniwD877d4wUmX4bJ0q+L9Z4slmfT7m5nOD5Mpphhc/1mwu5wpZcnkTtNIHqMYuI0BasJ3VwGbSbL2WCIyfEowVYftzTdUtl/PBvHYXRUV17HpXlSAEeOLP46njtHPjpOIRpZcnfaQAMGh6v0XgiHS0FGuVp1OFzqcZufUDw/ABobozGbovvoFMW642S7Su8ZH6CZGWVmahKLvZMjjiKbgpuwHGiBnq/DW2+V/s6+faWepJdfvnhA63xGhyTdEFWl61SU/PFeDNqzWAwWUrkUe2LjmLNFbOMp0GhQCiqm6TgajYZTu1qwuZzki/nlXY+ulF+3jsngZoVcaXpxWdUMV1yPFUg+mz+N3m60EwkH8Ny5h5ZXTpGbGke39V2lHpI6LdrOVmLZgctnO7F078mlARSUem9MOhMaRbMgJ8Omt5I61YtrOoVpdJCc14VhcoZMo4/EW6dp0OhJjbwC9z54sfptNSYWw8LhJSGWfB1Vp4O388MU+18i7fdcthvz+BTYutmz+6MoZ8+Whora2kp1dDo6Lg7vzU8onh8Aud2Yba243niRl21TxHOGyr4n1Els+Sz/6k8xXBjBMzeBuvsulKYmePvt0rFv27bwmKtgRock3RBFwe5tokFY6dWnaKyzMJmI0dKyjZ6JE+gHpzAZNJgsRbznxulvc/NySE94ph9VqMu7Ht3ARJG1JD/112l+cmoim2AuN4dWo2UiOYFOo8OkM2E32is/sWwMm9FWm4ENlCJ6v/9itdvyz9BQ6Xar9YoPzxay6BU9fqu/lOSbTzGgmUXZ2Y2ltQN9SxveHfsqyWyhjt04jI5SMT29pfJTUAtX7D0Ju8NYDVbi2VISbTwbp83Vxrvb3r0gJyPs3YDR6SVv1IPLhSGvgstFPOjD4PSy2diMzuEink9W9lNZpqDalFdAd7nI2q3MBQOkRy8mWqdyKdKjQ6RbGins3EbMKLAoRox2V+XHohiJGQXazg0oHu/FRMTm5lJg09y8eEJxOQAqFEr/hkLYAi0In5cpUujqbBSMerwGJ/WBDiYCNiwGC032ptLfuf/+0vF3dpZ6f1ajYrIkrWPZtiB13kZ0qmAoN4Uwm2j2tBFQ6zhnLRBr9JC3WylYTZze2kCzJ4TIZq7tenQdE0XWmuy5uQ5L9dIkc0n6pvsYig8RqAvQ3dCNolGqc7jiWpRzbs6eLX1LL39rT6VKScZGY2mbJYYH5j+f5STfk9GTpTwZZweJnT78s278mcJldWzm98LA1XtPLn1cdC7Kdv92bm269bLtPNv2MjF4HqPiwhSZINXexESdhpDWha3Oj3mjmzOxIUKuEEOxITbXb0av6MkWslU3/JgtZMkUMjx/7nniuUGaZk5QONFL3mpGP5dGn80zhZGCYsfY3IDj7DhYQ5XHi/Fx0qFGGlsvTCkv9+QJUepRuTQRcf5YfnNzKRhpboaJCcy33saG8eP0q70U1SLZYpaunAXdjm7qGwp4LJ6Ln6X9+2FyEjKZhQ2qotwASbpeqlB5MdlD0RIje3qIHluGRmsDY6f/H4EzfYzo4iTTBdpmdMR8Dpyqns43Rsh5nYS3ty//D5W/AFURGdxch6WKwJUTVN+MvLlgWKRqhyuWq5xzUyxWSuZjsZTyK0Kh0u1XWBn80uczkU1wZvoMHa4OvN5OTttM1EcMKOcSC7pFLx3GWm7vSflxCxaFXERj61ZGmp8nduI82eZ6phyl1aXjQwM82z7HSCGzIBAz6oyMz41X3fDj/OCyb7qPwcQgO2w5AmfPMd3gxD02S7yzlawhh0hFSbtVJo71YT43S85qxDCXJZ2cJOb2YI324K/zoywnEXGxAMhggO3baX0lSWhsiOHMMAFhxWnxk21sxqedYatz48Uy8jpdqcrqwYOlOh42WymorqLcAEm6XuVzZ4/fwgZPkE41jtPZjGF8BJvezlxQTySfJOBp4pxd4PG1QjSOb+tu3FbvWh/+qpLBzXVaqghcvbUep9FZua2qhyuuRflCVVdXqqOQSJSGBXy+ZVUrnv98ht1hdIqONmdbZZipqftWcI4t6BZdrBdmOUHkcqpIq0KlJ9rDaVeRSHEIi6GeSGKIYMJJVs3xG20aX9pEm6uNvuk+OlwdNNoaq2+2FCwIzJrsTUymJplqUGmYSOGdyRLTFUkEfQTMbrwWL28Xs2Ram/Cem0FxODDHZphpLQ0TLejqXioRsVw2oLxw54kTpSD43LlS7s9bb1EXjXHrqSQ6NUJrxoS908X0K6/RajfS7neRnj2zoA2acwMoQ8MInw8lm0X/0Y/JXhvpphB2hxnwDVAIqWwemCBjdqM3zpBs9BJsMHMmH+G4zoRZb8aiMaI4tDTtvHutD3vVyeDmOi01LJIpZOhu6CZTKHWT13yvTdn8b+oNDaXhqa6u0nDBMoYH5j+fQUeQDndpnaCzM2fZXL8ZnaeehKceAMO8YZ/l9sJc6mpVpMvfiBSPl2xrM47+CLYmD20pK7FNm0haBwhqjXS6O9Er+gWBWLUFsqpQic5F6Z/qx6A1kMgl6M9OIOqKtPSOcypkI8UUtzlDdHo6mUxNMhlOkhp5DfdUimkdaMJhGm2NC9u+WCLihSHMXGSEYrEIySTa4ycQx95Co1FQbVaKA6cp7t6FPdpKcDJLRleg2OwlMXEeW/td9OYj6PqPLUhq1lnTuMQUhlNnIRSiPdwhEwqlm0L53NnrHccbMWGIRCl4XQwG9Gybs2Co9/DG2Bs025vRjk5j3/suXE0da33Yq04GN9fjwjfPsN7P+fwJ5qYilWERR0Ghu2Uvr029fc0X3GqWLWTJBf3oTp1A6Axo2poRFgMajUIh6F8QkCwl7A7TN93H4eHD5NV8pWpwuVehbP6wz/Wu5VWuXny14xmYGWCyI0lmOEpHyoTN5We6vY1QVmDQGbAZbWzzbwOgf7q/KgNZRaPQZG/CarCSyqdosjWRyqUYb1DJp+cYb7CxwdZAp6ez8nyPJ8dJtviwnRwhuamJotNB+yUrrwOXF/pTFFRbHadffp1RRyn8sFtmsZ8fJ97ih8IM04kRokNRNtkcmKMaTrs0zM4cx6QW0TrzZAtZWg0Cp2KkWHdhBpbdhZiaIz8ZRdyyu5RsLEm1bv61yGJn2p4gcHqUkU4/CV8DtvNaNhq0DFuHIZFANZtwbN5VlXmB10oGN9dqXsE6N7BzeoTzsfN46gLkkxG6HC10JMeY2tDG65E3b4rFM+fnbLj1IzjODDEX9GM9d4ZYZ5DpqUPUp6+eh+I2uwm7w/RM9JDIJcgVc7Q4WnCanJVtRhIj+K3+BTUaVmstr/KFPDoXxbRhM77BOdItjYzqM+z17mUqPXXN+T7rVdgdpsPdQe9kL0atkUBdgMHCIDObA5h0JvbNW/G8HPRFQ60MpBJoQ6346/yVti+o92TRwZ4Lhf4uFFjUtTYzoknQN3Ies82F3pTD5RSkxCxoFE55szSdG0TTfR8axYDZViA/3I92206mrVqC9i7SY4nLkpozFMns3MTmd/3WO/a8SdKaUVVyv/k1xcgYZmDz7FnGxvsoxGDkSC86m4P+Yh0aowmTy8TU6VNMbttCZO4k9ecnqyov8HrI4OZaXVKwzmcMM0KCiEihdbhoUC1gs9Hp7SQvijdFyff5CcGecCeGSALDdApsTjThTmLZ2WXnoQTtQeqt9Rw7/zpKvkBdRvDWVKnXJlPIkFfzOHNaRCbD/o33oWiUZfXCwDUWWZz/jYg6bKFNqPpZJu06HHmF3Z6t9M0NXXO+z3pVXodpcHaQydQkNoONdD5Nrphjg2cDne5OEheCE6veSrurvVT24K67UVW10muz3HpPjo07Cf3Da5htOfRaPaDQ1DfNZL2FBqPCxikV65lz5PbupmF2GmN9gXhXF5HkMCadiVl3kfFLk5qLk2juuo/bGtremSdNktaQqoGjc/3Qf4S030OaDGcNCXrrBbF0Dt/kCGc6N7FZ4yCcTjPpa6Ww/VYmsrGqywu8HjK4uR7zCtbZXQF8hTZ6p3rZZAxgNTdCOLzsC26tCLvDHB8/zrAuhdLownW8j5mtYYZ1KYqFIla9lXgmjt1kX3If5STeRCZG6/FhzLMJGm1zlftT+RT1lnoandAQ1qB0AZrlHd81FVkULNo7Z6gLoB8+zU5HC+5kD+F9O64r32e9CrvDtDhaeO7UM4xlMxTTsxQQ6OxpXus9WNnObQ+wvfUWBmYGKKpFtIq20valZhKWlROuO297H0ee+heUyDi0tqHN5Mk76hjy6qlzt9Cg5onFptFmczgnk+g37GSCIl2GRvLJOUL1G4g0nsM7Gq8kNZ/1W9nX3l3zJ21JgtJnTdu5gemTb+JUjBjdLuq1xdJnTN/KTGGY9OZ2yPnwvH0Kw867GPHU48inqv5ctRwyuLkel0xzbbY3U1ALNM0AW9b/aqmrwW60czRylOPR4zQVLDTrEgwnI4y8ncJr9nIqeooWRwufve2z6JTF33blC6PVaKMztAv1jTdImXVYDFbyxRypTB6zJ4AjraGxseuaKs8u96KraJRSwLSM3jm31Xtd+T7rldvsZqdvO7NP/JTM2HksOgtei5cNcznMfacAmExP0tCxC2/XfUu2PazzMRorosyNY7+w5hZAPJvAXygSbvbh8rdhv/te5n74GLlcBltOZcJXx7RD5T3OML6tNrKv/grjs89jMJhIaQqEzyu0u9sZmB7AoDVgUW3MaGO4plJElBzmjbvZ3bj7HX/eJGmthDp2MxU6jG5gHL3TTaOtEa2ipWEiTTLcRc7tJG1qQpMvkG5rIjo3UdU9zNdCBjfXa95qqTa7nW3mVhCpm7a2hk7RscG7gTcib1Cw+xnb4aWQz+JWTYRcIUYSI3Q3dC8Z2JSV8zkct/iYGZmlNzOMxeFlNpXE7vRh05px+1sxdW2pDJMscGE4abF1vMJ6P4May2XT98tFFss1dgAI+tGdMiBSCXR2Ow5XA30zfWwzt1V652D18n3WSti7gf6mzcycj4A/wMaGXVgMpaTdVC6FY/ZiYLlo2wsF3N//J/b1vMpkanJBvtRsZhavxYt7cwo++1k6Dvwb3nz+GfTnh8k2NnLWksVl8hHMmdDs6kakxyn86lcUbt1HxKEl5Gwj4N1AzCCI9h7BunM75+vy1J0cYbTVzK2b7rkpTtqSVFYuNjoz+Dj1yTksdVbCOR9Rwznab7mXcWOeab2gsGdrKS8wX/09zMslg5vrVcWrpa6WB8IP8Pzg88SzcULWEOl8mqAjiE7R4Ta5ubv16rUVKlPCc8do3LqH+ueHiaamKapF/HV+/HEFz95beTHZQ3TikiEmVcX3Wg+mqTg2o40tvi0LhijcwDZNnJc7MpdVNd7i28LRyFEiyYuLQno0A7iODZNs9pHJZyiqRRoz+gW9c7U2/Og2u9mw9wFO9Z1B1ZkxOdyoF+6Lzw7T7m/DsWUXsETbdTrweHCmVCbcbpKKHoPOSK6QRbW4cU6r4PGAToejMcTE1nYcvT1ECgr9BSPdczZOG4eJ4CbXZcdzzIzRomKwuWnwd4DRQr3RxVidhelGJ6q9g2OzEQiH2eDZQCKbqN0FaiXpUtksId8Gjvj9qIPnUUIh1PPnEW1+dgb30J8c4u3Z3prIC7xWMri5EZcUKcu2Bckt1ptwQa2fdDvcHdzddjePn3ic2fQsRp0Rr8XLmakzvKvtXZXaNYuZn+zrt/o5WjzKTKMbs93D3NR5nL4gdRmVOqcPXWcXpvwwsWzssiEmo9NLYWAQQ1cIxeFc+EeGhmjc3IXVNLnoLKcfH/8xb0bexGv2UlALGE1zdGUj5EamiGozbDI0oTTUkVjm1PZq1dS6jdjOOxDHjjGdnsait5DKpzDPzmG9extZu5UrtvzuuzG9/jqeYoxhbQqv0UasGKdZtWBy1sGuXWTn4uR0Ghy338Pp469AJo3LFCBUsJHubETxeImZiljeux9t7wANdduwG+2oQiVy9hj9LsHh6VdxGBz0tmrZVmfk0PAhoMYXqJWksgszd93RKKGpIqnTZ3AOjjObixOyeXAfPITObqS/2VwzeYHXQgY3N2JekTJ1z+7FexPmuRlOuuXem8n0JJu8m0jlU9iN9iv22lya7JtPJXn1zL8yHBtmozZNXWSCSUWQyaU4tcPOkeFfYa1zYzPYLh9iaq7H0e+mweK7uAo1VFYnd2zZRXu677JZTl6Lly5vF0ciRzAoBqZSU8xp5tA4izScHWfCpdI1q+ellrFlT22vRqpQORE9QazZCyfyjPa/gsUTIDUVoVFxEjVFcZx/8cptD4XAYKD+0Gnybi2qOopf0VA/XYTNW1HfeJ2eN5+id3cLSX2a1/e1EHzlJMHpLGOOGP3mKQrjx+hwd7D9jg+Snf0FjRoHAEoiicHuIhty4VISkMmyw9rOjrowtryOkcQIDr0fJXkhEd1gKK1tJkm1Zt7MXW94O2eiw8ydGyHb2kxLeDtMxLC3d9PuoWbyAq+FDG5u1IUiZUrnBmypM8tLWK1hHe4O3tX2Lp448wT1lnpOT52+aq/N/GRfn8lL+oXfsPncWZyJUex5heBEAWN0CqdFJW46SSw+Suf/93k0Wu1lFaJH9RmCW7qxRzIwv47bvGHDcHrxqsa7GnbxyvArRBIRbEYb8VycuZYAc8NRutJ1NDR1MHeNU9urTeW1MBUJbdqO//WXmMxn8ae11O3ZzllTkeblrCbscGCIJ3HnFGJKDodqwIABdDqUl17G2e4mttVB0NnKpq47SEQzBMeNTAUbiJqKWIpZwu4wbU27YG+hNPzrBaJR6rftw+2aJDVzHtMbr9BVcNF0/iypXApbMcfGgBUMF4o+1tcvuWCrJFW7bFsQ9dQJdEUN+s4uhgsJ6ju70BU1pM0GlLYgnTZTTeUFLpf8xN+o8mqpLhdhdxiH0UFBLWDRWyo/1VqW/3rdH76fsCvMUHzoqr02ZWF3GJvBxvHJHoZFDE0iwZxJy4Apw5jPjFlrYMxnYTI5gdHppbO+i7A7jNVgJZ6NAxfX8WraeXdpLaN46fZLV6Qu5/XELtR7KH+bcZvd7GveR17NY9FbMOlMTBpVIn4rnTofxq7NpO3mmn8ty+/jYnsIp6uRuskYTlcjxfbQ8tquKHDnneD1YsoLLHYPJlVb6uUMBECjwbPzNhxmFwW1wDb/NuxbdzO1IchUkwutRkubs+3i3wmHS6/fheFfx5ZdtLvaMRrM1PtC+FQThToLk/o8nkCIOm9jKQ8uFrvigq2SVM3KK4K/oB/hWM9BhsQsQ0EHQ2KWYz0HeUE/wovJHhwmB3e03IHL7FrrQ35HyU/9Cppf0Xa+6Fx08dL0NarD3UF3QzfT6Wm6G7qv2GtTVq5OnC1kiTV7URxOPAYnBbOBXGuQdGeIGbuOjNVA+Nb7cJvdlz3f5efZ1dRRupBGL7wO0Wjp93nJ3p3uTnb4d1z2bWZXwy6CjiCxTAyP2cNoYpRCexvGPXsvTKWs/dfSqrfit/oZ0MwiOtoJFMyIjnYGNLP4rX6seusVH58tZEls6SSzczuKAHtaoFisZMIhspPj5FuC2G/bT7O9maHYEDpFh6W+iSPtZs4rpZy1sCt88e+Uh39jscrrGHaHqbfWY9+yC73LQzqdwGBzlJKOLRYoFEoLt96ksxel2lfuZR31WzDYnPhUMxvrN+JTzRhsTkb9loUL2d5kbs5Wr6KlehNq+Zs+XLigZROVnz2Ne7it+Tb2NO4hkU2QLWSvuo+wO0ybqw1cblLBBrwpgcvsQu9wM9ziRJPOYunaxvZN+xc8xmqwXp4wd8m3/UsvcuWZPpd+m5nfe6NBg0ajwdfcRfG2vUybRM2/luX8p/6Zfnone3lBP8ZgyMkL+jF6J3vpn+nnxfMvogr1io9/aux5DneamDLkSUwMMVJX4MxsP0MjpzjuVyiYjUTnovRO9nJw4CAjiRH6pvo4GT1JLBujb6Zv4d/p7IQdOyprVJUD21F9hnRLI9nICA11DReHKBcJaCWp1oTdYUy+RhLN9dhiGUw6E7ZYhkRzPSZfY02fq65GBjcrbKnehFr+pl++oD1x5onKz4noCQK2ACeiJ3jizBNXvCCWlZcA0Ck6og120gYNvqKJrJolMxOlYDbQtvs9C3oOlhpiWuzb/nKVe2+iqSgtjhaMOiOpfIqh2BB+qx+9ol92wFZtyt8Gi6JIyBUibtUy1d1F3Kol5ApRFMUrfhtUNAo2vRXz4TdwxXIImx2tUNALLf7jg4i5JI5YGt3Lr9BU14DVYCWv5vFYPNQZ67AZbWz2br7878wb/i0rB7YDbg26OjtNmguBTTxOzqQnEfQvCLjn/9TiayfdfNyKlbDez4ilCIoG0+AwKBpGLEXCej9u5cq9rLVMJhSvsGwhi9/q54TmBH1TfWgVLX6rv1Icrhang19T9d+raHe1k1fzHC+M0uISdI7EGdPM4Y7MEt8UZtSQ4cVLZussWUjv0hWpl8ltdrO3aS9HI0dpcbQwHBvm/Ox5FI2yYIXyWp39Vi6kWKevYyYzQyKbwGFy4LP6Fiy1sJSgs5Vhi5nEyCjsDOMtFshroajmmOxso11nJmcxEfZuoCNaWqwzkU3Q4mjBa/Hiq/OhaJSr/p3KivDp19k0L4lcnZjgqCfLwNQhmFr8sbX62kk3kQtTwTeOnCUXGUEdmcI5Os1so5tWkWbjVD8MqzdtQr0MblbQ/CnNI4kRBqYHaHe3V+pvQO2eVMsXxKWq/y63e9Rr8bLVt5Vj48fItgUxJafxzkxQtJhp2HnXoj0HSxbSK3/bvw57GvcwODtIMpcE4Mz0GTpcHTTaGoHanv1WKaQ4foyGugZ6p3rp8nSRKWSuWgRMFSrHJ45zUDmHb+oodVor2/QzuMfGiDg0nNFZOTf1BgHjFu423VZZrDOZS9Ll6WJT/Sb6p/uXXWysHNg2NzbAC6/CyAhKXR3azlZi2YGbeuaiVOMuTAWvSxfxBEIMq1n0VjtjdpXmQIi6dPGmTqi/OVu9ShSNgklnYiI5QbOtmXZXO822ZnQaHTqNjonkBCadqSZPqiuZTL2veR9bfFsw+5qIBuy4cgrmrq04GkMYFMOiF6yV5jK7+NDmD9Fga8Bv9bPJu4mwO3zTzH4rD/k4jA46XB04jI5l5RspGgWHyYHWW8+E34a1qCHaWk/OYiDaWo8DAzPeOuqsLpTkHGG9n059gBaNi1bFzdxUBBuGZT+35cDW2dS+YBgy1LFbzlyUal84DA4HDRYfGr+fwQ43Gr+/VOfrJk+olz03K0gVKhNzE/RN92HUGTHrzQzMDgCQzqfJFrIEHUFUodZkgFPuvVms+u9yqUJlNDGKx+JhcHaQCXuGjpAXa6iFV0depcXRQk+0B3+df9Wfw/k9GNv82yq33wxlzC9t+7X0poTdYbb5t/Fq2wiJ6UH0dS56FBXcLow6E02qg42H+8Ewjhu4Y3qW87ERAnVFIskI7e07cO90XvtBzxuGdJtdleO/dKmNWn/tpJvIhdxC+7FjNNgv9rLaY5mbfjmg2rvCriFFo9Bkb8JisJAr5hZ8Y8wVc1gMFprsTTUZ2MDKJFOX83csegstjhacDSHq9t8LLhcukwuL/p2d3nizzn6DK8xEu4pyYritoZWRehOFuQTjoVLNm0SLn8aNe0pd5nY72O34GsJoHS4iSoq6jHrNK75XXJJ0fDO/dtJN5MLM0GZNqZe1WeNYdIbozaY2r7JrKOwOE3aH0St6imoRk85EUS2iV/SV+2rZ9V4QL91Ho62RoD1IvbUel8VFupCm3lJPo+2dnd54M85+K1tyJtoyhN1hNtVvYi4YIKbNE5gtIiwW6jbtwLt1L2mzgVQqQUoHOmtp1fVYcoo6TyOmri0revw342sn3UQu9N7YYmm2+bdhi6VlGQRkcLPiyt9aTToTsUwMgFgmhklnYrt/e82fWG/kgnjpPgw6A2a9mehcFLPejEFnWJOL00oEbNVqqWKHVzO/9ybW5KEuXSQR9NHZuZcTxbFKVdVXRl7hlZFXGEmMoExNcdpZ5MVkz1XLBizXzfzaSTeRq9T1uhnJ4GYVlIvRqUIlOhdFFSptrrab5sR6vRfE+cLuMD6rD7vBzlx+DrvBjs/qW5PncCUCtmq1VLHD5Sj33mRDLQy1e7Bu3sEGz4YFVVVtWbDoLfhUMy0Nm5ht9qzosOPN/NpJta9SPNWqZy4YID0ZYS4YIGGt3VpcyyUTildB+Vvr4MwgyXySOn3dTdFrU7bk1OxrMH9IocNVWr5hLS9OS9bSkRaVnYujT2fYoG/gtE7PeMjHrZ5O9HMZAqqV0zYHiWYV38AEGacbU2yaiXbfqlRVla+dVIvmlx4B0JPE7k4Sp4/8mQhQu6VHlkMGN6uk3HtzPnaeFkfLTdNrs5LKs6+KanFZxeNW00oEbDcLtVjgxM++TWb0PIVihp3xCGggf/qfOaZ9GoA6K5zbGMIbMWGIRFEtJs559XStQgArXzupFl1WPNVnJ+9rxAyYkfWcbs5WvwPKvTeBusBN1WuzkuSQQnVStDoMLg+F2DR13ibC7bsJh3ZT521Cd+H2hoYN6P0NTAbs6BJzTAbs6Ov98kuAJF2DsDss6zktQfbcrCLZHX7j5HNYnZp23k38xBFEPofRXV+5PTsdRedws2HvA2iYord+gjpNmHNedVV6bSSpls2vRyXrOS0ke25W0Y0kY0ol8jmsTq6mDuxbuslGRhbcno2MYN/Sjaupo1Qywevj5AYXeu/aJItLUrWT9ZwWJ4MbSZJWRdPOu9HV2clOlxIes9PR0urdO+8G5LCjJK0EWc9pcTK4kSRpVVzaezO/16ZsJcoGSNLNTtZzupwMbiRJWjXl3pvkQO+CXpsyOewoSTdO9oJeTgY3kiStmnLvTXF2+rJeG0mSVo7sBV1IzpaSJGlVNXfvp5jJ0Ny9f42PRJJql6zntJAMbiRJWlXOxhDOD/3hWh+GJEk3ETksJUmSJElSTZHBjSRJkiRJNUUGN5IkSZIk1RQZ3EiSJEmSVFPWNLj5yle+wi233ILNZsPn8/GBD3yA3t7eBdt8+9vfZv/+/djtdjQaDbOzs2tzsJIkSZIkVYU1DW5+85vf8PDDD/PKK6/w7LPPks/nuffee5mbm6tsk0qluP/++/mzP/uzNTxSSZIkSZKqhUYIIdb6IMqi0Sg+n4/f/OY33H33wkqmzz33HPfccw8zMzM4nc5l7zMej+NwOIjFYtjt9qs/QJIkSZKkNXcj1+91VecmFosB4HZff+nobDZLNput/B6Px2/4uCRJkiRJqh7rJqFYVVU++9nPcscdd7B169br3s9XvvIVHA5H5ScYDK7gUUqSJEmStN6tm+Dm4Ycf5vjx4/zoRz+6of188YtfJBaLVX6GhoZW6AglSZIkSaoG62JY6o/+6I/45S9/yfPPP09zc/MN7ctoNGI0GlfoyCRJuh7ZQpZcMbfk/QatAaNOfk4lSVodaxrcCCH4j//xP/Kzn/2M5557jlAotJaHI0nSClCFyovnXySaii65Tb2lnntC96Bo1k3nsSRJNWRNg5uHH36YH/zgB/z85z/HZrMRiUQAcDgcmM1mACKRCJFIhL6+PgCOHTuGzWajpaXlhhKPJUlaHYpGwaQzMZGcoNHWeNn9o4lRgvagDGwkSVo1axrcPProowDs379/we2PPfYYDz30EADf+ta3+G//7b9V7itPEZ+/jSRJ64cqVCbmJuib7mMoPoRZb67cl86nyRayBB1BVKHKAEeSpFWx5sNSV/PlL3+ZL3/5y6t/MJIkrQhFo9Bkb8JisJDOp/FYPJX7YpkYFoOFJnuTDGwkSVo18uwiSdKKC7vDhN1h9IqeolrEpDNRVIvoFX3lPkmSpNUigxtJklac2+xmu387Jp2JWKZUnDOWiWHSmdju347bLPPlJElaPTK4kSRpVYTdYdpcbahCJToXRRUqba422WsjSdKqk8GNJEmrYn7vzVx+TvbaSJL0jpHBjSRJq6bce2M32mWvjSRJ75h1UaFYkqTaVO69yRVzstdGkqR3jAxuJElaVZ3uTvLFPJ3uzrU+FEmSbhIyuJEkaVW5zC7uaLljrQ9DkqSbiMy5kSRJkiSppsjgRpIkSZKkmiKDG0mSJEmSaooMbiRJkiRJqikyuJEkSZIkqabI4EaSJEmSpJoigxtJkiRJkmqKDG4kSZIkSaopMriRJEmSJKmmyOBGkiRJkqSaUvPLLwghAIjH42t8JJIkSZIkLVf5ul2+jl+Lmg9uEokEAMFgcI2PRJIkSZKka5VIJHA4HNf0GI24npCoiqiqyujoKDabDY1GU7k9Ho8TDAYZGhrCbrev4RGuPtnW2iTbWptkW2uTbOu1E0KQSCRobGxEUa4ti6bme24URaG5uXnJ++12e82/0cpkW2uTbGttkm2tTbKt1+Zae2zKZEKxJEmSJEk1RQY3kiRJkiTVlJs2uDEajXzpS1/CaDSu9aGsOtnW2iTbWptkW2uTbOs7q+YTiiVJkiRJurnctD03kiRJkiTVJhncSJIkSZJUU2RwI0mSJElSTZHBjSRJkiRJNaVqgpsvf/nLaDSaBT8bN26s3B+JRPi93/s9AoEAVquVXbt28X//7/9ddF/ZbJadO3ei0Wg4evTogvvefvtt7rrrLkwmE8FgkK997WuXPf7xxx9n48aNmEwmtm3bxpNPPrku2/rEE0+wd+9ezGYzLpeLD3zgAwvuP3/+PA8++CAWiwWfz8ef/umfUigUFmzz3HPPsWvXLoxGI+FwmO9+97vrrq2nT5/m/e9/P16vF7vdzp133smvf/3rqmtrf38/H/zgB6mvr8dut/ORj3yE8fHxBfuYnp7m4x//OHa7HafTyac+9SmSyeSCbarhPXy1tg4ODvKpT32KUCiE2Wymo6ODL33pS+RyuZpr63zVfm5abltr4dy0nLZWy7kJYGRkhE984hN4PB7MZjPbtm3j9ddfr9wvhOC//tf/SkNDA2azmQMHDnDmzJkF+1hX5ydRJb70pS+JLVu2iLGxscpPNBqt3P/e975X3HLLLeLw4cOiv79f/Pf//t+FoijizTffvGxff/zHfyweeOABAYgjR45Ubo/FYsLv94uPf/zj4vjx4+KHP/yhMJvN4m//9m8r27z00ktCq9WKr33ta6Knp0f8+Z//udDr9eLYsWPrqq3/9E//JFwul3j00UdFb2+vOHHihPjxj39cub9QKIitW7eKAwcOiCNHjognn3xSeL1e8cUvfrGyzcDAgLBYLOJzn/uc6OnpEd/4xjeEVqsVTz/99Lpqa2dnp/it3/ot8dZbb4nTp0+L//Af/oOwWCxibGysatqaTCZFe3u7+OAHPyjefvtt8fbbb4v3v//94pZbbhHFYrGyj/vvv1/s2LFDvPLKK+KFF14Q4XBYfOxjH6vcXw3v4eW09amnnhIPPfSQeOaZZ0R/f7/4+c9/Lnw+n3jkkUdqrq3zVfO5abltrYVz03LbWi3npunpadHa2ioeeughcfjwYTEwMCCeeeYZ0dfXV9nmq1/9qnA4HOKf//mfxVtvvSV+53d+R4RCIZFOpyvbrKfzU1UFNzt27FjyfqvVKv7+7/9+wW1ut1v83d/93YLbnnzySbFx40Zx4sSJy04gf/M3fyNcLpfIZrOV277whS+Irq6uyu8f+chHxIMPPrhgn3v37hWf+cxnrqNVi7vRtubzedHU1CT+z//5P0vu48knnxSKoohIJFK57dFHHxV2u73S/v/0n/6T2LJly4LHffSjHxX33XfftTZpSTfa1mg0KgDx/PPPV+6Px+MCEM8++6wQojra+swzzwhFUUQsFqvcNjs7KzQaTaUdPT09AhCvvfZaZZunnnpKaDQaMTIyIoSojvfwctq6mK997WsiFApVfq+1tlb7uWk5ba2Vc9Ny2lpN56YvfOEL4s4771zyflVVRSAQEP/zf/7Pym2zs7PCaDSKH/7wh0KI9Xd+qpphKYAzZ87Q2NhIe3s7H//4xzl//nzlvttvv50f//jHTE9Po6oqP/rRj8hkMuzfv7+yzfj4OJ/+9Kf5/ve/j8ViuWz/hw4d4u6778ZgMFRuu+++++jt7WVmZqayzYEDBxY87r777uPQoUPrpq1vvvkmIyMjKIpCd3c3DQ0NPPDAAxw/fnxBW7dt24bf71/Qjng8zokTJ6qmrR6Ph66uLv7+7/+eubk5CoUCf/u3f4vP52P37t1V09ZsNotGo1lQ9MpkMqEoCi+++GLlGJ1OJ3v27Klsc+DAARRF4fDhw5Vt1vt7eDltXUwsFsPtdld+r6W21sK5aTltrZVz03LaWk3npn/5l39hz549fPjDH8bn89Hd3c3f/d3fVe4/e/YskUhkwXE4HA727t1bOY71dn6qmuBm7969fPe73+Xpp5/m0Ucf5ezZs9x1110kEgkAfvKTn5DP5/F4PBiNRj7zmc/ws5/9jHA4DJTGCx966CH+4A/+YMGTP18kElnwJgMqv0cikStuU75/PbR1YGAAKI0Z//mf/zm//OUvcblc7N+/n+np6RtuazweJ51Or4u2ajQafvWrX3HkyBFsNhsmk4n//b//N08//TQul6tq2rpv3z6sVitf+MIXSKVSzM3N8fnPf55iscjY2FjlGH0+34J96nQ63G73VduxnLa+U+/h5bT1Un19fXzjG9/gM5/5TOW2WmlrrZybltPWWjk3Laet1XRuGhgY4NFHH6Wzs5NnnnmGP/zDP+SP//iP+d73vrfgWK70/lpv56eqCW4eeOABPvzhD7N9+3buu+8+nnzySWZnZ/nJT34CwF/8xV8wOzvLr371K15//XU+97nP8ZGPfIRjx44B8I1vfINEIsEXv/jFtWzGstxoW1VVBeC//Jf/woc+9CF2797NY489hkaj4fHHH1+zdi3mRtsqhODhhx/G5/Pxwgsv8Oqrr/KBD3yA3/7t317yQrlWrtTW+vp6Hn/8cX7xi19QV1eHw+FgdnaWXbt2oShV8zGtWMm2joyMcP/99/PhD3+YT3/602vQmiu70bbWyrlpOW2tlXPTctpaTecmVVXZtWsX/+N//A+6u7v59//+3/PpT3+ab33rW2t9aNdNt9YHcL2cTicbNmygr6+P/v5+/vqv/5rjx4+zZcsWAHbs2MELL7zAN7/5Tb71rW9x8OBBDh06dNlaF3v27OHjH/843/ve9wgEApdlu5d/DwQClX8X26Z8/2q41rY2NDQAsHnz5so+jEYj7e3tlW7VQCDAq6++elk7yveV/12srXa7HbPZvC7aevDgQX75y18yMzOD3W4H4G/+5m949tln+d73vsd//s//uSraCnDvvffS39/P5OQkOp0Op9NJIBCgvb29cowTExML9lEoFJienr5qO8r3XWmbd+o9DFdva9no6Cj33HMPt99+O9/+9rcX3Fcrba2VcxNcva21cm6C5b2u1XJuamhoWPCaAGzatKkyM7V8LOPj45XXsPz7zp07K9usp/NT9X0lvCCZTNLf309DQwOpVArgsm99Wq228k3h61//Om+99RZHjx7l6NGjlallP/7xj/nLv/xLAG677Taef/558vl8ZR/PPvssXV1dlW7E2267jX/9139d8HeeffZZbrvtttVpKNfe1t27d2M0Gunt7a3cn8/nGRwcpLW1tdKOY8eOLXgzPvvss9jt9sqbvBrautQ2iqJUtqmGts7n9XpxOp0cPHiQiYkJfud3fqdyjLOzs7zxxhuVbQ8ePIiqquzdu7eyzXp/D8+3VFuh1GOzf//+yrf7S1/jWmlrrZybltPWWjk3zbdUW6vp3HTHHXcseE2gNI29/JqEQiECgcCC44jH4xw+fLhyHOvu/HRN6cdr6JFHHhHPPfecOHv2rHjppZfEgQMHhNfrFRMTEyKXy4lwOCzuuusucfjwYdHX1yf+6q/+Smg0GvHEE08sur+zZ89eNiNhdnZW+P1+8Xu/93vi+PHj4kc/+pGwWCyXTVPT6XTir/7qr8TJkyfFl770pRWfbrkSbf2TP/kT0dTUJJ555hlx6tQp8alPfUr4fD4xPT0thLg4BfHee+8VR48eFU8//bSor69fdArin/7pn4qTJ0+Kb37zmys+BfFG2xqNRoXH4xG/+7u/K44ePSp6e3vF5z//eaHX68XRo0erpq1CCPGd73xHHDp0SPT19Ynvf//7wu12i8997nML9nH//feL7u5ucfjwYfHiiy+Kzs7OBVMtq+E9vJy2Dg8Pi3A4LN7znveI4eHhBdNxa62tl6rWc9Ny21oL56bltLWazk2vvvqq0Ol04i//8i/FmTNnxD/+4z8Ki8Ui/uEf/qGyzVe/+lXhdDrFz3/+88rU98Wmgq+X81PVBDcf/ehHRUNDgzAYDKKpqUl89KMfXTAH//Tp0+J3f/d3hc/nExaLRWzfvv2yKcTzLXYCEUKIt956S9x5553CaDSKpqYm8dWvfvWyx/7kJz8RGzZsEAaDQWzZsmXJAOp6rURbc7mceOSRR4TP5xM2m00cOHBAHD9+fME2g4OD4oEHHhBms1l4vV7xyCOPiHw+v2CbX//612Lnzp3CYDCI9vZ28dhjj627tr722mvi3nvvFW63W9hsNrFv3z7x5JNPVl1bv/CFLwi/3y/0er3o7OwU/+t//S+hquqCfUxNTYmPfexjoq6uTtjtdvH7v//7IpFILNimGt7DV2vrY489JoBFf2qtrZeq5nPTctpaK+em5bS1Ws5NQgjxi1/8QmzdulUYjUaxceNG8e1vf3vB/aqqir/4i78Qfr9fGI1G8Z73vEf09vYu2GY9nZ80QghxbX09kiRJkiRJ61fV5txIkiRJkiQtRgY3kiRJkiTVFBncSJIkSZJUU2RwI0mSJElSTZHBjSRJkiRJNUUGN5IkSZIk1RQZ3EiSJEmSVFNkcCNJkiRJUk2RwY0kSevKQw89hEaj4Q/+4A8uu+/hhx9Go9Hw0EMPVbb9wAc+cNljNRoNer0ev9/Pe9/7Xr7zne9U1vORJKn2yeBGkqR1JxgM8qMf/Yh0Ol25LZPJ8IMf/ICWlpYrPvb+++9nbGyMwcFBnnrqKe655x7+5E/+hPe9730UCoXVPnRJktYBGdxIkrTu7Nq1i2AwyE9/+tPKbT/96U9paWmhu7v7io81Go0EAgGamprYtWsXf/Znf8bPf/5znnrqKb773e+u8pFLkrQeyOBGkqR16ZOf/CSPPfZY5ffvfOc7/P7v//517evd7343O3bsWBAsSZJUu2RwI0nSuvSJT3yCF198kXPnznHu3DleeuklPvGJT1z3/jZu3Mjg4ODKHaAkSeuWbq0PQJIkaTH19fU8+OCDfPe730UIwYMPPojX673u/Qkh0Gg0K3iEkiStVzK4kSRp3frkJz/JH/3RHwHwzW9+84b2dfLkSUKh0EocliRJ65wclpIkad26//77yeVy5PN57rvvvuvez8GDBzl27Bgf+tCHVvDoJElar2TPjSRJ65ZWq+XkyZOV/y9HNpslEolQLBYZHx/n6aef5itf+Qrve9/7+Lf/9t+u5uFKkrROyOBGkqR1zW63L3mfqqrodAtPY08//TQNDQ3odDpcLhc7duzg61//Ov/u3/07FEV2VkvSzUAjhBBrfRCSJEnX4/777yccDvPXf/3Xa30okiStI/JrjCRJVWdmZoZf/vKXPPfccxw4cGCtD0eSpHVGDktJklR1PvnJT/Laa6/xyCOP8P73v3+tD0eSpHVGDktJkiRJklRT5LCUJEmSJEk1RQY3kiRJkiTVFBncSJIkSZJUU2RwI0mSJElSTZHBjSRJkiRJNUUGN5IkSZIk1RQZ3EiSJEmSVFNkcCNJkiRJUk2RwY0kSZIkSTXl/wfA7i2hDqA6GQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 9 + }, + { + "attachments": { + "8cf4f6f1-b501-4ff8-970c-a1645c8009ce.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAADECAYAAADDLmjeAAAMTGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyAuuroCstiwK4ti74sFBWVdLNiVNyGALvvK9+b75s5//znzzzln5pYBgN7Ol0pzUE0AciV5sphgf9aEpGQWqRNQARkAYAi0+AK5lBMVFQ7vwGD79/L2OkCU7RUHpdY/+/9r0RKK5AIAkCiI04RyQS7EvwKANwmksjwAiFLIm0/PkyrxWoh1ZNBBiKuUOEOFm5Q4TYUv9dvExXAhfgwAWZ3Pl2UAoNEDeVa+IAPq0GG0wEkiFEsg9oPYJzd3qhDi+RDbQBs4J12pz077Tifjb5ppQ5p8fsYQVsXSX8gBYrk0hz/z/0zH/y65OYrBOaxhVc+UhcQoY4Z5e5w9NUyJ1SF+L0mLiIRYGwAUFwv77ZWYmakIiVfZozYCORfmDDAhHifPieUN8DFCfkAYUK4+QNMlORHhAzaF6eIgpQ3MH1omzuPFQawHcZVIHhg7YHNMNjVmcN7r6TIuZ4Dv5Mv6fVDqf1Vkx3NU+ph2pog3oI85FmTGJUJMhTggX5wQAbEGxBHy7NiwAZuUgkxuxKCNTBGjjMUCYplIEuyv0sdK02VBMQP2u3Plg7FjxzLFvIgBfDkvMy5ElSvssYDf7z+MBesRSTjxgzoi+YTwwViEooBAVew4WSSJj1XxuJ40zz9GNRa3k+ZEDdjj/qKcYCVvBnGcPD92cGx+HtycKn28SJoXFafyEy/P4odGqfzB94FwwAUBgAUUsKaBqSALiFu767vhnaonCPCBDGQAEXAYYAZHJPb3SOA1FhSAPyESAfnQOP/+XhHIh/yXYaySEw9xqqsDSB/oU6pkgycQ54IwkAPvFf1KkiEPEsBjyIj/4REfVgGMIQdWZf+/5wfZbwwHMuEDjGJwRhZ90JIYSAwghhCDiLa4Ae6De+Hh8OoHqzPOxj0G4/hmT3hCaCM8JFwjtBNuTREXyoZ5OR60Q/2ggfykfZ8f3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHLHfBbmRXWMO2/RfDdCg3YUZwoKGUExY9iM3ykhp2G65CKMtff50fla9pQvrlDPcPn536XfSFsw4ZbYkuwA9gZ7Dh2DmvC6gELO4o1YC3YYSUe2nGP+3fc4Gwx/f5kQ53he+bbyiozKXeqcepy+qzqyxPNyFM+jNyp0pkycUZmHosDvxgiFk8icBzFcnZydgFA+f1Rvd5eR/d/VxBmyzdu4R8AeB/t6+v77RsXehSAX9zhK+HQN86GDT8tagCcPSRQyPJVHK68EOCbgw6fPn1gDMyBDYzHGbgBL+AHAkEoiARxIAlMht5nwn0uA9PBbLAAFIESsBKsA+VgC9gOqsDPYD+oB03gODgNLoBL4Bq4A3dPB3gOesBb8AlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQ2shApQVYj5cg2pBr5BTmEHEfOIW3ILeQB0oW8Qj6iGKqO6qBGqBU6GmWjHDQMjUMnoRnoNLQAXYQuR8vQSnQPWoceRy+g19B29DnaiwFMDWNippgDxsa4WCSWjKVjMmwuVoyVYpVYLdYI1/kK1o51Yx9wIs7AWbgD3MEheDwuwKfhc/FleDlehdfhJ/Er+AO8B/9KoBEMCfYETwKPMIGQQZhOKCKUEnYSDhJOwWepg/CWSCQyidZEd/gsJhGziLOIy4ibiHuJx4htxEfEXhKJpE+yJ3mTIkl8Uh6piLSBtId0lHSZ1EF6T1Yjm5CdyUHkZLKEXEguJe8mHyFfJj8lf6JoUiwpnpRIipAyk7KCsoPSSLlI6aB8ompRrane1DhqFnUBtYxaSz1FvUt9raamZqbmoRatJlabr1amtk/trNoDtQ/q2up26lz1FHWF+nL1XerH1G+pv6bRaFY0P1oyLY+2nFZNO0G7T3uvwdBw1OBpCDXmaVRo1Glc1nhBp9At6Rz6ZHoBvZR+gH6R3q1J0bTS5GryNedqVmge0ryh2avF0BqjFamVq7VMa7fWOa1ObZK2lXagtlB7kfZ27RPajxgYw5zBZQgYCxk7GKcYHTpEHWsdnk6WTonOzzqtOj262rouugm6M3QrdA/rtjMxphWTx8xhrmDuZ15nfhxhNIIzQjRi6YjaEZdHvNMbqeenJ9Ir1turd03voz5LP1A/W3+Vfr3+PQPcwM4g2mC6wWaDUwbdI3VGeo0UjCweuX/kbUPU0M4wxnCW4XbDFsNeI2OjYCOp0QajE0bdxkxjP+Ms47XGR4y7TBgmPiZik7UmR02esXRZHFYOq4x1ktVjamgaYqow3WbaavrJzNos3qzQbK/ZPXOqOds83XytebN5j4WJxXiL2RY1FrctKZZsy0zL9ZZnLN9ZWVslWi22qrfqtNaz5lkXWNdY37Wh2fjaTLOptLlqS7Rl22bbbrK9ZIfaudpl2lXYXbRH7d3sxfab7NtGEUZ5jJKMqhx1w0HdgeOQ71Dj8MCR6RjuWOhY7/hitMXo5NGrRp8Z/dXJ1SnHaYfTnTHaY0LHFI5pHPPK2c5Z4FzhfHUsbWzQ2HljG8a+dLF3EblsdrnpynAd77rYtdn1i5u7m8yt1q3L3cI91X2j+w22DjuKvYx91oPg4e8xz6PJ44Onm2ee537Pv7wcvLK9dnt1jrMeJxq3Y9wjbzNvvvc273Yflk+qz1afdl9TX75vpe9DP3M/od9Ov6ccW04WZw/nhb+Tv8z/oP87rid3DvdYABYQHFAc0BqoHRgfWB54P8gsKCOoJqgn2DV4VvCxEEJIWMiqkBs8I56AV83rCXUPnRN6Mkw9LDasPOxhuF24LLxxPDo+dPya8XcjLCMkEfWRIJIXuSbyXpR11LSo36KJ0VHRFdFPYsbEzI45E8uInRK7O/ZtnH/cirg78TbxivjmBHpCSkJ1wrvEgMTVie0TRk+YM+FCkkGSOKkhmZSckLwzuXdi4MR1EztSXFOKUq5Psp40Y9K5yQaTcyYfnkKfwp9yIJWQmpi6O/UzP5Jfye9N46VtTOsRcAXrBc+FfsK1wi6Rt2i16Gm6d/rq9M4M74w1GV2Zvpmlmd1irrhc/DIrJGtL1rvsyOxd2X05iTl7c8m5qbmHJNqSbMnJqcZTZ0xtk9pLi6Tt0zynrZvWIwuT7ZQj8knyhjwd+KPforBR/KB4kO+TX5H/fnrC9AMztGZIZrTMtJu5dObTgqCCn2bhswSzmmebzl4w+8Eczpxtc5G5aXOb55nPWzSvY37w/KoF1AXZC34vdCpcXfhmYeLCxkVGi+YvevRD8A81RRpFsqIbi70Wb1mCLxEvaV06dumGpV+LhcXnS5xKSks+LxMsO//jmB/Lfuxbnr68dYXbis0riSslK6+v8l1VtVprdcHqR2vGr6lby1pbvPbNuinrzpW6lG5ZT12vWN9eFl7WsMFiw8oNn8szy69V+Ffs3Wi4cenGd5uEmy5v9ttcu8VoS8mWj1vFW29uC95WV2lVWbqduD1/+5MdCTvO/MT+qXqnwc6SnV92SXa1V8VUnax2r67ebbh7RQ1ao6jp2pOy59LPAT831DrUbtvL3FuyD+xT7Hv2S+ov1/eH7W8+wD5Q+6vlrxsPMg4W1yF1M+t66jPr2xuSGtoOhR5qbvRqPPib42+7mkybKg7rHl5xhHpk0ZG+owVHe49Jj3Ufzzj+qHlK850TE05cPRl9svVU2Kmzp4NOnzjDOXP0rPfZpnOe5w6dZ5+vv+B2oa7FteXg766/H2x1a6276H6x4ZLHpca2cW1HLvtePn4l4Mrpq7yrF65FXGu7Hn/95o2UG+03hTc7b+Xcenk7//anO/PvEu4W39O8V3rf8H7lH7Z/7G13az/8IOBBy8PYh3ceCR49fyx//Llj0RPak9KnJk+rO507m7qCui49m/is47n0+afuoj+1/tz4wubFr3/5/dXSM6Gn46XsZd+rZa/1X+964/KmuTeq9/7b3Lef3hW/139f9YH94czHxI9PP03/TPpc9sX2S+PXsK93+3L7+qR8Gb//VwADyqNNOgCvdgFASwKAAc+N1Imq82F/QVRn2n4E/hNWnSH7ixsAtfCfProb/t3cAGDfDgCsoD49BYAoGgBxHgAdO3aoDp7l+s+dykKEZ4OtEV/SctPAvymqM+l3fg9vgVLVBQxv/wVxuILvJuoY/AAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAAAhagAwAEAAAAAQAAAMQAAAAAQVNDSUkAAABTY3JlZW5zaG90odHDIgAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MTk2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrOJDOOAAAAHGlET1QAAAACAAAAAAAAAGIAAAAoAAAAYgAAAGIAAB1zO9OxSQAAHT9JREFUeAHsnQncDdUbx582tEi0KCrRiooiKtGCImmxVOrTp9KiBSkVEsnSSmkhlKVUCMmS9oWIFG0qkiipaN+1zv/5nf5nmrnvnblz33fue+997+98Pq87c+Y5Z858Z8x55pznPM9mjiZhIgESIAESIAESIIEYCGxGxSIGiqyCBEiABEiABEjAEKBiwQeBBEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIAESIAESIAESiI0AFYvYULIiEiABEiABEiABKhZ8BkiABEiABEiABGIjQMUiNpSsiARIgARIgARIgIoFnwESIAESIAESIIHYCFCxiA0lKyIBEiABEiABEqBiwWeABEiABEiABEggNgJULGJDyYpIgARIgARIgASoWPAZIIECJPDnn3/KgAED5IADDpBzzjmnTBLYsGGD9OzZUy699FJp0qRJia/x66+/NswGDx4sO+ywQ4nrYwUkUFYJULEoq3eW10UCIQTOPfdcefjhh+XZZ5+V5s2bh0jm76G//vpLjj/+eFm8eLHMmzdPDjvssBJdzO233y69evWSzz//XHbdddcS1cXCJFCWCVCxKMt3l9dGAkkIDB8+XK688krp16+fDBw4MIlE2cn68ssvpX79+uaCoGDstddexb64Aw88UHbeeWd56aWXil0HC5JAIRCgYlEId5nXSAL/J/D8889Lq1at5MgjjzQd5BZbbBHI5qeffpIPP/xQGjRoECiTqQNxnvvFF1+UFi1aSJ06deTNN9+UrbbaKu1mL126VBo2bCj333+/XHjhhWmXZwESKCQCVCwK6W7zWguawD///CP77LOPrFmzRl555RU56qijAnmsWLHCTJFg2P+9994znXKgcMwHMnHu1q1by9NPPy2jRo2SLl26pN3iK664QkaPHi0YAaF9Rdr4WKDACFCxKLAbzsstXAIzZ86UU0891Xx5v/7666EgMEVyww03GJl169bJ7rvvHiof58FMnPu5554z9ha4jo8++kjKly8fucmw1ahWrZo0a9ZMpk2bFrkcBUmgUAlQsSjUO8/rLjgCMNLEtACMNs8+++zQ60cnilGNGjVqyNq1a0Nl4z6YqXPXrVtX3n///bSnM+bMmSNt27aVGTNmGMUs7utlfSRQ1ghQsShrd5TXQwJJCKBDRce62WabCZZNVqlSJYnUv1mbNm2SSpUqyR9//CFYPTJhwoRA2bgPZPLcV199tQwbNkxOO+00efzxxyM3/YwzzhDYpnzxxRdSrly5yOUoSAKFSoCKRaHeeV53QRGAbQH8OcBvxQcffBB67fPnz5ejjz7ayIwbN07OP//8UPk4D2by3FAm2rdvL5UrVzbK1eabb56y6T/88INZWnreeefJfffdl1KeAiRAAkrAYSIBEijzBK699loH/907d+6c9Fr79+/v6GiGkYFc4p92wo52sknLljSztM6tIw7udamNSaRm6yoQU2bhwoWB8mp34eiKEUftNhxdZWM4Wpb4xR/ycVyX+gbWwwMkUFYIcMRC36BMJFDWCZx++ukydepUgQ8LrHBITFOmTJFFixYJVo48+OCD8uOPP8ouu+winTp1MqLw39C3b9/EYrHsl+a5cU1fffWVPPTQQ5E8jmLkZv369cbgM9nF9unTR2655ZZkh5LmqRIlN954Y9JjzCSBskKAikVZuZO8DhIIIQCvk2+88UbKDhU2DpgqwK+ObsjYsWNDao33ULrn/v7772XrrbdOa4UHpoJWrlwpd955p/To0SP0AmC0WqtWLYEyAPfniQkKGKZI9t13X7n44otl//33N4pZx44d5eCDD5brr79e4CcEUy7422abbczKkm+++cYoI3PnzjUOt+DRs1GjRonV+/afeeYZwTQRrhltgqvyX3/9VYYOHSqYrkGdaGNJHID5TsgdEigJgbIy9MLrIAESCCagxppmSH/27NnBQnpEvUq60wXacYbKxn0w6rl16ahTu3Ztp0KFCs6WW27pnHjiiY4qAZGac/jhh5vr09GXlPKDBg0ysqtWrSoiqwawjhq4OuoLxFFnXu7xBQsWmDLXXXedm+fd+Pvvvx1VIpyaNWs66vnUyJ5wwglekaTbDzzwgKM+SIz8ySefbGR0VMlRZ2eOGpSa/GXLliUty0wSKG0CHLEoiVbGsiQQMwE4o7rttttKVGu3bt2MrwpbCaY1sMoDSTu+0IBc+Oq1Q/WffPKJ7LnnnrYa3y8CcWmH68tLZwf+JIYMGeIrEuXcr776qhx77LFmigajDpimwCoPVTIE3jFTrdqwjrLgJAsGrWEJoxtYPYNzJiasmHnqqafkuOOOk4oVK7qH7coTTDt16NDBzbcbMAC97LLLZPLkyWaUAst+zzzzTOnevbsVCfyFF1SMiqhiIfBJYtNZZ50lkyZNElUs5JBDDrHZ/CWBrBGgYpE19DwxCRQlgM4hSidTtOR/OYgBol/BbsbGjRulatWqZh+d5BFHHOEeS9w45phjTMAuDKnDQ2dQ6tq1q7z11ltBh1Pmw+HUY4895pOLcm501jrqIohcaj1gYjksVq7oV71ccMEFvjoTd9q0aSOYgsAKmZEjRyYedveXLFkijRs3NjKQjZr2228/o3DBCdfee+9dpBiUCigXy5cvN8t/iwiEZHz22Weyxx57FFEsLrroInPtVCxC4PFQ6RIo7SESno8ESKB0CWiIdHfFh3aqgSf/7bffzMoFfQM5ajsQKJeJA1HO/e233zoa58NRmwZfEzAFgDa3a9fOl59sR2OkGFkdFUp22M3TUR8zxaC2C25eqg31FWLqxhSJGsEmFVdbDCOjikfS42GZ6l7dlLVTIVbW1gkOTCSQCwS43DQX7gLbUOYIqGGd88QTTzj6tetgXr9ly5aOGgs6WL746aeflvr16te96ZQeeeSRwHN7bRzGjx/vyunXu4M5/kymKOfWAGLmGjQomq8p6KShWMBuIVWCbQZkdaoiUBSKmK6CcdT9eaBMsgM333yzqVs9hyY77PTu3dvRCKlGRh2POToy5UAZgRKCZaga4t1Rw0zze+uttxZZ3kvFIilWZuYgASoWOXhT2KT8JqAOqByNpGk6EHRiiX/bb7+9o46nSvUireHfPffcE3hejQ3itnX16tVGTuNkOOqx0yhGgQVjOBDl3DDaBEudyvGdEYoa8jFSkCrtuuuuRlbtMQJFYeCK+qZPnx4ok+yANQzV5bzJDju9evVydLWIqVu9eTpqj+FowDXHng+jKTrF48BoFkapOm3jwNjTJioWlgR/c50AFYtcv0NsX14RUJ8MznbbbWc6D3ROJ510kgMHSosXL3bUyM7NxzF0LKWVsPIA59Q5/sBTqn2CkVF7DFcGnSEcPOlSVTcvExtRzq0Gj6Z9TZo08TVBbQ9crt6O2CekO5jWsI6rMK0SlNTnh6NLbp3ff/89SKRIPpxv2brV5qPIcZuRbNoCzrqwwkWXqVoxx/JQb6FuHhULFwU3cpwAFYscv0FsXv4Q0FUCbgeHTvzCCy/0fXHiSi655BJXBl+l+GItjYShdbSpfv36gaezQ/m6ysEM0cNbJzpLXSUSWCauA1HOPWvWLHMN+LL3Jo2+avLVp4U3u8j2k08+aeQwLRSU4F0UnbyuGgkSSZpvPXSC8TvvvJNUBpnJFAvk//LLL/gxIxZQJjANg7pQr01ULCwJ/uY6ASoWuX6H2L68IIB5eV2eaDoDdAjVq1d3kJeY0HFtu+22rlwUg8PEOoqzjxEHtAuupb1+F7x14Qsd9gGQw5+uQHDUeZNXJGPbUc6tK1pMu9TZl68dH3/8sdte34GEHfiuwHWF+Y1Qh2BGJsyFd0K1ZtcqbrDzwPRRUEqmWMDGAlNUeH6gHME3BnxdoK3JFAuNtOqr3tYZNr3jK8AdEsgwASoWGQbM6guDwN133206AtsphzlgUr8FrmzY13Oc5DBFAINEtA9GpWEJ9hXoxINWNoSVLemxsHPbkQldCus7zWuvvWauK3EkwyekO7azxshHUFK/FI4uEw06HJgPZ1UaAdX58ssvA2VwIJkSoMtPTfsxmoQpFaSbbrrJ5I0ZM8ZMyeBe2BELKhYGEf/JYQJULHL45rBp+UMAFv1WqUjVedthfysPL46lkTSmhWlj8+bNS+N0GTkHOl9MIXlHBdQfhrkudMZBySofGFEIssOA4oJga+qoK6iaEuerzwnTVu/ogh3pevvtt936YduC52P06NGO+sZwYBBsFSvY7XiTtcfItB2M95zcJoEwAlQswujwGAlEJIBpA6so4Bf7+EJO9ofOzSuLTq800s8//+xoEC5z7jA7gNJoS3HPgWWvYIevfCQoCVCUMBoTtowXqzBQTmNrBJ4avi0gUxwfE4GV/v8AFCGMxmClB86BKZc1a9aY9mNqB3nqsMtIq4dNMyWCvKuuusqsdsH9ssar6rjLtBFTbVA41BOpKT9x4kQnzCg1VRt5nATiIkDFIi6SrKdgCcBmwa4IQGeQ7p96sCw1dpjLR/vS9dFQag2McCJ0tuDdtGlT4/dhxx13dLxf+4lVgC9GOeBDAspVUMJoSOKKkyDZdPMxxYE2YMUQjGNhZwN7Fw0qZuKc1KtXz9wX+LHAlA6WnGJpKmTgCwXGpLC/QFnUAUdhzz77rK9ODXLmJDrPSredlCeBOAjQpbe+ZZlIoCQEEFMDLrC9Ce6udWTCmxW4rX4tAo9l4oA6ZzJRTuHSOh131ZloS3HrVHsDUadaJhKrGjtKEENV+kzcFJ1uEl3WaSKDJjunfvmL+h4RnXowkUqTyWQ6D+HcEbG0Ro0a5lT6gjfh622cl0yfn/WTQFwEqFjERZL1FCwBHY4X/QIVXdngMkAn1rBhQ3c/lzYQQAuxRNS3hixatEj0Sz2XmhdrWzp16iQICPb0009LixYtAutG4DW1QREdWXBjkAQK8wAJkEAoASoWoXh4kASiEdBha3n33XddYfWZIBrO293PtQ1d9irqU0PUW6Sop8hca14s7YGSgKBluD51ehVaJwKDfffdd6LhzkPleJAESCA1ASoWqRlRggRSEkAYbl0a6MqpHYAMGzbM3U+2gbDbarhpOnh1NZ1MhHkkQAIkkHcEqFjk3S1jg3ORwMqVK80cvfobMM1DeGsNMCVqaJe0uWq9LxqlU/D7yiuvCOwEmEiABEigLBAo04oFjJ90WZdojADRyJJSvnz5Et0zXd4l6olQ1ArdGHipZXqJ6mPhskWgc+fOolFB3YuCHcOcOXNEVwO4eXYD0xAwFMQUCgw9+SxZMvwlARLIdwJlWrE477zzRJdtSbVq1UTXhhsDu5LcMPXnL+qVTzQCoaj3RNEQ1KIOdUpSJcuWIQKbNm0S9dxoDCLtZZ199tnSv39/USdHJgvKrvpLMHP52J47d660atXKivOXBEiABPKeQE4qFuoW18xXv/nmm2YoWaNCino2FF3THRm4ejc0L2+UUVe7cswxx0QuGyb48ssvG+tyrASIMo8eVheP/Utg48aNgqV2u+22m1SpUiWvsWB0DMs5YbzpTfba1I+CYHkqkroBl27dunnFuE0CJEACeU8g5xQLdc9rphlgte5N6tzGfAkGzVl7ZfFSV0cxgvluLCPDF2OcafDgwdKvXz9T5YgRI0RDUcdZfUHVpd4H5aCDDhKMBp1//vkybty4MnH9uA48G8uWLStyPerCWTRolXlGixxkBgmQQN4TwCojLF9GH4SRSZuwnTjtiVFv5OEP2/gYVmdooh5ZzbJw9dZa4tF2e/5S+9ULzZmkxm6uK1sEZ4LHOQXh/sENbqoEF7fqLMeUQUChoLgAqeoJO446bWwIeMZDOGam4hGw4aFxn3VKoHiV5HApuIdGGGy4a54yZYoDL5DeOBc53HQ2jQRIoJgEdHmz2295+7DibKvzPRPgrphNyUqxnBqxgIamgXSUvZhpjEcffVTWrl1r9vHPwIED3ZECN9OzgWHmBg0aGHsKdW8r+lI3w+sekdBNzHdPmjRJ9txzT3OusKkXDN3D3gKe/TT+gmjo5vzTKkNpZP6guiQ2Grk906GHHioanMnu8pcESIAE8pLA8uXLBSvFYHcFZ3l33XWX7zp69+4ttWvXNqMTMO7GyIZ+cBgne1hNpq73zb4thNEMjMS3bt3aZuX2b1bUmSQnVedCPg1v9uzZvn2l6OiwcpKS/2XpzXPLqNX9fwcibOlDYPzv4zz4U099KUup4x33fIhYyRSdgHp/dGxUR8t89913j14BJUmABEggDwhMnz7d7SfwrsMIRKq0ZMkSRxcd+MohgCBiy+RDypkgZDfccIMLEaGLESxI1/abPATvQWjgsKQan6N+AYy8anfOihUrwsSLHLMhpW0nt3DhwiIyiRk6SmGCBKGMGh06aheSKML9AALqPMq935Z5uXLlAqSZTQIkQALRCaA/wF8uJATNs+84/F500UWRmqWjGr5yKJsv0+45o1ioAZ8Lcf/99zfgYcuwYMECZ926dSlvBIDbm6eulFPKJwpoHAG3PCIHqjFhokjS/fbt27vl1FA0qQwz/QR01Y9rB2Pvmf1Vt8p+Ye6RAAmQQJoE8D5HNFudikizZPzijRo1cvsIvOd0uj3SSTBqbt+L9jdfRsZzQrFQ74O+sNMwfEk3wfDPwo8yjeGt/7fffnMqVKjglkfY4qhp3rx5bjmEb86EsWjUtuSLnK7+cJnZe2Z/MSXFRAIkQAIlIaAu8s07JttTBxh5x4i7fb/hV2PYRLo0b99iy8MAPB9STigW6mfCB/6mm25Kix06I0x/AD6G09PVUhNvoAYiinx+9cbpaGRLt/1qfBq5bCEKamwM91716dPH5Wb/46h760LEwmsmARKIkQDsEfBOybZioQbqvncc7Mqipp49e/rKwkRA/eRELZ5VuZxQLIYOHeoDmO6Ig/qUcMsfccQRaQMdMmSIWx4P43PPPZdWHep8yy0PWw2m5AQw52mHBXUFkPPrr7+63KxiAUMnJhIgARIoCYGddtrJvFuyrVj07dvX946LuqgAy9ThcsG+F/HbvHnzkiAp1bJZUSx+/PFHZ/Xq1Q7gqatt57TTTvMBfOmll0w+ZHS5qYOpirCkMRnc8tDyUiX1fOieH2049thj3fK4gerx01m1apVp32effZaqOgcjHPYBaNmyZUr5QhVQp1GGE0aXFi9ebDBUqlTJZQeG6limUPHwukmABGIigGlpvE+yrVjYBQi2f5g8eXLKK8RUSa1atXzvRSgZa9asSVk2VwSyoljga9WCjvKrni5DedmHCHWl+uJNtow1rA0auCz03Diogabc61GPaWlPxaQ8QRkQwIqZqlWrGk4aw8W9Io2h4bLDfRgwYIB7jBskQAIkUBwClStXNu+VbCoWWACAqXlv/5LKvuLTTz91NDChr0z16tUd9YVRHAxZK5MVxcIOU3mBh23PmjUrEBCWfHrLphph0ABQPnlv2WTbGA1JldRZlq/OVP42UtVXFo/bJVfwiopVITYlavTqHt0e4i8JkAAJFIuAnUbIpmKRaDsIdwhB6YUXXnDatWvnui+wfVHHjh2dzz//PKhYzuZnxfMm4kLo/LrxNoaQ0d7ojoi74Y3tAe+Xqogo5+RJlQ455ZRTzEF4J0No8zCPmeqYSXRJo5HXFRyCYGX33nuvW/mMGTNE7TTcfTXMNIHQ3IyADV2i6npKe+aZZ0zQtADRSNkIcKYPVCTZ4goh/Ds8vME/fSaT+hQx4cFxb+644w658sor3dPpcl1Rl9fufocOHWTq1KnuPjdIgARIIF0COmIhqlSYP51uTbd4LPKIJ4W4Ut6EdtmkNmemD0RfiL7IJvRjOqorXbp0kcaNG9vs/PrNtspj592VmvnqnzhxYlpNGj9+vDtagK/hdJPXfwWmPVLZcwTV7x2FUVfkQWKR8rFk1Tu9Y9lk4hc2LplONq5KnTp1HKyi8SYYM3mvq1mzZt7D3CYBEiCBtAnkwohF4mgslp1iqhyrCL1/yEPMKe97sGHDhpH9XaQNpxQKZGXEQgG6qXv37uar2Waoa29BJNOoafjw4e4XcI0aNXyxRVLVgdELaJDQGJGaNm0q8+fPT1Us6XG1FRA1+DTH4giHDf/yaqyT9FxhmdB2kfBr/4L29T+faEdu5DP1z8yZM0UDjZnqdbhPNDCc71TqcdXEZbGZ6hxNMMLBRAIkQALFJZDtEQv0KWgD+hib1NGjaNgCu+v7xWguYid169bN995v27atTJs2TdRWwyef8zuloLyEnkI7c1dTw4hB4hdtaGE9qB2TW75+/fqpxH3H4TNBb5D7h2WrxU12GSXqQ5uYHDP6U7NmTcNXpziSItGpGJc/2Ol/xqRyzCQBEiCBqASyPWKR6L9irwjxQXBtsD9DeAhvv4SYVPmWsmK8aSHBr4F3uaFGJrWHIv/26NHDvQlYNppOwmoT7w2EsU1xk3fJ6+WXX17caspUuUGDBhm+GmnWgbVzsgT3tt57gG0EKGMiARIggeISyLZi4XVBgHfaueeeG/lSNIp3kXei1+A9ckVZFMzqVAiG+nW9rnL/N2lwFhkzZozdjfSr2pxg6gFJHYiIKgeRykFIfU648hhqgrGPzndFLu8V1Pgk8tRTT5ksGN2MGjXKe7jgtjHsp17mzDQTwtDDGAlGtTAUxZ8+8+ZPo/iJLgH28dGVPaJLrHx53CEBEihMAjBshBHj+vXrIwPYsGGDeb/oEnczJRyloI4UiPrXkYoVK0YRD5XRsBCyaNEiV2bs2LHSuXNndz9sA1MfuhrEJ4KQ6ehj8iZlUakxPicUlKudjRw5Mu3mIPCXrSOdEQ98FeNL2pZt0qRJ2uf2FoDHT1tXr169vIcKchvLpCyPdH+XLl0aiVm69VL+v/9rZEEW2XgGIv3HThDCu1ptE4r9Pol6nYgXlcpdQULTku7+9NNPReKDwBFj1ATj/8Q26wd31OI5IZfVEYvE5TjQFtNdXjNixAjp2rWr3gcxox/qrdNsp/pHw6KLWu26Yup6tcjSIPdghI3atWu7Roca60Q0DkaEUsEiGzduFHUqFSwQwxFVrDIyMvDiiy+a0SM08fDDDxe1nQlsLb5GNIKt7zhGfrxLkH0HuUMCJFBwBNRbs2tkH+XiYQSOMhpHSnS1YJQiZrQ6jqWpeH95Rxcw+opR2KhJp1GMGwSvPIz5daWINyu3t7Op3rRp08bVzLDcRi1p024OXKQqYfOXjuFfon0FjG28CZ4isfQVQbOiJBtND20pzsiL9xywPbFBdOy1ZeIXQW3gMj3OBOPbunXrmvsRxeYF15q41GrChAlxNol1kQAJFBiBbNpYXHPNNW6fhPd2p06dItPH+7NevXq+8nA9ABcE+ZT+BwAA//94UZHUAAAZOElEQVTtnQfQ1MT7xxe7YO+IvaDYHRV7x+4w9ooNCypWsHdHRbCgY6/YGbEMqNhRFFSsgB0rVkTsBbvu//nu/De/3L3JJblLNu/tfXfm5u6SzZbPpjx59tnn6aAlqZJSly5d1JQpU0ztq666qnrjjTcyt+Spp55SPXr0MMfNMMMM6p9//lEdOnRILGerrbZSo0aNMvlmmmkm9eOPP6pOnToFx51++ulqwIABavfdd1f33HNPsD3ux2yzzab+/PNPs3vo0KFq7733jsuauB1D0rNnT/X+++8n5m0kw9xzz62efPJJhe+80mWXXab69eunZpxxRjVx4kS1yiqrJBa98MILq2nTpgX5Bg0apE466aTgP3+QAAmQQBYC8847r7mn476e5/0tTRvWXntt9dprrwVZr7vuOtWnT5/gf60fF1xwgTrjjDMqshx//PFq8ODBFdui/qCv88wzT9Qu99sgWJSRvv76awg0weeAAw6oqxkTJkwIykB533zzTWI5//33n+7YsWNwXPfu3SuO+eyzz/Rcc81l9o8bN65iX9Sfn3/+OSgLbRg/fnxUNu+3iZCo55xzTsPi6KOPTt3flVZaqYKfXEipj2XG5iTw119/6dNOO03ffvvtzdmBFK2eOnWq3nffffVzzz2XIndyFtzb+vbtq3/44YfkzC2eQx6w5p4iD1unJL777jstL7gV97N33303VRvkJU/PMsssFcfi2SQvrDWPHzZsmO7atauWF2q9zTbb6EmTJtXM72KnclFJVB2PPfZYBcArr7wyKlvitl9//bViMFBuUvr7778r6g4/yDCIGEwICLvttltSUWb/6NGjg/JEc6FRfism0e4YDgsssECmm9+mm24a8AN30fa0Ir6W6vP+++9vbsCiNfS237gPbL755nr22WfXL7/8csP9vOiii8zD46uvvmq4LN8LKEuwuPfeeyvuZYsuumgiatGy6zPPPLONQCKaXP3pp5/WPB7nWOfOnSvq7NWrV81jXOwsTbAQlU8FjDSagTggm2yySVDWWWedFZetYrtMewTH4C0ACW8CeMPAw22RRRbRn3zyScUxcX/CfVlvvfXisnm7HW+fBx54YMAz7RhYILvuumtwLNhD0GDyl4BMl5nxxs3U9wQhAA8IfCZPntxQd1deeWW92WabNVRGqxzsSrCAVmrs2LH60Ucf1Xfeeafu1q1bxb1Mpvj1448/rp9++mk9ZswYo71C/meeeUbff//9WqZI9GKLLVZxDO6BG220kf7yyy8ThwvPKOQPf/DsKjuVJljssssuAYyZZ55Z//7773WzOPfcc4OyxN4iVTkDBw4MjpE5OH3IIYdoezLOP//8+s0330xVDjLtsMMOQVlZpgBSV9AOM2K6aMSIEVpsITQunvCJjRvgkCFDakrbECQfeughffHFF2toOMLHYxxkXtJcrM8//7yePn16OyTAJtVDAOpesb/RG2+8scabWq2EKcZXX321VpbC9uVZt9iBGU0DrgsI4fUkcMA1cuONN9ZzeMsdY+/lRU+FbL/99hX3rvB9rJ7fEEDFti+11hvT+sstt1xFG4488sjSx7s0wWLJJZcMYOAm00jCw8cOIub4k25YqOvff//Ve+21l4ZQY4/F9wYbbKDFiDR1czCw8803X1AGpNFWSFtvvXXQ5zC/8G+wjEpi2JR4bLic4cOHRxXDbU1GANfc0ksvbcY+6TrBvDTUyDgP3n77bac9LaLubbfd1vQFAnM96ZhjjtGzzjprpinGeurx5RhXgsU666yjMf0tCwCMwAw7h/C9K+o38sAOA8dgmgwvZvvtt5++7bbbEu0posYH15IsRjBlwVbxiy++iMrmdFspggWMkMLAoXFoJGGeyRoNotyXXnopdXGQaGXVh7711lvrejuCEGL7ssYaa6Sut9kz4mLAhQEjV7HANh/8xoWC7WBy6qmnRnYTakPsh1CHccNNAGVAQEMZMKzFPlyAuGihHWFqfgLQcGHcxWo+sTNhLeTnn3+emD/PDEXU/cQTT5i+Q+39xx9/ZGou7m8LLrigxpQhUzoCrgSLdK1pvVzOBAvYL+DtHunhhx82F5l9IGcRBOKGCBK9LQ/z/a7S4YcfHtR78803u6qW9aQk8OGHH+oPPvggZW5mK5LAFltsYa4VzEUnJWgxcT1Ds+k6FVW3Xf2UdToDU4ZgQc1d+jOBgkV6VkXkLFyweOutt/SOO+5o3j6hBsWNHsZ9VgjAMpk8Eoyk8LaMcrFkB0Y1RScsLbLLVmGX0YidSNFtbbXyMRbnnHOOUU/ChoOpXAKYzsC1CS0UrptaCWNnl91BtesyFVl3//79DYOdd945U5f22GMPo81LWnaYqVDPM1OwKHeACxcscBFZIQLfl1xyibZvLvh/4YUX5kbghBNOCOrKujKhnkaEV4Occsop9RTBY3IkgBsvHmCYggkbhFKwyBFynUVde+215tpcccUVE0t49tlng+sYRsAuU5F1YxUA7nmY9oO9SZqEqVpMB0IzypSeAM4zvOzR8Ds9szxzFipYwMcEDI7CggWWmtltuOHD+jqvBNuNOeaYw9SHOckiTyq82VjjMkjH7cFgJi+OzVQObtBYmgVtGFYbhM81+7tMwQLTf3YKsJm45t1WrB7CePTu3TuyaLwI1DJ8g7HbTz/9FHlsoxtd1Q2tqj0nX3nllVTNxrQJjoGBely67777jN0K7qu4BsDRsrS/sR37L7/88rhivNr+yy+/JGrGvOpwO+tMoYIFHr7WkA8XB6TI7bbbLri4brrpptxxXHPNNUH5Bx98cO7l2wKPOOIIUw9ueGmcctnj+J0vAQgW9mZtv+3KA/u/TMECy5/FrXlmg718KZVfmnWeFvdgu/vuu/Wxxx6rsVzber1daKGFzDZsP//88wvrhMu68cKD8zKtx1H46Fl22WVj+w5NqT3P03y70OTGNpY7WoZAoYIFKO65556RJz5uFkUleNK0F9ldd92VezW4Edny4Q2PqVwCt9xyi7700ks1LO/t/H14GTFu5mUlOKvBuVL0evqy+pe2XqwEAYekBypeRqD6R9447UbaOrPmy1o3DNKzrvBYYYUVTN+guU1Kk8WhFjQOZ599dmRWrGQDp+WXX974g3nwwQeNbxmc+2uttZYx9sS2kSNH6kceecQ4ZUrSniV5eoxsCDeSQBWBwgULTEdgtQTWceMGD/uKBx54oKoZ+f7FW+xOO+1kLjpMjUgwr9wqQFl2aStdT+eGNfeCwoJFmRoLvHVTsNCBrxescKiVRo/+n3t8rOt3mdLWDSdf8LBo/RfASVJaL73wzIvzQYIcJnbtvPPOM3mjVjV9++23Go79MA0Itb9NiEuC8hGHJWvCyx6Oha0aEwk0QqADDpaTybv022+/KRFilCxlVeJfQsmcppJpmYb6KcaBShyiKPHKab7F0EvJSpSGyuTBxRCQVQVK1v+bwkWwUGJ/U0xFCaWKMK3kIWAiLbqOspjQtMjdYvyqRAsXuS/tRpnOUIjwaJPYUQURJuXBpzbccEO7q823rORR4kfCbJe3Z7XEEku0yYMNMjWi5IEbuS/NRvEnoRBJMpzS1P3CCy8oif9hohcjkq+4XVZioK5EyDARLXHe1UoyFaxk6tREu0TUy1pJpo6V+HZRqLM6iQdPJf5gzD1OXnSC3SIUKNHeKYlZoSTWUbA9zQ/xPqzkJdAch+OZSKBeAt4KFgAi2pIg/LYEOVNiD1EvJ3OcqD2V+MhQCMkrrqiVaEMaKo8HF0egvQgWEGpkeqZpBAuJzKvEJ0xDAyMxQJREWQzKmDZtmhJXxeY/HpLrr79+sK/6h8TCUBDYl1pqKSVTAdW7g/9HHXWUmjhxYvA/6w8xvFbiGK/isDR142EtWhcl0ZmDENUyJaEOOuggJTZjSuy6Ksqs/iPu/5VMSyix0VJiD1a9O/gvQcvUuuuua/Igb9oky/eNwCXL+pXYZqQ9zOSTqR0l7seNsAKBhokE6ibQiLqDx5JAeyXQXqZCsLRQLk7nNhaisTPz7TAyhvodLn+PO+44E2vCtSdTeI60qxQw1x+XYONgV4y5dHKH9qSp+/vvvzceYWHTEE4ijJkxRvyjpAQ39zgfkmyzYMQKXx7WZiipXOx/5513TNmYIkmypUhTHvOQQL0ECrexqLdhPI4EGiHQXgSLMhz1INaF9fKIh1j1B6suXPuHsBxqGVOHbRxgkGsTQo4XsYLMlo/vNHVPmDDBsIRhZDjB6R8YYzVSUrLRLxFeOy5ZF96wE8uS4BMI7cBKkuoEGxAIaygTodyxkg0+hhDNGcIL7N7wGwEVTz755OBw2MgNHjxYI4Aa+of4SghdgKX9NiFyJ2IHwUsqbOjuuOMOu4vfLUqAgkWLDrzv3W5VwWLYsGGBLxc8ZOD1Fn4OXnzxRb3PPvtUCBkujfRsBEaZkow99bD6wQpBH330kcmHgIJ4qEHjUmRKUzeMNtE+mcqpaAo0QNgOTUFSsquEEIgvLlkX3nColSVZw9CoFXcQLGS6Jgi6CB881sC9X79+JtIwBA70o2fPnkG10HhBQwMPyhCgsIQfeaZMmWLyIKgafGT07dtXY8x69epl9l911VVBGfzRegQoWLTemLdEj1tRsLDB3XDjx0eM8dp4eAzHtoGPmUmTJjk5H8TmwrSpVkhn+9BC6Gib8PaMaZSiw6enqdsuMxfjU9s88w3neJZ5LY+a0AzYKSFMq8QluPDGFFoWF95wvmXLxjLUuLTllluatsKfyOuvv240FNA4IFnNS1iwwFjgGNsvrEbBdBUECwSHQ0gDrHyyUy8IC9+pUycNAYqpdQlQsGjdsfe6560mWEB9Dgd09gHXpUsXjW3VCd4rceO3+dLYBVSXUc//QYMGmTprRQC2qnws54a9ALx14mHZaPTjNO1NUzd8QoAb7CTCCQ9YbEesolrJBl/EtFBcwvhgGWufPn3iskRutx460Q5EXI5LNny7GL62yWL7ERYsxIDU9G3xxRfXhx56qB46dKgRKCBIQFuB+jC9g/rtx2qnstiHtGkMNzQ1AQoWTT18bHwcgbBggZgBZSVrW1C0g6wrrrjC3ORxo8enlp8EzJPbfLUecnkyg8YBdUJtHva7EK4Db+iwD7Btw8NMVl+FsxT2O03dsqLFtE2WnFe04+OPPzbb0d5aCWOCvkF7E5fg8wd5arnwjjrWCm6wg8D0UVyyggU0HNVJls6ausOCBYQUTIXYMcE3or/C2PXEE0802zFVBQ+g1Z+4ca6ul//9I0DBwr8xZY+EQFiwkKVzpTFxJVjAeC588x8xYkRsn+3buc0P9XbRCap06866VtvQDszV4yFu1etFty1cfq267Ru9LIUNH6LFV45hX63JqMgkf7p3727yQfMRl2D8WMuFd9xxiLk0atSoxKjOVrCQJcBtisL0Bs6JsGABI1MIXbDRgZCHviMPQicgoCR+I0wDEwmECXjtx0JOeqYWJRD2YwG/IzKn3TAJeTga3wJwipQ2wd+BXHDGj4Oo9VMdBh8CciNXYcdHSQfCkZQ8+IJs8vasOnfuHPwP/4CzsLCPCDiRk4deOEshv+WtWslbrZI5eyUPwULqKLrQNddcU4kho4JPG9G+mOrgTErsItSAAQOURNaNbIL1SyEaBQUfE1E+dcRWQ8nKCiXxPJQYk0aW0+hG66ALvkXgvC2cRLBQMoWmRLBQskrE7ILjL/jtEONZ8x/nPpyLYRwlpL1affXVlWgEzblneYjGREkoBwUHYNV1hOvjb48JhKUM/iYBXwiENRZ5qfthmCY3VfOWJreEwr4xx54lWi5UztZwr552Rc23F3EeINqxdXFeyw6giLrzKhPLXsEYYeCRoImBcSO0MbX8g9iYSXjLj0vwbYGyYUSZd4K9DZgjIB7qgL1HeDoE9hBYgop9WF1iY4bAlwZWwdjIsnY6yK5Ygf0LjoFNCHynYIyxykQcieXdBZbXRASosZCrgsk/AmGNBVxpi41DLp2Ee2q4i0+bJOiUwjHvvfeeEv8RqQ6Dm/gs7r/h+lpU1BVlwysl3o7TpLTtSlNWUh5Zhqjg8luWOqrhw4cnZW+X+/v376/gzlvidBiX3vLQVbKyQq222mqR7ZXVF8bFOVx0QxMlxrOR+aANwT64Pc87oV6xX1GyokNBcybTTCbEgb0uZLWQkgBxZps8v4xGBvvgORZeVBHGANoLnGvwzArtDBK0EzfccIP5D00YyocHU3gjpffOvEexecqjYNE8Y8WWZiBQlGCRoQkmK6ZhcIPGJ4uwkKUeTNHggSRz4cFhiI0TjtcR7GgHP6BCx0MMLq2zuKtuB00PmoBpA3GqZdz7Q8CIE85Em2TGAfFiMCbLLLNMUEb4hzg1U+LUTF1//fXqsMMOC+8q9TfisYjxpom7I0aqxk14VMwlnHsQnjGVU9R5XioIVp6JAAWLTLiYuVkIhAUL3PTxVllGciFYoF94W8ZbpU2i6lYSddP+bVffCKCFt2C8RY8bN84ECWxXDcyxMRIB2QQEQ+CxHj16xJaMwGsDBw5UMj0RxCCJzcwdJNDOCVCwaOcDxObVRyAsWMAIEtMRZSRXgoXMcRuVtO2jzHObKJf2f9Q3omPCcBNqcHFoFJWlsG0Q9FCvzOcr8RRZWD1lFgwhAUHL0D8Yd9ZKYrOhEARMwp3XysZ9JNAUBChYNMUwsZFZCYQFC0ShhUq6jORKsIAaGqp0zJ0jYVWIOJmKjcCLVTJQceN77Nixxl6gDD6skwRIwD8CFCz8G1P2SAiEBQvYH4i1eilcXAkW6Fzv3r2VBO8K+onphpEjRxqDvGDj//+AtgDz+ZhCgaFn2qWw1eXwPwmQAAlUE6BgUU2E/5uOAB6MEBxgoY5vGNXBah/W7UjwGQB1tHgMNFbuWG8PIzoX6n+XggV8K4iDJWO3YAdRIlYavwhdu3Y1m8BEljUalTt+SxhzJU6TbHZ+kwAJkEDDBChYNIyQBZRNAE56ZI1+pmbAkE6iVWY6pp7MLgULtE/8ERjHRTDeDCc4y8LyPwheWDKIJG7AzdLPcD7+JgESIIFGCVCwaJQgjy+dAAQL2BhgykMcYxmPiNBSWPU+3sxhe4BlmeIoSE2fPt14mhwzZkzhbXctWNgODRkyRF199dVq/PjxdlPwDX8K8IIJD4tMJEACJJA3AQoWeRNleSQQIlCWYGGbILEvjDZn6tSpxvUyHHaJ98XAHbXNx28SIAESyIsABYu8SLIcEoggULZgEdEkbiIBEiCBQglQsCgULwtvdQLdunVTcHUscSRUx44dWx0H+08CJNACBChYtMAgs4vlEYCxJDxNMm5CeWPAmkmABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALQEKFm55szYSIAESIAES8JoABQuvh5edIwESIAESIAG3BChYuOXN2kiABEiABEjAawIULLweXnaOBEiABEiABNwSoGDhljdrIwESIAESIAGvCVCw8Hp42TkSIAESIAEScEuAgoVb3qyNBEiABEiABLwmQMHC6+Fl50iABEiABEjALYH/A8Podu+3cOGJAAAAAElFTkSuQmCC" + }, + "f353d676-708a-4aa9-94fe-7c25c516a871.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAADKCAYAAACrK/agAAAMTGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIQQIREBK6E0QkRJASggtgPQiiEpIAoQSY0JQsaOLCq5dRLCiqyAuuroCstiwK4ti74sFBWVdLNiVNyGALvvK9+b75s5//znzzzln5pYBgN7Ol0pzUE0AciV5sphgf9aEpGQWqRNQARkAYAi0+AK5lBMVFQ7vwGD79/L2OkCU7RUHpdY/+/9r0RKK5AIAkCiI04RyQS7EvwKANwmksjwAiFLIm0/PkyrxWoh1ZNBBiKuUOEOFm5Q4TYUv9dvExXAhfgwAWZ3Pl2UAoNEDeVa+IAPq0GG0wEkiFEsg9oPYJzd3qhDi+RDbQBs4J12pz077Tifjb5ppQ5p8fsYQVsXSX8gBYrk0hz/z/0zH/y65OYrBOaxhVc+UhcQoY4Z5e5w9NUyJ1SF+L0mLiIRYGwAUFwv77ZWYmakIiVfZozYCORfmDDAhHifPieUN8DFCfkAYUK4+QNMlORHhAzaF6eIgpQ3MH1omzuPFQawHcZVIHhg7YHNMNjVmcN7r6TIuZ4Dv5Mv6fVDqf1Vkx3NU+ph2pog3oI85FmTGJUJMhTggX5wQAbEGxBHy7NiwAZuUgkxuxKCNTBGjjMUCYplIEuyv0sdK02VBMQP2u3Plg7FjxzLFvIgBfDkvMy5ElSvssYDf7z+MBesRSTjxgzoi+YTwwViEooBAVew4WSSJj1XxuJ40zz9GNRa3k+ZEDdjj/qKcYCVvBnGcPD92cGx+HtycKn28SJoXFafyEy/P4odGqfzB94FwwAUBgAUUsKaBqSALiFu767vhnaonCPCBDGQAEXAYYAZHJPb3SOA1FhSAPyESAfnQOP/+XhHIh/yXYaySEw9xqqsDSB/oU6pkgycQ54IwkAPvFf1KkiEPEsBjyIj/4REfVgGMIQdWZf+/5wfZbwwHMuEDjGJwRhZ90JIYSAwghhCDiLa4Ae6De+Hh8OoHqzPOxj0G4/hmT3hCaCM8JFwjtBNuTREXyoZ5OR60Q/2ggfykfZ8f3ApquuL+uDdUh8o4EzcADrgLnIeD+8KZXSHLHfBbmRXWMO2/RfDdCg3YUZwoKGUExY9iM3ykhp2G65CKMtff50fla9pQvrlDPcPn536XfSFsw4ZbYkuwA9gZ7Dh2DmvC6gELO4o1YC3YYSUe2nGP+3fc4Gwx/f5kQ53he+bbyiozKXeqcepy+qzqyxPNyFM+jNyp0pkycUZmHosDvxgiFk8icBzFcnZydgFA+f1Rvd5eR/d/VxBmyzdu4R8AeB/t6+v77RsXehSAX9zhK+HQN86GDT8tagCcPSRQyPJVHK68EOCbgw6fPn1gDMyBDYzHGbgBL+AHAkEoiARxIAlMht5nwn0uA9PBbLAAFIESsBKsA+VgC9gOqsDPYD+oB03gODgNLoBL4Bq4A3dPB3gOesBb8AlBEBJCQxiIPmKCWCL2iDPCRnyQQCQciUGSkFQkA5EgCmQ2shApQVYj5cg2pBr5BTmEHEfOIW3ILeQB0oW8Qj6iGKqO6qBGqBU6GmWjHDQMjUMnoRnoNLQAXYQuR8vQSnQPWoceRy+g19B29DnaiwFMDWNippgDxsa4WCSWjKVjMmwuVoyVYpVYLdYI1/kK1o51Yx9wIs7AWbgD3MEheDwuwKfhc/FleDlehdfhJ/Er+AO8B/9KoBEMCfYETwKPMIGQQZhOKCKUEnYSDhJOwWepg/CWSCQyidZEd/gsJhGziLOIy4ibiHuJx4htxEfEXhKJpE+yJ3mTIkl8Uh6piLSBtId0lHSZ1EF6T1Yjm5CdyUHkZLKEXEguJe8mHyFfJj8lf6JoUiwpnpRIipAyk7KCsoPSSLlI6aB8ompRrane1DhqFnUBtYxaSz1FvUt9raamZqbmoRatJlabr1amtk/trNoDtQ/q2up26lz1FHWF+nL1XerH1G+pv6bRaFY0P1oyLY+2nFZNO0G7T3uvwdBw1OBpCDXmaVRo1Glc1nhBp9At6Rz6ZHoBvZR+gH6R3q1J0bTS5GryNedqVmge0ryh2avF0BqjFamVq7VMa7fWOa1ObZK2lXagtlB7kfZ27RPajxgYw5zBZQgYCxk7GKcYHTpEHWsdnk6WTonOzzqtOj262rouugm6M3QrdA/rtjMxphWTx8xhrmDuZ15nfhxhNIIzQjRi6YjaEZdHvNMbqeenJ9Ir1turd03voz5LP1A/W3+Vfr3+PQPcwM4g2mC6wWaDUwbdI3VGeo0UjCweuX/kbUPU0M4wxnCW4XbDFsNeI2OjYCOp0QajE0bdxkxjP+Ms47XGR4y7TBgmPiZik7UmR02esXRZHFYOq4x1ktVjamgaYqow3WbaavrJzNos3qzQbK/ZPXOqOds83XytebN5j4WJxXiL2RY1FrctKZZsy0zL9ZZnLN9ZWVslWi22qrfqtNaz5lkXWNdY37Wh2fjaTLOptLlqS7Rl22bbbrK9ZIfaudpl2lXYXbRH7d3sxfab7NtGEUZ5jJKMqhx1w0HdgeOQ71Dj8MCR6RjuWOhY7/hitMXo5NGrRp8Z/dXJ1SnHaYfTnTHaY0LHFI5pHPPK2c5Z4FzhfHUsbWzQ2HljG8a+dLF3EblsdrnpynAd77rYtdn1i5u7m8yt1q3L3cI91X2j+w22DjuKvYx91oPg4e8xz6PJ44Onm2ee537Pv7wcvLK9dnt1jrMeJxq3Y9wjbzNvvvc273Yflk+qz1afdl9TX75vpe9DP3M/od9Ov6ccW04WZw/nhb+Tv8z/oP87rid3DvdYABYQHFAc0BqoHRgfWB54P8gsKCOoJqgn2DV4VvCxEEJIWMiqkBs8I56AV83rCXUPnRN6Mkw9LDasPOxhuF24LLxxPDo+dPya8XcjLCMkEfWRIJIXuSbyXpR11LSo36KJ0VHRFdFPYsbEzI45E8uInRK7O/ZtnH/cirg78TbxivjmBHpCSkJ1wrvEgMTVie0TRk+YM+FCkkGSOKkhmZSckLwzuXdi4MR1EztSXFOKUq5Psp40Y9K5yQaTcyYfnkKfwp9yIJWQmpi6O/UzP5Jfye9N46VtTOsRcAXrBc+FfsK1wi6Rt2i16Gm6d/rq9M4M74w1GV2Zvpmlmd1irrhc/DIrJGtL1rvsyOxd2X05iTl7c8m5qbmHJNqSbMnJqcZTZ0xtk9pLi6Tt0zynrZvWIwuT7ZQj8knyhjwd+KPforBR/KB4kO+TX5H/fnrC9AMztGZIZrTMtJu5dObTgqCCn2bhswSzmmebzl4w+8Eczpxtc5G5aXOb55nPWzSvY37w/KoF1AXZC34vdCpcXfhmYeLCxkVGi+YvevRD8A81RRpFsqIbi70Wb1mCLxEvaV06dumGpV+LhcXnS5xKSks+LxMsO//jmB/Lfuxbnr68dYXbis0riSslK6+v8l1VtVprdcHqR2vGr6lby1pbvPbNuinrzpW6lG5ZT12vWN9eFl7WsMFiw8oNn8szy69V+Ffs3Wi4cenGd5uEmy5v9ttcu8VoS8mWj1vFW29uC95WV2lVWbqduD1/+5MdCTvO/MT+qXqnwc6SnV92SXa1V8VUnax2r67ebbh7RQ1ao6jp2pOy59LPAT831DrUbtvL3FuyD+xT7Hv2S+ov1/eH7W8+wD5Q+6vlrxsPMg4W1yF1M+t66jPr2xuSGtoOhR5qbvRqPPib42+7mkybKg7rHl5xhHpk0ZG+owVHe49Jj3Ufzzj+qHlK850TE05cPRl9svVU2Kmzp4NOnzjDOXP0rPfZpnOe5w6dZ5+vv+B2oa7FteXg766/H2x1a6276H6x4ZLHpca2cW1HLvtePn4l4Mrpq7yrF65FXGu7Hn/95o2UG+03hTc7b+Xcenk7//anO/PvEu4W39O8V3rf8H7lH7Z/7G13az/8IOBBy8PYh3ceCR49fyx//Llj0RPak9KnJk+rO507m7qCui49m/is47n0+afuoj+1/tz4wubFr3/5/dXSM6Gn46XsZd+rZa/1X+964/KmuTeq9/7b3Lef3hW/139f9YH94czHxI9PP03/TPpc9sX2S+PXsK93+3L7+qR8Gb//VwADyqNNOgCvdgFASwKAAc+N1Imq82F/QVRn2n4E/hNWnSH7ixsAtfCfProb/t3cAGDfDgCsoD49BYAoGgBxHgAdO3aoDp7l+s+dykKEZ4OtEV/SctPAvymqM+l3fg9vgVLVBQxv/wVxuILvJuoY/AAAAIplWElmTU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAOShgAHAAAAEgAAAHigAgAEAAAAAQAAAsCgAwAEAAAAAQAAAMoAAAAAQVNDSUkAAABTY3JlZW5zaG90OVbzsAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAdZpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+MjAyPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjcwNDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgpWU5i9AAAAHGlET1QAAAACAAAAAAAAAGUAAAAoAAAAZQAAAGUAABriBUlJzgAAGq5JREFUeAHsnQewHMURhpscTBDZxoCFsRBJBJMzCCxyztlYQAGFKYKRKcBQJCFMEW2MAZNzpogiZ4QA2Uhkm2ByMCAymLTuf8q7tXvvwrt3d+/d7n5T9XQbZmenvxnt9s70dE8ReTISBCAAAQhAAAIQgAAESkJgChTgkrQ0YkIAAhCAAAQgAAEIBAIowHQECEAAAhCAAAQgAIFSEUABLlVzIywEIAABCEAAAhCAAAowfQACEIAABCAAAQhAoFQEUIBL1dwICwEIQAACEIAABCCAAkwfgAAEIAABCEAAAhAoFQEU4FI1N8JCAAIQgAAEIAABCKAA0wcgAAEIQAACEIAABEpFAAW4VM2NsBCAAAQgAAEIQAACKMD0AQhAAAIQgAAEIACBUhFAAS5VcyMsBCAAAQhAAAIQgAAKMH0AAhCAAAQgAAEIQKBUBFCAS9XcCAsBCEAAAhCAAAQggAJMH4AABCAAAQhAAAIQKBUBFOBSNTfCQgACEIAABCAAAQigANMHIAABCEAAAhCAAARKRQAFuFTNjbAQgAAEIAABCEAAAijA9AEIQAACEIAABCAAgVIRQAEuVXMjLAQgAAEIQAACEIAACjB9AAIQgAAEIAABCECgVARQgEvV3AgLAQhAAAIQgAAEIIACTB+AAAQgAAEIQAACECgVARTgUjU3wkIAAhCAAAQgAAEIoADTByAAAQhAAAIQgAAESkUABbhUzY2wEIAABCAAAQhAAAIowPQBCEAAAhCAAAQgAIFSEUABLlVzIywEIAABCEAAAhCAAAowfQACEIAABCAAAQhAoFQEUIBL1dwICwEIQAACEIAABCCAAkwfgAAEIAABCEAAAhAoFQEU4FI1N8JCAAIQgAAEIAABCKAA0wcgAAEIQAACEIAABEpFAAW4VM2NsBCAAAQgAAEIQAACKMD0AQhAAAIQgAAEIACBUhFAAS5VcyMsBCAAAQhAAAIQgAAKMH0AAhCAAAQgAAEIQKBUBFCAS9XcCAsBCEAAAhCAAAQggAJMH4AABCAAAQhAAAIQKBUBFOBSNTfCQgACEIAABCAAAQigANMHIAABCEAAAhCAAARKRQAFuFTNjbAQgAAEIAABCEAAAijA9AEIQAACEIAABCAAgVIRQAEuVXMjLAQgAAEIQAACEIAACjB9AAIQgAAEIAABCECgVARQgEvV3AgLAQhAAAIQgAAEIIACTB+AAAQgAAEIQAACECgVARTgUjU3wkIAAhCAAAQgAAEIoADTByAAAQhAAAIQgAAESkUABbhUzY2wEIAABCAAAQhAAAIowPQBCEAAAhCAAAQgAIFSEUABLlVzIywEIAABCEAAAhCAAAowfQACEIAABCAAAQiUnMCnn35qkyZNsjfffNMGDx5sQ4cOtdlmm62wVFCAC9u0CAYBCEAAAhCAAATqE/jmm29s9OjRdsIJJ5i24zT11FPbHnvsYUcffbTNPffc8eHC/KIAF6YpEQQCEIAABCAAAQg0R2Cbbbaxa6+91nbYYQfbbLPNbPLkyXbWWWeF0WCVtMgii9i4ceNs0KBBzRXc5blRgLu8gageBCAAAQhAAAIQ6ASBq666yrbffnvbc8897Zxzzklu8cUXX9g666xj48ePD8ekHF9++eXJ+SJsoAAXoRWRAQIQgAAEIAABCDRJYJdddrFLL73UpplmGjv//PNt5513Tkp44IEHbK211gr70003nb333ns266yzJufzvoECnPcWpP4QgAAEIAABCECgDwRWXnlle+yxx8KV66+/vt1+++1JKd9//73NMMMM9u2334Zjt912m22wwQbJ+bxvoADnvQWpPwQgAAEIQAACEOgDgWOOOcaOOuqocOWJJ55oo0aNSkqJoshmmWUW+/zzz8Oxm2++2TbeeOPkfN43UIDz3oLUHwIQgAAEIAABCPSRwCOPPGJTTjmlaTQ4nV588cWwAC4+9sILLwTXaPF+3n9RgPPegtQfAhCAAAQgAAEItJnASSedlIwIL7vssvbkk0+2+Q4DWxwK8MDy5+4QgAAEIFBAAj/88EPwq6qgAnvvvbcttdRSBZQSkdpJYMyYMfbaa6/ZfvvtZ4svvng7i266rP/85z82ZMgQ++STT0z+gO+++25bc801my6nmy9AAe7m1qFuEIAABCCQOwL//e9/bccdd7Trr7/epp12WpswYYItscQSuZODCvcvAdnX3nrrrSH6muxtV1111f6tQOpuI0eODF4hdEju0eQmrWgJBbhoLYo8EIAABCAwYAS0Yn7LLbe0W265JdTh4osvNrmaIkGgEYHPPvvMVl99dZs4caL96Ec/sjvuuGNAlGAFwdh3331tqqmmsnPPPdd23333RlXP5XkU4Fw2G5WGAAQgAIFuIyC3Udtuu20Y+VXdjjzyyBBGttvqSX26l8Dbb79tK620kr3xxhvBA4NMD5Zffvl+q7DcoG266abB7OHKK68MkeH67eb9fCMU4H4Gzu0gAIHuJPDyyy+b3P784he/6M4KUquuJ3DYYYcFu19VVCYQl112WdfXmQp2H4Fnn33WVlttNfv4449t3nnntaeeesrmmmuujldUi9wU+EJBMTSDEZtgfPPNN8EcYt111y3U8xEFuONdihtAAALdTODrr782+b889thjg+2dFn+QINAsAU1XK0iAPqKkvGjkTtGzSBDoCwH1nxEjRoT+pN+xY8faFFNM0ZeienWNBgBWWWWVkPfOO+/MLNqUmzT1aUWGW2ONNXpVXh4yoQDnoZWoIwQg0FYCGtF46aWXQghQ2bh98MEHofw555zTUIDbiroUhb311lu2zDLLhL4zaNAg0wieRu5IEGiFwAEHHGCnn356KOK4446zww8/vJXial6r5598AGvxphTvhRdeOJNX9/7DH/5g7777rs0zzzyZc3neQQHOc+tRdwhAoNcE5JZKbnykrLz++usme83KhAJcSYT9RgTUj4YPH24PPvhgyMqit0bEuv/8888/b6+88krTFZ1xxhlt7bXXbvq6Whd89dVX4cNKASm0IO3ee+9t+wjsl19+Gfrv+PHjbaaZZrKFFloojDTrefndd9+ZZshkj6xFeZMnT65V1VweRwHOZbNRaQhAoFkCeqDrJZJOCy64oL366qvJIRTgBAUbvSSgUbnRo0eH3JtssonddNNNvbySbN1K4OCDD7ZTTjml6eoNHjw48zxpuoAqF0gxlS2uPrQ6YQ8sDw8XXnhhlTtnD62wwgqmuhQpoQAXqTWRBQIQqEtAD/qPPvrIhg0bZopsNPvsswc/rXJdpaSFJu+//37dMjgJgZhA2u5XfUmmDz/+8Y/j0/zmlMARRxxhZ555ZtO1V/CKhx9+uOnrGl2g+hx//PEh23rrrWfy1NAue2DZ/Y4bN65RFYIrP81uFCmhABepNZEFAhBomoACFcQKMCPATeMr7QVyV7X00ksnNuMXXHCB/frXvy4tDwTvHAGZIcg7jcy3lKQMy+MIqTUCKMCt8eNqCEAg5wRQgHPegANU/Z122skuv/zycHeN/E2aNMmmnHLKAaoNty06gbPPPjuE1JacclP2z3/+02RyQeo7ARTgvrPjSghAoAAEUIAL0Ij9LIKUj0UXXdRkV6507bXX2lZbbdXPteB2ZSKgWapFFlkkWZy31157mZRiUt8JoAD3nR1XQgACBSCAAlyARuxnEXbddVe75JJLwl3l/mzChAkt22TKLd/VV19tWpUv+3SFxJVJTjppClwLkXS/2WabzdZZZ51ghlFpD6oyHn/8cXvmmWfCoizZJUt52nDDDXssBE2XX7btvDG/9NJLk7Daem7961//sgUWWKBszdY+ed1pNwkCEIBAaQn4dGLkT9Tw5wpHaTkgeO8IuNIRuTeRpM94xKzeXVgn1z333BO5m6mkTPVHX/EfvfDCC+Eqd9sXeQCCzPm4z84xxxyRBy5ISveFnuHa+Hz6d+jQodHEiROTvGXeyCNz9wQRublN0g/22WefMjdhy7IryggJAhCAQGkJoACXtun7JLgvdEsUEB+p7VMZ6Ys83G3kI7ShzC233DLyVflJ+e6mL3LzishHe8Mx99MaHXTQQZFHLYx8UVSSz21Bo88++yySQhQrvDo2ZsyY6Le//W0066yzJseHDBkS+Qhxugql284zcw/ck7SljwJH7qO3dO3XLoFRgNtFknIgAIFcEkABzmWzDUilPVxsNPXUUycKiNtgtlwP9zcbyltsscUij8QV+cK6pPxYmdXv7373u8ijFCb3e+655zL54hFkKctSkjzaYZL3tNNOy+T1oB3JuTJu5Jm5PnT0IRT3jf3226+MTdgWmVGA24KRQiAAgbwSQAHOa8v1f71/85vfJIqHR/2KPvnkk5YrEY/kuo/VUNaf//zn5B6xknPooYdWvY/7Hs7klWnGXXfd1SPvE088kcnXDsW9x01ydCDvzEeOHJm053TTTRe5bXiO6HdPVVGAu6ctqAkEIDAABNIKsOwpSRCoRsAjBkbpvuIL4apla+rYk08+GRQZTWVrWl5p5513TpQbKcAbbbRRJNvPaike9Y0V5VNPPbVatuihhx7KlHneeedVzVd58NNPP43c40Xl4Vzvdzvz3sD1wBWZ9tx///17cxl5KgjgBcKfHCQIQKC8BNJeIBTN68MPPywljOeff958Cj649vL3RPKrbaVavzGs+Hy835+/8nDgHy8dvWVleNz777/f1lxzzZbu+be//c323HNP22CDDey2224LZcm362uvvRa2FZlQK/3dhrfHfXyBXHDFFp/YeOON7eabb453M78nnXSSjRo1Kjk2duxYU0SxeumRRx4JXiNcCQ7eKbbZZpt62XNzrpuZNwNxiSWWCJEHdc0MM8wQIli6aUQzRZDXH1okCEAAAqUlkB7Vk/1kGZOHh86MKPmbMVf77hO148220EILJUw0hd6ONHny5DA6Ky8PShplTrOvN8p81llnZfK6i6yaVfrVr36V5JUNs0Z2G6W0ucc111zTKHvN8+6qLSzy00K/dv+tsMIKGVvnmpVInehm5qlqNtz84x//mLSp+sx1113X8BoyZAlgApHlwR4E6hKQzZ+mE6+44opI01BSHEj5JpBWgAcNGpRvYfpYe/Vj9yWbeaGmFbFu35Y9bif/L1YuOPPR4D6Srn+ZXJilWdczVdhuu+0yeWt5A5DHBx8hTPKuvPLK9Svx/7M+Ih0tvPDCkRZZpRfU9eriVCYfqUzunZatHduzzDJL9Pnnn6fu1vxmNzFvpvbu4znDdffdd2/mcvI6AUwg/H8hCQKNCPgLwEaPHm0nnHCCaTtOPppie+yxhx199NE299xzx4f5zRGBtAmEpprdFjNHtW9fVd3LgJ188sk1C3SFy84888ya5ytPKEqav2OSP+2n/9yu1b777rvwJ9MLV2TsnXfesbfffjv8uceFEPDBR0cri6667yNidsghh1Q91+pBlf373/8+KeaOO+6wESNGJPvt2nAXa3bRRRclxSlQg488J/vpjZ/85Cf27rvvhkM///nPTbyqJQXXUNvFyV2o2RFHHBHvdvxX7aq/TiS3gbaZZ565paLzzHz++ee3N998M8iv94/+/xCOu4nuwGcABCDQmMDWW28dvrZ32GGH6Morr4w0/bjkkksmX+Bugxhpao2UPwLpEWD5Sy1rkguu5ZZbLunT/hrpsX3DDTf0Ox65/nLb1sg/NCMFKqlWLx2T31tXqDtSv9VWWy257/TTT98xP7o/+9nPkvv89Kc/rSmLAmSkOdQb/dt8880zeYu2qK0mpF6eyDPztJmK+oNmJUm9J4AJRO9ZkbOkBKTw6uHii1UyBDT1tuKKKyYvFynHpPwRSCvAmlItc1KUMx9RS/p0WsnSttxuxfaqA8FJCq6UYdl+VtZN+51Q0D/44INM5DfZ03YiVdr/7rjjjjVv89e//jUjv6bxqyV9lMtNVszql7/8ZZJNZh3yOZz2LayTPkofPfroo5GPLCZ5i7rRLcz7ytdH95O2VRsfdthhfS2qlNehAJey2RG6GQKxWyIpSpdccknmUl8JnjyA9KKJXRllMrHT1QTSCrCUv7In+aONFaZqv6uvvnrHRlqbYS9FOI6gFtdz+PDhzRTRq7z6Px+Xr1/3qNCr65rNVGmLes4559QsotL+171GVM17wQUXZOquhVNxkjIsedKL5x5//PFogQUWCMd9Kj1SZLoip25g3gpf2b2nw3IPGzasleJKdy0KcOmaHIGbJbDSSislL5H1118/c7lGpNIKlBaOkPJFIN1+irBEiqJddtkl6fNp5S/ePvLII7sCk9vARmuvvXamrs8++2xb67bttttmyn/qqafaWn5cmMwYYr761Wh8rTTPPPMked3+t1a2aKeddkryqcx///vfIa+7QQvH1ffFUElKtPxgywwm/RFU5Gn1gWYewLf4z/LLL1+1jVssthSXowCXopkRshUCvsAtecCceOKJmaI0XZgOS6lRKVK+CKQVYAUWIEWRwq0OGTIk6fdpxUzbGh3U7Ec3JH2EKhBAXMd99923bdWS9wOZxcRla5anU3bGcXQy3csXN9WUwf01J/VRXtlG10rxaK7yLbvsskk2918cyth7772TYwceeGDwBDJp0qRIHxGxzPVGopOLc7ox0MzbgU0uAOO20u+f/vSndhRbijJQgEvRzAjZKoGHH3442MVVllO5GEX7pO4l8I9//CO4sbvvvvuCLelBBx2Ucf8lxU6KwPXXXx89+OCDkQcDiHxldfcK1MGaKWKWIpSlX67pbS3Skn1sNyQppfFCNX2QtiNEseS69957M/Ivs8wyHRFXo7BptvUWtUkhTeeVS8ZaKa0A77PPPiHbZZddFq6Xa7Q4hK4WQErR12JfpcMPPzy5hxTuIqaBZt4upu6ZJWkr9YvKWcp23aeI5aAAt9iqWgjlbnvCF7NGRCZMmNBiicW/vEjM0s7I0yMsxW/FfEqY9tyRViLqba+77rr5FLYNtXa3aJmXayWnTTbZpA13aU8Rmt6XH2fV8bTTTmtLoQotnJZ5t912a0u5lYXccsstmfvUU2pHjhyZ5NUHW+UitnTZGuGN66/RTo/mFkbvZTfqEdGSrF9//XWk2S2ZXSjsskagdZ0W+RY1DTTzdnHV4Ezcxvqdd95521V04ctBAe5jE8v9iCLqpDuett0XXx9LLP5lRWP2/vvvR3KbpXZXX+iWKeHi96S+SygFWNPY8mYgO0q9LOabb77wwtdLX9s6pnPKo7xa9FXWJBMfD9Pb4zmXfu6dccYZXYMnXrC24IILtqVOMqdIy6oPgk6k9Eiz3HLVi9TmPnyTOmkxXL3kYb2jVVddNckvWTRCXm+twp133pnk/8tf/lKv+Fyf6ybmrYBUX6kMYiMTJlJjAgTC8CdCX9IWW2xhN954Y49L3U+l+Rd5j+McMCsaMx+JsfPPPz80rU9LmrtJo5khUDgC/qFnSy21VBJ0oVJA/0iwxx57zJZeeunKU/2+7688e++998wVAvOPmJbv7y7P7O67707Kueuuu8xnBJL9dm4ouIYrLuYKqynIRb2kvAousdFGG5n7Ja6XVYNc9sQTT9iLL75o7jXDfNGU+Uh5zWvc/Zr5CLSpXRVYwcOD18yb9xPdwrxVjgqW8sorryTF/P3vfzc310n22ahOAAW4OpeGR91PorltlD3wwAPmow5JfhTgBEWPjSIx80AY5qND5lOJdu6555rb7PWQlwMQKAoBKX7rrbdeUKaqyTR06NAQtU2RuYqUfDTW0pHopFwXOeKj204HJdlNIsztge2aa64xt4MPUeZ23XXXIjVtoWRxd3XmPrATma666ipz7yXJPhs1CDQeJCZHPQKaIkzbFSpSEak+gbwz0/ShTB4UEcpnAeoLy1kIFISAhwJOpsb9ddJju97CrTwi+OqrrzJTy2UIknL22Wcn7SobWT2rF1100WjDDTfMYxOWps4exjxpN/3f9HDXpZG9FUGxAW6F3v+v9an9pPOhAPcOaF6Z+VRiJFdZWmyjxQdx0ipqhUeu57szzssvBPJIQC7BakVgixViRRYrSnr66aeT57rkU7jzoicf5Q0yzzXXXNG3334bbIVlX6rnHql7CVQu1pQfb1JjAijAjRk1zCHXMfELAAW4Ia6QIY/MXnrppbDIUQsdK53hxytx3SSmdwDIBYEcEnj55ZczfnHj5178q1FS5SlCuu6665LnuuRTwI2iJ0W5k6yDBw+O3D42LAStF5K56DzyIp+bPGT6qoI3kRoTQAFuzKhhjjwqcw2F6nCGvDGTqyG5EZKnAF9M0oOOppz04oijKvXIwAEIFISAXHTFCm+1X40Sa7Q472nMmDEZORVVrejJbZzDcy5u11VWWSWStxtSdxN46KGHMn1VHmxIjQmwCM7/p7eaZGyuxQJKLILrHc08Mfvyyy9t+PDhNn78eHMXQqYVt1pl7vZx5g74TQtG3njjDdMCoMmTJ/cOALkgkGMCaQ8o1cQYNWqUuV/Zaqdyc6xSRrezNB8hzU39W6movEZ4EBQbNmyYua/hVori2n4g8Oqrr5qHxM7cyYPUmIe2zhxjJ0sABTjLo097eVLm+iRgBy7KEzN5eLjwwgsbUvCRr6AkN8xYJ4NW8sr1UCeTjw7Y9ttv38lbUHbBCXzxxRe23HLLmUc+rCqpPhDHjh1rI0aMqHo+Dwfd/7O5aVNS1VNOOcU8SmCyzwYEuoWABmE8sl+mOuPGjTM3hcgcYydLoGsUYLlfkZ/Cjz/+2LT90UcfBX+68nXoU1FhtE2+Jt15dXBDo4eTr07NSlOx56t4zZ16m3z9eQhUm3nmmW3xxRcPf3Lp49PZFVdU3/UFTjZx4kTz0KChThrl1Zex/OypzHrKnK597rnnwsigO6wOsrlz8lCO3MqkZZD/YLnc0Sii5I//9LLx0JQ244wzVq9g6qjHcQ/yPvPMM+YLssKIpeTUn0dtMo9Wlsrdc7MbmPWsVeMj6idySacXltshBq6StbdtHN/BJ03Mw4OaB0SID5lPA5oeJo2SLzywiy++uFG2muc1oqwRZrVBp5PbafYYMej0PSm/WAT0TPRIYaZnXLUkP7x6HuXVbVilCzT5xuXDsVpLc6wbCGi0VzpDnHCFFpOo/fs/AAAA//9deE+YAAAnAklEQVTtnQn8VUUVx49LikpqFriUkiQapQgumKKYZOQCaoJAmYgLkWu5RpSKaaAIIhHiggsCoYkgpiJqoiYumSlSuYEbQoSFpSgZ2e385tOMc+97777l/+7/zXvvdz6f97nLzJ07873LO3fmzDnrRSoSgIwfP17OPvvsnJpssskm8sQTT8jXv/51efvtt2PpI0aMkJ/97GexfXbjxRdflH79+smf//xnuyu23HzzzeWqq66SE044Ibbf3/jvf/8ro0aNkksuuUT+/e9/+0lmfcstt5Sf/vSnsmDBApkzZ47Z95nPfCZWz0ceeUS++tWv5hyLHZdddpn88Ic/dGnDhw+Xyy+/3G37K88++6x07drV3xVbX7lypYDH1KlTBfUuJEceeaT86le/ko022ignSyjMcipWZMcbb7wh3bt3l1WrVsVybrzxxjJ69Gj5wQ9+IOutt14sLd8GHoVhw4bJ9ddfL7fffrv0798/X7ZM902ePFn++Mc/ZnqOT33qU3LxxRfLBhtskOl5WHjjE5g4caKceeaZBRv6jW98Q+bNm1fS81ewkBol4P3+z3/+050d7TjkkEPcNldIICQCHTt2lNdee81V6brrrpOhQ4e6ba7kIQAFOAQZO3YsFPG8v+23397sVyU4J33JkiU51b/tttuitm3burx9+vSJZs2aFT355JPRt7/9bbcf5zv33HNzjseON998M+rZs2csb+/evSNViCNVHqKvfe1rkSpYsXSUpwpwrLyHHnooJ49tpyrAsbyqDBfMqwpwLK+/8eqrr5rz2nI/8YlPRGeddVakSlz0wAMPRN/97ndj5f7kJz/xDzfrITHLqVzKjrVr10a77babad+BBx4Yfe9734u1FUz04yqlhI+T9APMHKuKYfTb3/724wSukQAJFCRwxBFH5Dxz9l2EJd7t9SbaiRCtv/76sXZpR0e9NYP1bSICnTt3jt2vV1xxRRO1vrKmSmWHVf+o999/P3r99dcj/cqOKXP2Rdq3b9/oww8/jDbccMPYRb733ntjlcHx9hgsTz755Oijjz6K5fGVJJSnPZ+xdJznS1/6kitns802M8pkLJNu/O53v4s+/elPu3w4X1IBRln6VRZpT3C07777xvImFeD33nsvgjKrvcnRpptuGstbSAHGMVYBxPnbtGkTPf3007GqDh48OFYW2uZLaMz8uhVbnzt3rmnbZz/72QjKMGTIkCGx9rZr1y4CpzTBh429b/TLOS0r00iABDwCf/vb3yI8f/b5SS51tCn6/e9/7x0R/uq7776b0x4diQy/4qxh0xLo1q1b7J694IILmpZFqQ0PRgH2K4wL579EoYDqMLfJcvTRR7u09u3bR//617/coevWrYu++MUvunS8lLEvKTqsFaFMew6U6Qt6eG0almrm4CfH1v/0pz/FlOCkAuxnRo+sX25SAfbznnLKKbG8hRTgY445JpZPzSD8Ysz66aefHsuDnlIroTOz9Sy0/Otf/xqpyUL00ksvuSxqChFtscUWsTZfc801Lj25MmXKFJd35MiRyWRukwAJFCHw8MMP5/SY+u+6Tp06Ff0ILXKKVk1Wczv3TrDtKPQObtWK8WQkUIBAsoPt/PPPL5CTuy2BIBXgCRMmxF4+AwYMsPWN0FN88803R+PGjYug/Pjy85//PHbcj3/8Yz85tj5o0CCXV229XNrLL78cM23YdtttzTldhjwr++yzjysrTQG+7777XD68VNMU4ORHQL6X7/LlyyO1bXVl4oMAPRdJeeGFF6Kdd97Z5Nt6662NWYTNEzozW89yl9acwf557bHHHnmLuPPOOyOYPCAfPjooJEAClRFIvrPss2eXxx9/fGUF1+Cov/zlL+69auuv80lqUBOekgRKI9CrV6/YPYv/QEo6gbpQgHUiU3or/p8KG137ssISyk0hQZl+XgzjQXRiXGy/TqAqVITbX6oC/OCDD8bKbqkCrBOmYuXppD9Xp+QKbNqgCCd7xENnlmxHqduvvPJK7OMA13rRokWxwx999FFjMoI09KQnTWVimblBAiSQSuA///lPtP/++8feSf47FuszZ85MLSOUxGXLluW0A+ZpFBIIlcBhhx0Wu2d1cmqoVQ2mXnWhAKPntBSxk+XsSxfb6h0g72/HHXeM3SxPPfWUOQVshu3xWE6aNKnoqX0FGDbBhQSTKPyyy1GA//CHP+QUqzOSY+Wdc845OXmK7QidWbH6p6XrDPQYn4suushlhzKMnn9cD0xohK12rQUKxJ577hlts802mf5gA55vpKDW7ef5658AJg9vtdVWsefOf+fBNOmtt94KvqGYt+HXG+srVqwIvt6sYPMSSE5GPfXUU5sXRoktrwsFOJ/yl2wfJjn55gDJl1ex7eeee84U6SuzOOaXv/xl8lQ52/4xaQowJsL59Ujr2U4OJ+ZjkFRe1SVRTt3SdtQDs7T6F0uDZwufd5cuXcwhS5cujWDagrS99torGNtEdbUXfe5zn4vV2a9/tdYxUbJaSki16sRy8nvAqZRLsWcjy3SMvBWqNybEqZu/LE9flbLzKcDVemaSFSzEivur+0yExjN5H7R0O+kliyZ9xYk2jAIMDxLJGxxKLSa8lfKzqND75pejPnNtUsFlqQowXGv5ZasP44JlwlWZnzefAgx7Xj/PtGnTCpaXL6EemOWrd6n70MuZdFW3cOHC6Atf+ILhtssuu0SY7BKS4F6F/WGWv3/84x8hNZl1aUACZ5xxRuzdZN9T5b6jaoUmnwkETMgoJBAqAY03EHvm8AxS0gnUhQL8/PPPp7dCUzF8nFR2ku7AihaiGSrpVfUVYAz/FZLHH388doNqgI1CWSN4c7B/GljmU4CTdcXEwHKkHpiV0558eZNmIpYpPIRYzyL5juM+EiCBygnAO4+deGufubQP/srPlM2R+SbBWTO5bM7IUkmgZQQw0ds+a1giFgAlnUBdKMClzr71/eHiBrjnnnvSW58nNakwIThFMfEVYI2yVTA7AnH4NyjcrRUSuDDx8z7zzDM5WQcOHBjLU8kNHzqznEaXuQPuz3yOWMdHCtzXUUiABLIhABMC30c6gvHUk+Rzg4ZJzBQSCJXATjvtFPuvO++880KtajD1qgsFuNShp2TEs1LcgCCQBiZH4YsfgiAIvsKEyHHFxFeAfZdqyePQI+2X7U/KSuZNTuDK50geUd788uADuZggMt2VV17p2hs6s2LtKZaedBUHXjCDoJAACWRD4J133on8qFSYnY7RpnoSmAn571asz549u56awLo2GQEEfPLv2TQ3sK2NBs9/Vjb0LWlLkAowQtf6F3Lx4sUltRER3fzwlTARSIsA9ve//93NWLahbxFEwfqFRR3g1zdtxjxcZ/nBNzbffPOCdYUvX79d+UIS4+DVq1dHCGfs50XUuaTAtVnSm8VvfvObZDa3vWbNGtcrAxdgkNCZucq3YGW77baLsURPPIUESKD6BDCR0/dHimHZtHdw9WtQnRLxXk9Oqob/eQoJhEogaQJ6+eWXB1HVGTNmRB06dDD/wTvssENUiklra1V8PZxIFa2gRGNYi5oAuDqp/atomD+3nbZy4oknyk033eSyaE+q3H333aIhj90+u6IhkeXaa68V9Q4gOmFO9IVnkjRymqj7M5tN1CODaDQ4t21XgA7n0xej3SWquMrKlStFh9ndPruiw4LSsWNHuyk6RCFjxoxx23ZFA4GI+h+2m2Z5xx13iEasi+3DhtrViSrSbr9O7BJVgkVtXN0+u6IfFqK94qIeEAR10QfGJIXMzNa90iXYgJEv+mUsl156qb8rmHUNSy3aa51pffSjTo466qhMz8HCm5OABruQW265xTRe//REPzZFJxbXJQztzBBV3l3d1cuO4L+BQgKhEdAPT/d/buum5n8ybNgwu1mTpfb8ino2Eg1a5s5/wAEHiHbAue2arrSWpl3sPBg2Qy+sKnrGb69Ccb12qqBFv/71ryO4EYMLqzRZu3ZtlAwJeOyxx8ZC5aLnFD540VuMr3xVOmJFwiesX8amm24azZo1K5YHvRpJn8G2zn379jXDZQjGkBS44rL5VBnOGRqE32G/F9vmxYQS/WOJkr2X6HEBH5sPS/QKJ3vN0XsBF0RIRzm+hM7Mr2s568mgJpYR7J5DFPQ6tW3bNnYtbZ2rvSz2HIXIh3UKm8CFF17o7l3MhSh17kaorUq6JKynSXyhMmW9siGQz2Y9hKAz0EOS/12bbLJJTkCubKgULzWYHmBVVkQncSmrdMHXhLqoSc2kpg2CngidBBfLh55P9MyqKYCoBwCTpqGARd2FxPJhQ52eiwZIEDURcGkHHnigqPIk+mKXxx57TPDVpcqxfPDBBy6Pv6I2OaImFf4umTNnjvTv319UCTf71ZWZ9OjRQ3SYXnRowHwZoRcZ59YAILFj7QZ6q3fffXe7aZbqU1jQs6mX3O3X4QaTTxVx0w70gquNs5xwwgkuj10JmZmtYzlLHXaR4447zvDA9UVPP66XFY3qJPqhYDeDWWL0Q8NxZ1ofVU5MrzjuMwoJVIMARt0wkgTByNL8+fMF78t6Fu0EMT3Ytg3Dhw8XvGcplRHQaKvmfxf/wRgd0I6eygriUTkEtENDdBJcbD96WdHbWkuBPoJRaeggvuikflHzKH9XbdaL68itk2Ps2LGmhxI2twhSgK9v2PBiCRtOGHijd6x9+/YlV+iGG26Ikq5BlLL5IoHd7ty5c1PLQk/wqFGjIvQA2+PsEj3HAwYMiBD5yJ8EZ9OxRNSjfALfwvrnEKlCmlOuKrYR7HiTk/H8cgu540Hvud/DbI9BXTEppRSvGKEyy8ex0D5MbLQ21EOGDDHZkpMK0TtMIQESaDmB+++/3z1veNeE0PPU8lZF0eDBg2PvZ0bWqowq5tWcdtppbgQS/0uf/OQno549e0bwdqQmihFGZSmVE4CbVPt/b5dqill5gVU88uGHH44OPvhg945A/UJ5RwTTA6xQMhN8HaF3Fba56prHfJHsuuuuopPdSjoneg7RE6zd+aJKsWgoWfnyl78s+hCb42+//XbTC4yy8XWLH3rZ1CNEjl2Of0I1+xC9OQRL9BbDPhhl65+IqJsu08uM/bZMW+5mm23mF5Ozjh7ql156ybQXvZyqoJv65GRM2REqs5Qqm6QnnnhC9GEz10NDQ4rO3DbXGfZQGhnHHa4hh0U9a7htrlSfAGznp06d6kY79J3q7OzR+4NnCDbPaaIfZKLeUoxtvQ6diZrxmB/Kgn0Zns1169bJ0KFDjU19WlmNkIbnEm1P9vbUqm0aUlxUkRGdKGyqoBNvYvM3alWvapwX8wRwD1vBiJK1b7b7uEwngGcTPX0a/S8149VXXx17P6dmZmIOATUPFQ2E4fbDfl2DKrntUFYwJ0s/mEWjRcqRRx5Z+2pVUdFnUSRQUwIIsaofCeZLGL0LsG22Ajd3SdvqQj3p9hguW0ZAJ67m9EroGy+2D3b9aYJwnslj8m3rJNW0Yuo+DffyyJEjjYcajJKFIIiWhoAy9no0WujVZCj1Pn36hIC9ruowZcoUc3/ACwDm+GBezKBBg9w9Y+8dnfRdV+0KrbIYzbYssdQOntCqaOY7oecf9VuyZEkQ9UNvAoUE6p4AwjrbP+OuXbtG+cL9YhjGf0lgiJOSHQFM2IS5DyZd4g/OZ2/X1R4+tQJ4Ud54442RemxxHzf2WLjb+tGPfmQmziKEdKMJTLAQsAVthNJr2x2CAoznyw+ig4m/9ebrt9j9khxWRgh1SnkErJ/55ARCvBMwURL3NFyH6shdeQUzd4xA0mTyW9/6Viw9hA3EMsD11lHuEKpj6kAFOJhLwYpUSkAnV0RqaG8eLkTDKWT7pMPxTonAg9imTZsc59wI4Up7tEqvROHjJk+eHGNvlTnYwZfqIF2HSV0ZOnm18MnqOAWeQPbff3/jycX3R255YVlrBVjNTiKdpOuuxd577x29//77dUw9f9Xh6cfnDvtm+FKnlE4A82TAUIe7cw5S11gR5ms04sdrTmMz3gEba/9eTQuylXFVChaPj2TUUSeTFszT2glUgFubOM9XVQL447WTEDFZUv0bFywfw8h+eFY8jH4PJAKTYJ/O9C5YBhMqI2CHPeHOz39RY73UiEVqj2mOLSXiYWW1rP1RUICTfJLBbmqtAPuTw1A3KDKhCEYMEL2z1HuqWL2TQXRoNlWMWDwdyg7uZ3w85ItmGs/NrUoJ7LfffrH3xvTp0ystKpPjMLke9wE6nXR+UibnqKRQKsCVUOMxQRCAsgC7PDxYsP2FDXAxwVBcUsFA5EHYUFnPEQ8++GCxYpheJgF4dgF3dZdl7NP8awDPLuh5Lya21xHmEI0sYDRu3LgI3hUQrRJi701wg0ecWgkUS3vt8MwhkmRIogFeTP3Q21QNgbce214sr7/++moU2zRlwMOD5QfTNIweUKpLIJ//+HyRY6t71tJLg3mitf2Ft6+QhApwSFeDdSmLwMKFC83LFQ9XqQ88FC0ERrEv5eRSfSSXVQdmLk4AX/yWM3roEZTFbttlMjhLslT8car3E3McJic1m/gKcK16gNWXtrtu6Mmx4eNDuRYPPfSQqx9cQlZD1LuIKxP36plnnlmNYpumDNiK416xz3m1euabBmAJDfXfr5YzAouFIjDHQL1g2gVlPSShAhzS1WBdyiIAkwZE9KtkaG3atGkRlF11xWX8TMOOUV2llXV+Zi6NgFWcMBMcgo8Q9GLalzWW4J8mmFBn84c05J5W52qm1VoBRiROa5OM4WxMbgxJ1M1lpIF/zD2CnmlMIKyGaGAad9/h/jvooIOqUWxTlaFBqRxD3Dul+KNvKkAtbOytt97q+OIereUIUb6mwMYbz1FISrmtJxVgS4JLEiCBTAhgRjJezPgjtDJixIjYSxvpafaV6l/W5A9pBrFtS2ssa6kAY3TFDwYE84yQ5K677nJDrLiPqumODZO0UKb91ar3PSTe5dYFHh4sPyzh/UEjsZZbDPMXIGDtrC1j9QdcICd3JwlQAU4S4TYJkEBVCVj7X7gzs4IIirZH0b64v/Od79jknOVhhx1m/kQx27kZpVYKMCaVwUbbXiMNKx4U/jFjxuT4966mSy1MstUALK794LBixYqgGNRDZZITOQ855JB6qHZd1DEZ5RSdBZTSCFABLo0Tc5EACVRAwLdPe/XVV2Ml9OvXL6ZYaJS3vB4F4F8WvkKhfGjUxVgZzbJRCwUY7gU7derkrhEmmIVgwwc3hQsWLDCutaxibpfwMlJtsRNt7Tnmz59f7VM0ZHm4V/DR26VLF3cPWYZYzpgxoyHb3dqN2nrrrWN8NRJsa1ehbs9HBbhuLx0rTgLhE7D2v7DPTApixPt/iFi/5JJLktnMBEekwX7w7bffzklvhh2trQDDvt53rfSVr3wl+uCDD2qKGv69YfMPX9/J+8Zua/jiqtcRcwNs+ViGNpO96g2uQoFQwqx7SjCDCc2WW24Z4whbVfoAbhlsjEb49yaDtZTHkwpwebyYmwRIoAwC1v63UNQ9P5oYXuSI5rdu3brYGTDMjTTkbVZpTQUYPazHHHOM+2OFwrlq1apWRQ/TA0TBg8ePCy+8MDr88MMjBE3x/+yT6/hAysK2FIFa/HPlC+rQqnACP9nSpUsjv1cSfpkRin7mzJkxjmD6wAMPBN6asKuXtFFnSOnyrtd6yK43IoUESIAEqk5AAwmI/vmJOkKXE088Mad89asqGi41tl+VHtEIUm6f2v/KvHnzRO1PRSPAuf3NtKLmIaIfBqbJOhFLtCc8s+aff/75orO2XfnqoUM00qKogml+SMB6IUn+pdhtLO1PlWyzrsPkgp/2LouaXJh2YYntckX9RIv68C73sJLy77nnnqKhkU1etQk2ddVezZKObaZMuC979Oghr7zyimk2ntkJEyaY+0VNmURtgUU/KBySK6+8Us466yy3nVzRaHyiPf+ipjjJJG4rAXUrJ6NGjXIscP/jOaCUSEBfSBQSIAESqDoB3/4XvUL5BD19mBWuryv3g79IK+gNbtu2rUmbPXu23d10S78HGNEMsxJrsuJfj3pZh2vDrMT6MrUs5syZk9Wp6rZcPMvdu3d3z7F+NESw3/cFkygtQyzT/K4/9thjzvY/NLd7fptqtY6Rms9//vOO5xZbbMFAI2VeDJpAlAmM2UmABEojYJWp7bffPvWAc845x73E7Z/jc889Z46xLpQwvG2joqUW1qCJvgIMP7dZiO/r116HelkiGA4UsKzk6aefjt2jhUx6sjp/PZR71VVXxRjlC04El3X+PdWrV6+CTdMRI5e3WSe/FoSjCY888ojjA6Y6apaWnWl5CNAEQu8cCgmQQPUJqP2vqJN2Ufdmor1zBU+g3iHMECeGxa2cdNJJMmXKFBk9erSoz2DZfffdRZVim9zi5cEHHyxqY9ricvIVoBP+RHuvRJXWfMkV7fNNILTHXFavXl1ROYUOevfdd0Xd1VVkelCozNbcD/MamNlkJfrfKWqfbsx5cA79CBG1ixZ15ZfVKeuuXLXRFw1Hb+oNkxENUJTTBp0cJxp8yO0fOHCgeUe4Hd4KzJ7UplV69+4tMJWo5vPknaZuVzVKoXlH2gbgHYt3LaV0AlSAS2fFnCRAAmUQgEIF+z0oslBo0+SII44Q7YF0WWBnuXz5csEfpE6UMX+E48ePd+ktXfH/rFtaVvJ4ddkmOjtbNHRzMqnibV8B1tn0olGVKi4r34FQ8GB7rVH6BB8i1kbXfpQgHT+IXSbX821jX1Ks/bBdIj3fer59fl4/XZ3/i07WS56qqtuwVYfNuhUNvSwaGc5uNvVSg9iIegpxDGD3q2Gj3bZd0dDIgg84K+eee27M3tzu5zKdAJ7TbbbZRtSLhsmIDzGNkClqHpV+IFNjBKgAx3BwgwRIoBoEXnjhBdGobaYoTIgpppxAyUVPjy+Y3KFurUyv5J133ik6+95PbtH6mjVrBL8sBIqvDslXtWhfAVZbP4EiQWldAosWLZJu3bq5D4BmnpSZJH/66afLpEmT3G61/xf1yey27cqLL74onTt3tptmglw+Rdll4EpeAmoSEpsoXGyULW8h3ClUgHkTkAAJVJ3A1VdfLRq1zQwb+7O+C50IvYpQmPEHmZT111/fzLr3e46SeRp9mwpwGFf4m9/8puBjDIL7cdmyZVXt6Q+jleXXQqORyf33328ORM8kPL/kE53MZkZ1bFo+rwV4Fzz55JMCUyKYnVByCfgjZng/wrQEnlooZRLQm41CAiRAAlUl0L9/fzNBAz5AS5WJEyfGJnXoq8xs77HHHqUW0bD5/ElwiIpHqQ0BdYUWu0d1qL82FQnsrF27dnVc0sIcq9sulw8h0pNeIjBxDkFz8OyrYhcdffTRgbW09tVBMCD/fQBf65TKCNALRGXceBQJkEABAmo3GsFVF/7E4AmiVNGJWM7tkVV+sTz77LNLLaJh8/l/ePB4QKkdgb59+zolTv3a5ihxtatZ7c7sRw1MU1oPPfRQx07tf2MVRhATvDf22muv6JZbbnH54AmG8jEBv6MAHwkMffwxm3LXqACXS4z5SYAEUgk888wz7s9LbYFT8yYTk35CoQDDPVezi68Awy8ypXYEki7R6KM2io4//nj3zPfp0yfvxXn99dcjnaxl8ukExkg9RsTyaUAME+78+eefN1EA7UfwddddF8vX7Bu+r2W6PmvZ3UAFuGX8eDQJkIBHYO3atRFCxeLPC392GtHLSy2+qjbA5k/Q/vmhDJ3wVfzABs/hK8A6ya7BWxt+8zQ6oVP4oJA0u6hdtOMBP9X5ntmTTz7Z5dGJbzFkH374oRn9gekUxDeVKPcjOlZwg22gM8C+G/ERsXjx4gZrYes2h5Pg9G6ikAAJVE4AHgkWLlxo/H7OnTtXnn32WVcYwnLqn5qZEa4R3gSTuYqJ2hDK/PnzTTYdDhXtcSt2SEOlw98xPFQgdCyWCxYsELiA078G005Mevn+978vBxxwgCAsMlwgdezY0bhFaigQATcm6fbr0UcfNdcj4CpnWjW4y0MIZExegxx77LHGL/PGG29stmfMmOF81GKyFt4RcHVoRRVg4xFCzSfMvawRzswEw3322ceVafM26xKuz+BDGX7TIf369ZNZs2Y1K47qtLt19W2ejQRIoNEIqPLleiX0rVRwXZWEkpp+9913uzLOO++8ko5ppExdunRx7U/j6adpYI9GQlAXbVHPB+46qQ/c6KOPPqqLemdVyffeey/SD17HRF0fmlDH6rEgtq+Yzap6k3D51ZtMVtWtu3IvvvhixwW9v+qWr+7aEFqF2QNcne8IlkICTUlA//RN7y6csKNnEr2RWOqLzvzWrVsnahYharcqOslFEMShmKA3CS7R4EoJwTF69uxZ7JCGSkfUO/hRhT9hNX1wTG3gB7AFI7AHXw0BLDoML+iFpLQeAUQSBHc18zEnheu/U045pfUqEOCZ0JML/8izZ88WDV3uaoh3Avx433jjjUXfAeo5RmbOnCnoPcY7oJndH1qAaj9t3ol4l0Jwn+F+o7SMABXglvHj0SRAAiRAAmUSQKAUDHP7w+BlFhFE9ptuukkQhhmCACXwYw0/uM0u+EjDNdYJsUaBhflTKR+/iGwGfhjuh+kUAj7AvGrp0qUyePDgpsV61FFHCczLIOpyzpiFWPOSpoVShYZTAa4CRBZBAiRAAiRQGgHYLqKHEL386EWtd4FiNm3aNNOMQYMGmd7Lem9TreqvHh9k2LBh5vRqCiU62dDYvaq7ObnnnntqVa2anvfee++Vww8/3NQBESbxUdGpU6ea1qlRTk4FuFGuJNtBAiRAAoETePPNN6VDhw6mllBq0LNnTTsCr3rB6sEEZe+99zY9nsh03333CSKjUconoO7URH0AS7t27WTFihWCEOlQ/jRAhmBCbLMJTEp23XVXWbJkiWk6TEPwkUWpDgEqwNXhyFJIgARIgASKEMDQOMIJw7bzsssuk4MOOqjIEfWRrD5tjT0wbDSh2GvEuJKG/Oujda1Xy7Fjx4pOfDXmMRpERzTKmcArDLxINKNceumlcsEFF5imo2f8mmuuaUYMmbWZCnBmaFkwCZAACZBAsxDABK+TTjrJNFe9csi8efNkww03bJbmV6Wdq1atMu7UbI+nRpgT9TFseoSrcoI6KgS93pgAjF5gTIyFi7k2bdrUUQvCryoV4PCvEWtIAiRAAiRQBwSOO+44mT59uqnpaaedJr/4xS/qoNbhVRG+v+EzfLfddjNeZcKrYbY1WrlypTH5WL58udDuNzvWVICzY8uSSYAESIAE/k8AvXsvv/yy7Lvvvsa1WyOCgT1wr169jM0q2jdp0iQ59dRTG7GpbFNGBNDji3vo8ccfNyMICHYBF3KU6hOgAlx9piyRBEiABEjg/wTgsxh+S2EigOh27du3l1tvvbVh7H+TFxqREaHAINoZTCBgCgGTCAoJFCMA394DBw6UO+64w3wkwvYZ25RsCFABzoYrSyUBEiABElACmNQ0btw4GTVqlOnVQnATeEmAt4RGFQSBOPTQQ00Yb/i/xaQ4TI6jkEAaAXwoYqIbAuBMnTrVTAJMy8+0lhGgAtwyfjyaBEiABEigAAGYPeywww7St29fE9RgwIABZrnddtsJ7BsbWdasWSOwA162bJmMHz/eTGRq5PaybS0ngKAqiPo2fPhw6d27d8sLZAmpBKgAp+JhIgmQAAmQQKUE4OpsxIgRsmjRIuP/F1G+4CoMw7owg6CQAAmQQK0IUAGuFXmelwRIgAQanMCCBQvkjTfekCFDhsiUKVNk6NChpsWwi4V/VwoJkAAJ1IoAFeBaked5SYAESKCJCPTo0cPYAG+77bbGLGCDDTZootazqSRAAqERoAIc2hVhfUiABEigwQjA/dkuu+xiWoVJcWPGjGmwFrI5JEAC9UaACnC9XTHWlwRIgATqjADsgEePHm1qjbDBUIYnTpxoJsfttNNOddYaVpcESKARCFABboSryDaQAAmQQKAE4Ae4Q4cO8tZbb5noVojyddttt8mgQYPkqaeeku7duwdac1aLBEigkQlQAW7kq8u2kQAJkECNCbz22mvSsWNHU4sJEybIGWecIfvtt5+0a9dO7rrrrhrXjqcnARJoVgJUgJv1yrPdJEACJNAKBBDaFX5/V69eLWPHjpXFixfL9OnTzbJz586tUAOeggRIgARyCVABzmXCPSRAAiRAAlUkAH/AI0eOFCjDG220kUyePFng9J9CAiRAArUiQAW4VuR5XhIgARJoIgLvvPOOCQncrVs32WqrrZqo5WwqCZBAiASoAId4VVgnEiABEiABEiABEiCBzAhQAc4MLQsmARIgARIgARIgARIIkQAV4BCvCutEAiRAAiRAAiRAAiSQGQEqwJmhZcEkQAIkQAIkQAIkQAIhEqACHOJVYZ1IgARIgARIgARIgAQyI0AFODO0LJgESIAESIAESIAESCBEAlSAQ7wqrBMJkAAJkAAJkAAJkEBmBKgAZ4aWBZMACZAACZAACZAACYRIgApwiFeFdSIBEiABEiABEiABEsiMABXgzNCyYBIgARIgARIgARIggRAJUAEO8aqwTiRAAiRAAiRAAiRAApkRoAKcGVoWTAIkQAIkQAIkQAIkECIBKsAhXhXWiQRIgARIgARIgARIIDMCVIAzQ8uCSYAESIAESIAESIAEQiRABTjEq8I6kQAJkAAJkAAJkAAJZEaACnBmaFkwCZAACZAACZAACZBAiASoAId4VVgnEiABEiABEiABEiCBzAhQAc4MLQsmARIgARIgARIgARIIkQAV4BCvCutEAiRAAiRAAiRAAiSQGQEqwJmhZcEkQAIkQAIkQAIkQAIhEqACHOJVYZ1IgARIgARIgARIgAQyI0AFODO0LJgESIAESIAESIAESCBEAlSAQ7wqrBMJkAAJkAAJkAAJkEBmBKgAZ4aWBZMACZAACZAACZAACYRIgApwiFeFdSIBEiABEiABEiABEsiMABXgzNCyYBIgARIgARIgARIggRAJUAEO8aqwTiRAAiRAAiRAAiRAApkRoAKcGVoWTAIkQAIkQAIkQAIkECIBKsAhXhXWiQRIgARIgARIgARIIDMCVIAzQ8uCSYAESIAESIAESIAEQiRABTjEq8I6kQAJkAAJkAAJkAAJZEaACnBmaFkwCZAACZAACZAACZBAiASoAId4VVgnEiABEiABEiABEiCBzAhQAc4MLQsmARIgARIgARIgARIIkQAV4BCvCutEAiRAAiRAAiRAAiSQGQEqwJmhZcEkQAIkQAIkQAIkQAIhEqACHOJVYZ1IgARIgARIgARIgAQyI/A/fMT/VxJnoLIAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "daa090a1-8e6f-48b3-b3a6-7836a562fc4d", + "metadata": {}, + "source": [ + "### Extract features and filter\n", + "\n", + "Here we use [`light-curve`](https://github.com/light-curve/light-curve-python) package to fit each r-band light-curve with Bazin function (Bazin+2009).\n", + "\n", + "![image.png](attachment:8cf4f6f1-b501-4ff8-970c-a1645c8009ce.png)\n", + "\n", + "We also extract number of observations and reduced χ² of the fit with constant function to filter objects with low variability.\n", + "\n", + "![image.png](attachment:f353d676-708a-4aa9-94fe-7c25c516a871.png)" + ] + }, + { + "cell_type": "code", + "id": "fcc42d39", + "metadata": { + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-10-31T16:19:56.094771Z", + "start_time": "2024-10-31T16:19:56.044661Z" + } + }, + "source": [ + "feature_extractor = licu.Extractor(\n", + " licu.BazinFit(algorithm=\"ceres\", ceres_niter=20, ceres_loss_reg=3),\n", + " licu.ObservationCount(),\n", + " licu.ReducedChi2(),\n", + ")\n", + "\n", + "\n", + "def extract_features(band, t, m, sigma, oid):\n", + " # Select r-band only and remove observations with NaN errors\n", + " valid_r = (band == 2) & np.isfinite(sigma)\n", + " t, m, sigma = t[valid_r], m[valid_r], sigma[valid_r]\n", + "\n", + " # Sort time and remove duplicated, required by light-curve package\n", + " _, idx = np.unique(t, return_index=True)\n", + " t, m, sigma = t[idx], m[idx], sigma[idx]\n", + "\n", + " # Convert magnitude to fluxes\n", + " flux = 10 ** (-0.4 * (m - 8.9))\n", + " flux_err = 0.4 * np.log(10) * sigma * flux\n", + "\n", + " # Output NaN feature value if we cannot compute it,\n", + " # e.g. we don't have enough r-band observations\n", + " values = feature_extractor(t, flux, flux_err, fill_value=np.nan)\n", + " return dict(zip(feature_extractor.names, values))\n", + "\n", + "\n", + "# Extract features, Catalog.reduce is still WIP, so we use underlying dataframe directly\n", + "# https://github.com/astronomy-commons/lsdb/pull/414\n", + "catalog_with_features = catalog.reduce(\n", + " extract_features, # function\n", + " \"lc.lc_fid\",\n", + " \"lc.lc_mjd\",\n", + " \"lc.lc_magpsf\",\n", + " \"lc.lc_sigmapsf\",\n", + " \"oid\", # columns to use\n", + " meta=dict.fromkeys(feature_extractor.names, float), # Dask meta\n", + " append_columns=True, # Add the result feature columns to the catalog\n", + ")\n", + "\n", + "# Filter features to get nice light-curves\n", + "sn_candidates = catalog_with_features.query(\n", + " \"bazin_fit_reduced_chi2 > 0.8 and bazin_fit_reduced_chi2 < 3.0\"\n", + " \" and bazin_fit_rise_time > 3 and bazin_fit_rise_time < 10\"\n", + " \" and bazin_fit_fall_time < 30 and bazin_fit_fall_time > 10\"\n", + " \" and observation_count >= 10\"\n", + " \" and chi2 > 5.0\"\n", + ")\n", + "\n", + "sn_candidates" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "Dask NestedFrame Structure:\n", + " oid mean_ra mean_dec Norder Dir Npix lc nondet ref bazin_fit_amplitude bazin_fit_baseline bazin_fit_reference_time bazin_fit_rise_time bazin_fit_fall_time bazin_fit_reduced_chi2 observation_count chi2\n", + "npartitions=113 \n", + "0 string[pyarrow] double[pyarrow] double[pyarrow] int8[pyarrow] int64[pyarrow] int64[pyarrow] nested], lc_dec: [list], lc_candid: [list], lc_mjd: [list], lc_fid: [list], lc_pid: [list], lc_diffmaglim: [list], lc_isdiffpos: [list], lc_nid: [list], lc_magpsf: [list], lc_sigmapsf: [list], lc_magap: [list], lc_sigmagap: [list], lc_distnr: [list], lc_rb: [list], lc_rbversion: [list], lc_drb: [list], lc_drbversion: [list], lc_magapbig: [list], lc_sigmagapbig: [list], lc_rfid: [list], lc_magpsf_corr: [list], lc_sigmapsf_corr: [list], lc_sigmapsf_corr_ext: [list], lc_corrected: [list], lc_dubious: [list], lc_parent_candid: [list], lc_has_stamp: [list], lc_step_id_corr: [list]> nested], nondet_fid: [list], nondet_diffmaglim: [list]> nested], ref_candid: [list], ref_fid: [list], ref_rcid: [list], ref_field: [list], ref_magnr: [list], ref_sigmagnr: [list], ref_chinr: [list], ref_sharpnr: [list], ref_ranr: [list], ref_decnr: [list], ref_mjdstartref: [list], ref_mjdendref: [list], ref_nframesref: [list]> float64 float64 float64 float64 float64 float64 float64 float64\n", + "72057594037927936 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "3170534137668829184 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "3458764513820540928 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "Dask Name: lambda, 9 expressions\n", + "Expr=MapPartitions(lambda)" + ], + "text/html": [ + "
lsdb Catalog alerce_nested:
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oidmean_ramean_decNorderDirNpixlcnondetrefbazin_fit_amplitudebazin_fit_baselinebazin_fit_reference_timebazin_fit_rise_timebazin_fit_fall_timebazin_fit_reduced_chi2observation_countchi2
npartitions=113
0string[pyarrow]double[pyarrow]double[pyarrow]int8[pyarrow]int64[pyarrow]int64[pyarrow]nested<lc_ra: [list<element: double>], lc_dec:...nested<nondet_mjd: [list<element: double>], no...nested<ref_rfid: [list<element: int64>], ref_c...float64float64float64float64float64float64float64float64
72057594037927936...................................................
......................................................
3170534137668829184...................................................
3458764513820540928...................................................
\n", + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 10 + }, + { + "cell_type": "markdown", + "id": "feb7d5c7-e515-400a-827f-87657be8e787", + "metadata": {}, + "source": [ + "### Run analysis\n", + "\n", + "Let's run our analysis over the whole catalog and output result to `nested-pandas` data frame object.\n", + "We run analysis in parallel here, using Dask.\n", + "Please consult the Dask documentation for cluster configuration.\n", + "\n", + "It would download ~21GB of data - check your Internet connection speed and give it some time.\n", + "(You can also select a single partition as we did before, just prepand `.compute()` with `.partitions[0].compute()`.)" + ] + }, + { + "cell_type": "code", + "id": "0050e8f4", + "metadata": { + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-10-31T16:53:23.487328Z", + "start_time": "2024-10-31T16:20:13.542153Z" + } + }, + "source": [ + "%%time\n", + "\n", + "with Client(n_workers=3, memory_limit=\"10GB\", threads_per_worker=2) as client:\n", + " display(client)\n", + " ndf = sn_candidates.compute()\n", + "\n", + "ndf" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "
\n", + "
\n", + "
\n", + "

Client

\n", + "

Client-01fb0990-97a4-11ef-a748-1ecfd5b80ac0

\n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
Connection method: Cluster objectCluster type: distributed.LocalCluster
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + "
\n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "

Cluster Info

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

LocalCluster

\n", + "

c3931be0

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Workers: 3\n", + "
\n", + " Total threads: 6\n", + " \n", + " Total memory: 27.94 GiB\n", + "
Status: runningUsing processes: True
\n", + "\n", + "
\n", + " \n", + "

Scheduler Info

\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

Scheduler

\n", + "

Scheduler-4b54dbf0-09c7-47fd-b883-2f985619784b

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " Comm: tcp://127.0.0.1:60581\n", + " \n", + " Workers: 3\n", + "
\n", + " Dashboard: http://127.0.0.1:8787/status\n", + " \n", + " Total threads: 6\n", + "
\n", + " Started: Just now\n", + " \n", + " Total memory: 27.94 GiB\n", + "
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "

Workers

\n", + "
\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 0

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:60590\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:60595/status\n", + " \n", + " Memory: 9.31 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:60584\n", + "
\n", + " Local directory: /var/folders/w1/lh3h4s7d5g10rdlfj4h0mshw0000gn/T/dask-scratch-space/worker-jhx4_wg7\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 1

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:60591\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:60594/status\n", + " \n", + " Memory: 9.31 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:60586\n", + "
\n", + " Local directory: /var/folders/w1/lh3h4s7d5g10rdlfj4h0mshw0000gn/T/dask-scratch-space/worker-b6zoabta\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "

Worker: 2

\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "\n", + "
\n", + " Comm: tcp://127.0.0.1:60592\n", + " \n", + " Total threads: 2\n", + "
\n", + " Dashboard: http://127.0.0.1:60593/status\n", + " \n", + " Memory: 9.31 GiB\n", + "
\n", + " Nanny: tcp://127.0.0.1:60588\n", + "
\n", + " Local directory: /var/folders/w1/lh3h4s7d5g10rdlfj4h0mshw0000gn/T/dask-scratch-space/worker-c1iqb1gy\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
\n", + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + " \n", + "\n", + "
\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1min 52s, sys: 26.9 s, total: 2min 19s\n", + "Wall time: 33min 9s\n" + ] + }, + { + "data": { + "text/plain": [ + " oid mean_ra mean_dec Norder Dir Npix \\\n", + "_healpix_29 \n", + "2405857242818793 ZTF20abwzqzo 41.513817 3.329906 1 0 0 \n", + "3203066719741431 ZTF22abmxzxm 42.60675 5.793783 1 0 0 \n", + "10935697778842557 ZTF21abvdazf 41.059097 10.256258 1 0 0 \n", + "15846987093732276 ZTF20acqlfwb 42.891443 13.021577 1 0 0 \n", + "29759010088767360 ZTF22abfyzir 48.358801 19.789209 1 0 0 \n", + "... ... ... ... ... ... ... \n", + "3448044297436092099 ZTF22abbausm 318.621236 -9.047612 0 0 11 \n", + "3449086288422995259 ZTF22aaynpda 321.732295 -7.016983 0 0 11 \n", + "3449618307040430992 ZTF22abmcezf 319.982093 -6.437505 0 0 11 \n", + "3454646200271876674 ZTF22aamgkdw 317.380631 -7.029933 0 0 11 \n", + "3455632615629906897 ZTF22aaudftc 318.113332 -5.166991 0 0 11 \n", + "\n", + " lc \\\n", + "_healpix_29 \n", + "2405857242818793 lc_ra lc_dec lc_candid ... \n", + "3203066719741431 lc_ra lc_dec lc_candid ... \n", + "10935697778842557 lc_ra lc_dec lc_candid ... \n", + "15846987093732276 lc_ra lc_dec lc_candid ... \n", + "29759010088767360 lc_ra lc_dec lc_candid ... \n", + "... ... \n", + "3448044297436092099 lc_ra lc_dec lc_candid ... \n", + "3449086288422995259 lc_ra lc_dec lc_candid ... \n", + "3449618307040430992 lc_ra lc_dec lc_candid ... \n", + "3454646200271876674 lc_ra lc_dec lc_candid ... \n", + "3455632615629906897 lc_ra lc_dec lc_candid ... \n", + "\n", + " nondet \\\n", + "_healpix_29 \n", + "2405857242818793 nondet_mjd nondet_fid nondet_diffmagli... \n", + "3203066719741431 nondet_mjd nondet_fid nondet_diffmagli... \n", + "10935697778842557 nondet_mjd nondet_fid nondet_diffmagli... \n", + "15846987093732276 nondet_mjd nondet_fid nondet_diffmagli... \n", + "29759010088767360 nondet_mjd nondet_fid nondet_diffmagli... \n", + "... ... \n", + "3448044297436092099 nondet_mjd nondet_fid nondet_diffmagli... \n", + "3449086288422995259 nondet_mjd nondet_fid nondet_diffmagli... \n", + "3449618307040430992 nondet_mjd nondet_fid nondet_diffmagli... \n", + "3454646200271876674 nondet_mjd nondet_fid nondet_diffmagli... \n", + "3455632615629906897 nondet_mjd nondet_fid nondet_diffmagli... \n", + "\n", + " ref \\\n", + "_healpix_29 \n", + "2405857242818793 ref_rfid ref_candid ref_fid re... \n", + "3203066719741431 ref_rfid ref_candid ref_fid re... \n", + "10935697778842557 ref_rfid ref_candid ref_fid re... \n", + "15846987093732276 ref_rfid ref_candid ref_fid re... \n", + "29759010088767360 ref_rfid ref_candid ref_fid re... \n", + "... ... \n", + "3448044297436092099 ref_rfid ref_candid ref_fid re... \n", + "3449086288422995259 ref_rfid ref_candid ref_fid re... \n", + "3449618307040430992 ref_rfid ref_candid ref_fid re... \n", + "3454646200271876674 ref_rfid ref_candid ref_fid re... \n", + "3455632615629906897 ref_rfid ref_candid ref_fid re... \n", + "\n", + " bazin_fit_amplitude bazin_fit_baseline \\\n", + "_healpix_29 \n", + "2405857242818793 0.000408 0.000030 \n", + "3203066719741431 0.000363 0.000032 \n", + "10935697778842557 0.000111 0.000005 \n", + "15846987093732276 0.000187 0.000003 \n", + "29759010088767360 0.000369 0.000006 \n", + "... ... ... \n", + "3448044297436092099 0.000873 0.000007 \n", + "3449086288422995259 0.001689 0.000030 \n", + "3449618307040430992 0.000580 -0.000044 \n", + "3454646200271876674 0.000159 0.000009 \n", + "3455632615629906897 0.000378 0.000006 \n", + "\n", + " bazin_fit_reference_time bazin_fit_rise_time \\\n", + "_healpix_29 \n", + "2405857242818793 59100.573583 3.111346 \n", + "3203066719741431 59870.560379 3.061167 \n", + "10935697778842557 59455.898052 5.144836 \n", + "15846987093732276 59174.930188 3.182938 \n", + "29759010088767360 59844.007861 3.360073 \n", + "... ... ... \n", + "3448044297436092099 59815.424716 3.664686 \n", + "3449086288422995259 59805.238801 3.632095 \n", + "3449618307040430992 59866.010056 3.728221 \n", + "3454646200271876674 59734.389038 3.042295 \n", + "3455632615629906897 59784.483389 4.827309 \n", + "\n", + " bazin_fit_fall_time bazin_fit_reduced_chi2 \\\n", + "_healpix_29 \n", + "2405857242818793 11.490058 0.879535 \n", + "3203066719741431 20.848320 1.679472 \n", + "10935697778842557 24.962658 1.132158 \n", + "15846987093732276 21.147838 0.898472 \n", + "29759010088767360 23.618371 0.888075 \n", + "... ... ... \n", + "3448044297436092099 27.214244 1.646161 \n", + "3449086288422995259 25.991767 1.706844 \n", + "3449618307040430992 28.085254 0.890226 \n", + "3454646200271876674 21.088878 1.352102 \n", + "3455632615629906897 23.854929 1.386482 \n", + "\n", + " observation_count chi2 \n", + "_healpix_29 \n", + "2405857242818793 28.0 56.120445 \n", + "3203066719741431 13.0 36.492215 \n", + "10935697778842557 14.0 11.381434 \n", + "15846987093732276 20.0 26.000655 \n", + "29759010088767360 44.0 72.378785 \n", + "... ... ... \n", + "3448044297436092099 26.0 144.653164 \n", + "3449086288422995259 31.0 306.649569 \n", + "3449618307040430992 17.0 46.556925 \n", + "3454646200271876674 13.0 17.269565 \n", + "3455632615629906897 15.0 28.707617 \n", + "\n", + "[796 rows x 17 columns]" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
oidmean_ramean_decNorderDirNpixlcnondetrefbazin_fit_amplitudebazin_fit_baselinebazin_fit_reference_timebazin_fit_rise_timebazin_fit_fall_timebazin_fit_reduced_chi2observation_countchi2
_healpix_29
2405857242818793ZTF20abwzqzo41.5138173.329906100lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0004080.00003059100.5735833.11134611.4900580.87953528.056.120445
3203066719741431ZTF22abmxzxm42.606755.793783100lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0003630.00003259870.5603793.06116720.8483201.67947213.036.492215
10935697778842557ZTF21abvdazf41.05909710.256258100lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0001110.00000559455.8980525.14483624.9626581.13215814.011.381434
15846987093732276ZTF20acqlfwb42.89144313.021577100lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0001870.00000359174.9301883.18293821.1478380.89847220.026.000655
29759010088767360ZTF22abfyzir48.35880119.789209100lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0003690.00000659844.0078613.36007323.6183710.88807544.072.378785
......................................................
3448044297436092099ZTF22abbausm318.621236-9.0476120011lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0008730.00000759815.4247163.66468627.2142441.64616126.0144.653164
3449086288422995259ZTF22aaynpda321.732295-7.0169830011lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0016890.00003059805.2388013.63209525.9917671.70684431.0306.649569
3449618307040430992ZTF22abmcezf319.982093-6.4375050011lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.000580-0.00004459866.0100563.72822128.0852540.89022617.046.556925
3454646200271876674ZTF22aamgkdw317.380631-7.0299330011lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0001590.00000959734.3890383.04229521.0888781.35210213.017.269565
3455632615629906897ZTF22aaudftc318.113332-5.1669910011lc_ra lc_dec lc_candid ...nondet_mjd nondet_fid nondet_diffmagli...ref_rfid ref_candid ref_fid re...0.0003780.00000659784.4833894.82730923.8549291.38648215.028.707617
\n", + "

796 rows × 17 columns

\n", + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 11 + }, + { + "cell_type": "markdown", + "id": "ed0264e5-1dac-4103-8718-31013da87f24", + "metadata": {}, + "source": [ + "### Plot SN candidate light curves\n", + "\n", + "Let's plot light curves of our objects and compare them to what we had before." + ] + }, + { + "cell_type": "code", + "id": "0df40971", + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-31T16:54:31.270948Z", + "start_time": "2024-10-31T16:54:30.642468Z" + } + }, + "source": [ + "head = ndf.head(5)\n", + "\n", + "for oid, lc, nondet in head[[\"oid\", \"lc\", \"nondet\"]].itertuples(index=False):\n", + " plt.figure()\n", + " plot_lc(lc, nondet, title=oid)\n", + " print(f\"https://alerce.online/object/{oid}\")" + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "https://alerce.online/object/ZTF20abwzqzo\n", + "https://alerce.online/object/ZTF22abmxzxm\n", + "https://alerce.online/object/ZTF21abvdazf\n", + "https://alerce.online/object/ZTF20acqlfwb\n", + "https://alerce.online/object/ZTF22abfyzir\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg4UlEQVR4nO3deXhTZfo38G/SJU1DkjZdKU1bSiqgAiIqFmQpVig/XIqoDIMFFPR1BtxwG3BGRGeGGXdnwG1QijCAoqKMOlWGUqCsglQLAgItUJCWFmjShpI2zXn/iEmbNi1dspwk3891nYueJSdPDmlz5z7P89wSQRAEEBEREQUQqbcbQERERORpDICIiIgo4DAAIiIiooDDAIiIiIgCDgMgIiIiCjgMgIiIiCjgMAAiIiKigMMAiIiIiAIOAyAiIiIKOAyAiCggHT9+HBKJBK+88oq3m0JEXsAAiIggkUguu8yYMaPDxwHA6NGj2zzm0KFDAIBDhw7h6aefxjXXXAOlUomePXtiwoQJ2LNnj9N2nj59Gvfccw8iIiKgUqlwxx13oKSkxFOXiYj8SLC3G0BE3rdixYo29z3//PM4duwY+vbt63BcaWkpnnvuOTz44IMYMWKEfXufPn3sPycmJmLRokWtzpmQkAAAWLp0Kd5//31MmjQJv//976HX6/Huu+/ixhtvRF5eHjIzM+2Pqa2tRUZGBvR6PebPn4+QkBC8/vrrGDVqFIqKihAVFdWta0BEAUYgImrDv/71LwGA8PDDD7fa99133wkAhGXLljl97KhRo4Srrrqq3fPv2bNHqKmpcdhWVVUlxMTECMOHD3fY/ve//10AIOzevdu+7eDBg0JQUJAwb968Dr6iJqWlpQIA4eWXX+70Y4nI9/EWGBE5deDAATzyyCMYPHgwXn75Zbc8x5AhQ9CjRw+HbVFRURgxYgQOHjzosP2TTz7B9ddfj+uvv96+rV+/frj55pvx8ccf27fV19fjueeew5AhQ6BWq6FQKDBixAhs2rSpzXa8/vrrSE5Ohlwux6hRo7B//377vvXr10MikeDHH3+0b/v0008hkUhw5513Opynf//+mDx5MgC0e8vw+eeftz/m1KlTyM7OhkKhQGxsLB5//HF88803kEgkKCgoAADk5ua2ea7Ro0fbz2U2m/Hiiy+iT58+kMlkSElJwfz582Eymdp87USBirfAiKiVixcv4p577kFQUBDWrFkDmUzWpfM0NjaiqqrKYVtYWFiroKel8vJyREdH29ctFgt+/PFH3H///a2OveGGG/Dtt9+ipqYGSqUSBoMBS5cuxZQpU/DAAw+gpqYG77//PsaNG4fdu3fjmmuucXj8hx9+iJqaGsyePRuXLl3Cm2++iTFjxqC4uBhxcXG46aabIJFIsGXLFgwcOBAAsHXrVkilUhQWFtrPU1lZiUOHDmHOnDkAgP/3//6fwy08AMjLy8O///1vxMbGAgDq6upw88034+TJk3jkkUeQkJCAFStWID8/3+FxI0eObHWb8sSJE/jjH/9oPxcAzJo1C8uXL8ddd92FJ554Art27cKiRYtw8OBBrFu3rt1rThRwvJ2CIiLxuf/++wUAwvLly9s8piO3wAC0WqZPn97uc2/ZskWQSCTCn/70J/u2yspKAYDwwgsvtDp+yZIlAgDh0KFDgiAIgtlsFkwmk8MxFy5cEOLi4oT777/fvs12C0wulwunTp2yb9+1a5cAQHj88cft26666irhnnvusa9fe+21wt133y0AEA4ePCgIgiB89tlnAgDhhx9+cPq6jhw5IqjVauGWW24RzGazIAiC8MYbbwgAhI8//th+nNFoFHQ6nQBA2LRpk9Nz1dXVCUOGDBESEhKEM2fOCIIgCEVFRQIAYdasWQ7HPvnkkwIAIT8/3+m5iAIVb4ERkYNVq1bhgw8+QE5ODqZNm9atc6WkpGDDhg0Oy9NPP93m8WfPnsVvf/tb9O7d2+G4uro6AHCaiQoLC3M4JigoCKGhoQCsmaPz58/DbDbjuuuuw/fff9/q8dnZ2ejVq5d9/YYbbsDQoUPx9ddf27eNGDECW7duBQDU1NTghx9+wIMPPojo6Gj79q1btyIiIgJXX311q+cwGo2YOHEiIiMjsXr1agQFBQEAvv76a/Ts2RN33XWX/djw8HA8+OCDbV4jAPj973+P4uJifPrpp4iPj7efCwDmzp3rcOwTTzwBAPjqq6/aPSdRoOEtMCKyO3LkCB566CFcccUVeOutt7p9PoVC0eo2UFuMRiNuvfVW1NTUoLCw0OE2mVwuBwCnfVkuXbrkcAwALF++HK+++ioOHTqEhoYG+/bevXu3enxaWlqrbVdccYVDv6IRI0bgnXfewdGjR3Hs2DFIJBKkp6fbA6MHHngAW7duxfDhwyGVtv5e+cADD+DYsWPYvn27w2i1EydOQKfTQSKROBzft2/f1hfoV++++y6WLVtmHy3X/FxSqRQ6nc7h+Pj4eERERODEiRNtnpMoEDEDREQArMHF5MmTUV9fjzVr1ly2n44r1dfX484778SPP/6IL774olUWRaPRQCaT4cyZM60ea9tmG1q/cuVKzJgxA3369MH777+PvLw8bNiwAWPGjIHFYulS+2666SYAwJYtW7B161Zce+219s7VW7duRW1tLfbt2+cwHYDNm2++idWrV+Nf//pXq/5HnbV79248+uijmDVrVptZopbBFBE5xwwQEQEAnnzySezbtw9vvvkmBg8e7LHntVgsmDZtGjZu3IiPP/4Yo0aNanWMVCrFgAEDnE6QuGvXLqSmpkKpVAKwjhZLTU3FZ5995hAMLFiwwOnzHzlypNW2n3/+GSkpKfb1pKQkJCUlYevWrSgpKbEHOiNHjsTcuXOxdu1aNDY2YuTIkQ7n2bp1K5588kk89thjmDp1aqvnSU5Oxv79+yEIgkNbDx8+3OrYyspK3HXXXbjmmmuwZMkSp+eyWCw4cuQI+vfvb99eUVGB6upqJCcnO339RIGKGSAiwrp167B48WLcfvvteOSRRzz63A8//DA++ugjvPXWW62GlTd311134bvvvnMIgg4fPoz8/Hzcfffd9m22/jWCINi37dq1Czt27HB63s8//xynT5+2r+/evRu7du3C+PHjHY4bMWIE8vPzsXv3bnsAZJvB+m9/+xvkcjmGDBliP/7MmTO45557cNNNN7U5jcD//d//4ZdffsEnn3xi33bx4kW89957Dsc1NjbiN7/5Derr6/Hpp5/a+zi1PBcAvPHGGw7bX3vtNQDAhAkTnLaBKFAxA0QU4M6cOYOZM2ciKCgIN998M1auXOn0uD59+iA9Pd2lz/3GG2/grbfeQnp6OsLDw1s998SJE6FQKABYO/7+61//woQJE/Dkk08iJCQEr732GuLi4uwdfQHg1ltvxWeffYaJEydiwoQJKC0txTvvvIMrr7wStbW1rdqg0+lw00034Xe/+x1MJhPeeOMNREVFteqsPWLECPz73/+GRCKx3xILCgrCsGHD8M0332D06NEOgckjjzyCyspKPP3001izZo3DuQYOHIiBAwfigQcewOLFizFt2jTs3bsXPXv2xIoVKxAeHu5w/DvvvIP8/Hw89NBDreYziouLwy233IJBgwZh+vTpeO+991BdXY1Ro0Zh9+7dWL58ObKzs5GRkdHR/xaiwODtYWhE5F2bNm1yOly95dJy+LorZoKePn16u89ZWlrqcHxZWZlw1113CSqVSujRo4dw6623CkeOHHE4xmKxCH/961+F5ORkQSaTCYMHDxa+/PJLYfr06UJycrL9uOYzQb/66quCVqsVZDKZMGLECKdD2Q8cOCAAEPr37++w/c9//rMAwGHYvu31t/W6FixYYD/uxIkTwu233y6Eh4cL0dHRwqOPPirk5eU5DINfsGBBm+caNWqU/VwNDQ3CwoULhd69ewshISGCVqsV5s2bJ1y6dKnd/weiQCQRhGZ5YiIi8rqCggJkZGRg06ZNDjM9E5HrsA8QERERBRwGQERERBRwGAARERFRwGEfICIiIgo4zAARERFRwGEARERERAGHEyE6YbFY8Msvv0CpVLKuDhERkY8QBAE1NTVISEhwWpi4OQZATvzyyy/QarXebgYRERF1QVlZGRITE9s9hgGQE7aiimVlZVCpVF5uDREREXWEwWCAVqu1f463hwGQE7bbXiqVigEQERGRj+lI9xV2giYiIqKAwwCIiIiIAg4DICIiIgo47ANERETkRxobG9HQ0ODtZrhFSEgIgoKCXHIuBkBERER+QBAElJeXo7q62ttNcauIiAjEx8d3e54+BkBERER+wBb8xMbGIjw83O8m8hUEARcvXsTZs2cBAD179uzW+RgAERER+bjGxkZ78BMVFeXt5riNXC4HAJw9exaxsbHduh3GTtBEREQ+ztbnJzw83MstcT/ba+xuPycGQERERH7C3257OeOq18hbYERE5L9MJqC+vu39oaGATOa59pBoMAAiIiL/ZLEAhYVAZWXbx8TEABkZwGUqh5P/4f84ERH5J6kUUCoBvR5QqVover11P4OfgMT/dSIi8l86HaBWA2YzEB7etJjN1u06nbdbSF7CAIiIiPyXRgOkpra+DVZZad2u0XinXeSgpqYGU6dOhUKhQM+ePfH6669j9OjReOyxx9z2nAyAiIjIv+l0gEIBGAzWdYPBus7sj1NVF6tQpi8DAJTpy1B1scrtzzl37lxs27YN69evx4YNG7B161Z8//33bn1OdoImIiL/ZssCFRdb+/5UVgIDBjD740TVxSqMWT4GxgYjVkxcgZx1OVCEKJA/PR/R4dFuec6amhosX74cq1atws033wwAWLZsGRISEtzyfDbMABERkf+zZYFOn2b2px11DXUwNhhRcqEEwz8YjpILJTA2GFHXUOe25ywpKUFDQwNuuOEG+za1Wo2+ffu67TkBLwdAW7ZswW233YaEhARIJBJ8/vnnDvslEonT5eWXX27znM8//3yr4/v16+fmV0JERKJmywLp9ez70w6tWosVE1c4bFsxcQW0aq2XWuQ+Xg2AjEYjBg0ahCVLljjdf+bMGYflgw8+gEQiwaRJk9o971VXXeXwuMLCQnc0n4iIfElaGjBokPVfcqpMX4acdTkO23LW5dj7BLlDamoqQkJC8N1339m36fV6/Pzzz257TsDLfYDGjx+P8ePHt7k/Pj7eYf2LL75ARkYGUlNT2z1vcHBwq8cSEVGAi4wEhg/3ditETR4ihyJEgdTIVIc+QPIQudueU6lUYvr06Xjqqaeg0WgQGxuLBQsWQCqVurW0h890gq6oqMBXX32F5cuXX/bYI0eOICEhAWFhYUhPT8eiRYuQlJTU5vEmkwkmk8m+brCNFCAiIgog0eHRyJ+ej7qGOmjVWhRML4A8RO62DtA2r732Gh566CHceuutUKlUePrpp1FWVoawsDC3PafPdIJevnw5lEol7rzzznaPGzp0KHJzc5GXl4e3334bpaWlGDFiBGpqatp8zKJFi6BWq+2LVut/9zqJiIg6Ijo82t7nR6vWuj34AaxZoH//+98wGo04c+YMHnzwQRw+fBg6N3ZW95kM0AcffICpU6deNhpsfktt4MCBGDp0KJKTk/Hxxx9j5syZTh8zb948zJ07175uMBgYBBEREXnIvn37cOjQIdxwww3Q6/V44YUXAAB33HGH257TJwKgrVu34vDhw/joo486/diIiAhcccUVOHr0aJvHyGQyyFgNmIiIyGteeeUVHD58GKGhoRgyZAi2bt2K6Gj3ZZ98IgB6//33MWTIEAwaNKjTj62trcWxY8eQk5Nz+YOJiIjI4wYPHoy9e/d69Dm92geotrYWRUVFKCoqAgCUlpaiqKgIJ0+etB9jMBiwdu1azJo1y+k5br75ZixevNi+/uSTT2Lz5s04fvw4tm/fjokTJyIoKAhTpkxx62shIiIi3+HVDNCePXuQkZFhX7f1w5k+fTpyc3MBAGvWrIEgCG0GMMeOHUNVVVOdklOnTmHKlCk4d+4cYmJicNNNN2Hnzp2IiYlx3wshIiIinyIRBEHwdiPExmAwQK1WQ6/XQ6VSebs5RERE7bp06RJKS0vRu3dvtw4dF4P2XmtnPr99Zhg8ERERkaswACIiIqKAwwCIiIiIAg4DICIiIgo4DICIiIgo4DAAIiIiItGor6/3yPP4xEzQRERE5J9Gjx6Nq6++GsHBwVi5ciUGDBiATZs2uf15mQEiIiKiJlVVQFmZ9eeyMuu6my1fvhyhoaHYtm0b3nnnHbc/H8AMEBEREdlUVQFjxgBGI7BiBZCTAygUQH4+4MbCpGlpaXjppZfcdn5nGAARERGRVV2dNfgpKQGGD7duS021bnejIUOGuPX8zvAWGBEREVlptdbMT3MrVli3u5FCoXDr+Z1hAERERERWZWXW217N5eQ09QnyIwyAiIiIyEout/b5SU0Ftm2z/qtQWLf7GfYBIiIiIqvoaGuH57o6622vggJr8OPGDtDewgCIiIiImjQPdtzc9wcACgoK3P4czvAWGBEREQUcBkBEREQUcBgAERERUcBhAEREnWM0AhKJdTEavd0aIqIuYQBERETkJwRB8HYT3M5Vr5EBEBERkY8LCQkBAFy8eNHLLXE/22u0veau4jB4Iuqc5pWhT50CoqL8co4QIl8SFBSEiIgInD17FgAQHh4OiUTi5Va5liAIuHjxIs6ePYuIiAgEBQV163wMgIio46qqgAkTmtazsgCl0u2Voono8uLj4wHAHgT5q4iICPtr7Q4GQETkyGgEevSw/lxba50G38ZWKdrm+HGPVIomosuTSCTo2bMnYmNj0dDQ4O3muEVISEi3Mz82DICIqOO0WmDpUiAzs2mbBypFE1HHBQUFuSxI8GfsBE1EHVdWBsya5bjNTytFE5F/YwBERB1nqxRtk5Lit5Wiici/8RYYEXVcdDTw1VfWwAcA8vI4CoyIfBIDICLqnObBTmKiY0aIiMhH8BYYEXWOQgEIgnXpSPDD0hlEJEIMgIiIiCjgMAAiIiKigMMAiIgctSx10XxdDOcjInIBrwZAW7ZswW233YaEhARIJBJ8/vnnDvtra2sxZ84cJCYmQi6X48orr8Q777xz2fOuXbsW/fr1Q1hYGAYMGICvv/7aTa+AyM84K3UxZkzXgxZXn4+IyEW8GgAZjUYMGjQIS5Yscbp/7ty5yMvLw8qVK3Hw4EE89thjmDNnDtavX9/mObdv344pU6Zg5syZ2LdvH7Kzs5GdnY39+/e762UQ+Q9npS6Mxq6XunD1+YiIXEQiCILg7UYA1hom69atQ3Z2tn3b1VdfjcmTJ+NPf/qTfduQIUMwfvx4/PnPf3Z6nsmTJ8NoNOLLL7+0b7vxxhtxzTXXdCh7BAAGgwFqtRp6vR4qlaprL4g6z2QC6uvb3h8aCshknmtPoNq40bHUxbZtwLBh4jkfEVEbOvP5Lep5gIYNG4b169fj/vvvR0JCAgoKCvDzzz/j9ddfb/MxO3bswNy5cx22jRs3rtXtteZMJhNMJpN93WAwdLvt1EkWC1BYCFRWtn1MTAyQkQFI2XXNbdoqdVFQ0LV6X64+HxGRi4j6k+Sf//wnrrzySiQmJiI0NBRZWVlYsmQJRo4c2eZjysvLERcX57AtLi4O5eXlbT5m0aJFUKvV9kXLP8yeJ5UCSiWg1wMqVetFr7fuZ/DjXq4udcHSGUQkUqL+NPnnP/+JnTt3Yv369di7dy9effVVzJ49G//73/9c+jzz5s2DXq+3L2Us7OgdOh2gVgNmMxAe3rSYzdbtOp23W+j/bKUubPLygPz8rpe6cPX5iIhcRLS3wOrq6jB//nysW7cOE34dRTJw4EAUFRXhlVdeQWbzPgXNxMfHo6KiwmFbRUUF4uPj23wumUwGGfuWeJ9GA6SmAsXF1qyPTWUlMGCAdT+5n6tLXbB0BhGJkGgzQA0NDWhoaIC0xS2PoKAgWCyWNh+Xnp6OjRs3OmzbsGED0tPT3dJOcjGdzvoBaeuHZTBY15n9ISIiF/JqBqi2thZHjx61r5eWlqKoqAgajQZJSUkYNWoUnnrqKcjlciQnJ2Pz5s348MMP8dprr9kfM23aNPTq1QuLFi0CADz66KMYNWoUXn31VUyYMAFr1qzBnj178N5773n89VEXtMwCMftDRERu4NUAaM+ePcjIyLCv20ZvTZ8+Hbm5uVizZg3mzZuHqVOn4vz580hOTsZf/vIXPPTQQ/bHnDx50iFLNGzYMKxatQp//OMfMX/+fKSlpeHzzz/H1Vdf7bkXRt2j0wElJcDp08z++ANb8VQiIhERzTxAYsJ5gERg925gzx7guuuAG27wdmsCi9EI9Ohh/bm2ln12iMhn+M08QBTA0tKAhgbrvxR4GIQRkZuJthM0BbjISGD4cOu/FHhYQJWI3IwBEBGJCwuoEpEHMAAiIke2TsuC4J1bT3V1QE1N0zoLqBKRGzAAIiJx0WqBJUsct61YwdphRORSDICISFzKyoBmU10AAH77W+t2IiIXYQBEROJy8aJ1AkwbqRSoqLBuJyJyEQZARCQu4eFAbGzTusUCxMdbtxMRuQgDICISF60WyM113Pbvf7MPEBG5FAMgIhKXsjJg1izHbTk57ANERC7FAIiIxEUudxx+n5JiXZfLvdYkIvI/LIVBROISHQ189ZU18AGAvDwgKsq6nYjIRRgAEZH4JCezgjwRuRVvgREREVHAYQBEREREAYcBEBEREQUcBkBEREQUcBgAERERUcBhAEREvsdoBCQS62I0ers1ROSDGAARke+pqmr6+dQpx3Uiog5gAEREvqWqCpgwoWk9KwsYM4ZBEBF1CgMgIvItdXWOt72OH7eu19V5rUlE5HsYABGRb9FqgaVLHbetWMFq8UTUKQyAiMi3OKsWP3UqO0UTUacwACIi39JWtXgiok5gAEREvsVWLd4mL896C8yGo8KIqAMYABGR74mObvo5LAzIyWla56gwIuoABkBEvoKT/zVRKABBsC5SKUeFEVGnMQAiIt/GUWFE1AUMgIjItzkbFZaTY91ORNQGBkBE5NvaGhUml3utSUQkfgyAiMSM/X4uz9mosPx8x47SREQtBHu7AURE3dY82ElM5LxARHRZXs0AbdmyBbfddhsSEhIgkUjw+eefO+yvra3FnDlzkJiYCLlcjiuvvBLvvPNOu+fMzc2FRCJxWMLCwtz4Kog85Ny5pp85142j5qPCGPwQUQd4NQNkNBoxaNAg3H///bjzzjtb7Z87dy7y8/OxcuVKpKSk4Ntvv8Xvf/97JCQk4Pbbb2/zvCqVCocPH7avSyQSt7SfyKMmTWr6OSsLUCp5q4eIqIu8GgCNHz8e48ePb3P/9u3bMX36dIwePRoA8OCDD+Ldd9/F7t272w2AJBIJ4uPjXd1cIs9rnuXR65t+Pn4cSE3lXDdERF0k6k7Qw4YNw/r163H69GkIgoBNmzbh559/xtixY9t9XG1tLZKTk6HVanHHHXfgwIEDHmoxkQtVVQETJjStm82O+znXTcexMzkRtSDqAOif//wnrrzySiQmJiI0NBRZWVlYsmQJRo4c2eZj+vbtiw8++ABffPEFVq5cCYvFgmHDhuHUqVNtPsZkMsFgMDgsRF5XV+f4YX32rON+znVDRNRloh4F9s9//hM7d+7E+vXrkZycjC1btmD27NlISEhAZmam08ekp6cjPT3dvj5s2DD0798f7777Ll588UWnj1m0aBEWLlzoltdA1GW2GY6dvdc5103nNL+VeOoUEBXl032nTGYT6hvr29wfGhQKWbDMgy0i8j0SQRAEbzcCsPbbWbduHbKzswEAdXV1UKvVWLduHSY0uw0wa9YsnDp1Cnl5eR0+9913343g4GCsXr3a6X6TyQSTyWRfNxgM0Gq10Ov1UKlUXXtBRN1VVgbcdBNw8mTrfYcO+fyHuMdUVQGjRwO2W+EpKT7dgdwiWLCpdBMqL1a2eUxMeAwyemdAKhF1kp/I5QwGA9RqdYc+v0X729HQ0ICGhgZIpY5NDAoKgsVi6fB5GhsbUVxcjJ49e7Z5jEwmg0qlcliIvK7lDMeJiY4/++CHt1e0vJXo48VSpRIplDIl9CY9VDJVq0Vv0kMpUzL4IboMr/6G1NbWoqioCEVFRQCA0tJSFBUV4eTJk1CpVBg1ahSeeuopFBQUoLS0FLm5ufjwww8xceJE+zmmTZuGefPm2ddfeOEFfPvttygpKcH333+Pe++9FydOnMCslrWCiMQuOhr49NOm9Y8+8l5bfJkfFkvVaXRQy9QwW8wIDwm3L2aLGWqZGjqNzttNJBI9r/YB2rNnDzIyMuzrc+fOBQBMnz4dubm5WLNmDebNm4epU6fi/PnzSE5Oxl/+8hc89NBD9secPHnSIUt04cIFPPDAAygvL0dkZCSGDBmC7du348orr/TcCyNylaiopp/byWJSO9oqllpQ4LNBkEauQWpkKooriqGSNWWsK42VGBA3ABq5xoutI/INoukDJCaduYdI5FZnzwJxcdafS0qsc/8AQG0tZzzuKD/rA2Rzvu48vj32LcJDwqGSqWAwGXCx4SLG9hnLAIgCll/0ASIicgk/LZZqywJVGq2doSuNlUiNTGXwQ9RBDICIxMLZZH3NO+rW1wOVlax31RUti6VaLE3XuuX8Sj5Ep9FBEarAacNpKEIV7PtD1AkMgIjEquVM0FlZwJgxLILaFf5WLNVkAmpqoDGHQBcSh4vnK6ALiYPGHALU1Fj3E1G7RD0RIlFAczZ8m/W/yGIBCgut2UAA/eprodTXoNfJY0BohfWYmBggIwOQ8jsuUVv420EkVn44fFs0jh5t+nnvXuDwYe+1pbOkUmsnbr0eUKnQIzoBfftcjx7RCYBKZd2uVDL4IboM/oYQiUXzbI/R2Pbwbdb/6p7Dh63ZEZtbbwWuuca3giCdDlCrrQVyw8ObFrPZul3HvkBEl8MAiEisWs4EzfpfrlFdbQ0UbCwW63p1tbda1HkajfV2aGWLchiVldbtGo4EI7ocBkBEYuWnw7e9buhQ4G9/c9y2eLF1uy/R6awBscFgXTcYrOvM/hB1CAMgIjFrOXybwU/37doF/OEPjtvmzLFu9yUts0DM/hB1CgMgIgosERFAcLMBsFKpdT0iwlst6jpbFuj0aWZ/iDqJARCRDzHWGyFZKIFkoQTGeuPlH0Ct9e0LbNrUtP7ll0BRkXW7jbNJKcXIlgXS65n9IeokzgNERIGneaZkyBAgNtZ7bemutDSgocH6LxF1GAMgIgo8sbHWWaH9QWQkMHy4t1tB5HMYABGJxblzTT+fPm3tmxId7fhBzdteREQuwT5ARGJQVQVkZzet33orMGqUT9b98ot+Ss2v+6lTPvn/QETtYwaISAxOnwZKSprWf/nF+qF7+jSHvnuasyK0SiXnYPJRJrMJ9Y31be4PDQqFLFjmwRaRWDAAIhIDjca6nD3btC06mqN6vIFFaP2GRbCg8GQhKi9WtnlMTHgMMnpnQCrhDZFAw/9xIqLmWITWb0glUihlSuhNeqhkqlaL3qSHUqZk8BOg+L9OJAbnz1uX5qqqWm/zQT7XJ4hFaP2KTqODWqaG2WJGeEi4fTFbzFDL1NBpOHlkoGIARCQGvXoBvXs3rSckAH36WLeTZ7EIrV/RyDVIjUxFpdHxNlilsRKpkanQyHmbOVAxACISg+ho4Isvmta//BLYssUvOt02z/r4RAaIRWj9jk6jgyJUAYPJWjjWYDJAEapg9ifAMQAiEouoqKafe/XiB643sQitX2mZBWL2hwAGQEQ+pepi03w0pwynHNaJqG22LNBpw2lmfwgAAyAin1F1sQoTVjXNT5P17yyMWT5GdEFQyyDtXN25do4m8gxbFkhv0jP7QwA4DxCRz6hrqIOxoakPzfHq40iNTEVdg3jmp3EWpMmDfbDzsELhP7XCyC5Nk4aGxgakaVg4lpgBIvIeoxGQSKyL8fKdg7VqLZbe5jg/zYqJK6BVi2d+GmdBmq3jKQCcrjktuowVBY5IeSSGJw1HpDzS200hEWAARCQWzYdeKxSt5s8p05dh1n8c56fJWZeDMr145qdxFqQFS5sSzdkfZYvyth0RBR7eAvMC1qahrpCHyKEIaQqSUiJSoAhRQB4inltMzoK0k/qTDj8nq5NFdduOiAITAyAPY20a6qro8Gh89duvkPJmCgAgb2oeosKjEB0uniHaLYM0rUqLMzVnYBbM9m3B0mBRBW0eYzQCPXpYf66tdcz4EZHH8RPWw1ibhrqjebCTqEoUVfADNAVpNq/c8gosgsXhmBP6Ezh2/pinm0ZE5ICfsl7A2jTkz5oHZUMThyJRneiwP0mdhD6aPp5ulvh0shM8EbkWAyAvYG0a3+BzRTxF6JL5EiwWxwyQxWJhHyAi8joGQF7C2jQUCMKCw6CUKe3rSeokKGXKwOwDRESiwgDIS1ibhlqxTb4nCH7TQTY6PBqf3vOpff3zyZ8jf3q+6PouEVHg8WoAtGXLFtx2221ISEiARCLB559/7rC/oqICM2bMQEJCAsLDw5GVlYUjR45c9rxr165Fv379EBYWhgEDBuDrr7920yvoHtamCXBVzebCOXXKcd2PRMmbirz2UvZi8ENEouDVAMhoNGLQoEFYsmRJq32CICA7OxslJSX44osvsG/fPiQnJyMzMxPGdjoMbt++HVOmTMHMmTOxb98+ZGdnIzs7G/v373fnS+kS1qYJYFVVwISmkhHIygLGjPHbIIiISGy8Og/Q+PHjMX78eKf7jhw5gp07d2L//v246qqrAABvv/024uPjsXr1asyaNcvp4958801kZWXhqaeeAgC8+OKL2LBhAxYvXox33nnHPS+kG1ibJkDV1TmO/Dl+HEhNtW4nIiK3E20fIJPJBAAICwuzb5NKpZDJZCgsLGzzcTt27EBmZqbDtnHjxmHHjh3tPpfBYHBYPIW1acSrZVVzl5Zv0GqBpY4lI7BihXW7n1GEKpz+HHAC5JYnka8QbQDUr18/JCUlYd68ebhw4QLq6+vx97//HadOncKZM2fafFx5eTni4uIctsXFxaG8vLzNxyxatAhqtdq+aP3wQ4g6x1lVc5fWsCorA1pmMXNyrNt9nCJUAWGBAGGBENgBT3PObnk2XycijxNtABQSEoLPPvsMP//8MzQaDcLDw7Fp0yaMHz8eUqlrmz1v3jzo9Xr7UuYHH0LUPc6qmhsbjK6bv0YudxzplZJiXZf73/BwBkRwfsuzeaaZGSEijxNtAAQAQ4YMQVFREaqrq3HmzBnk5eXh3LlzSE1NbfMx8fHxqKiocNhWUVGB+Pj4Nh8jk8mgUqkcFgpszqqar5i4Alq1i7KD0dHAV00lI5CXB+TnW7e3g8GEj3J2yzO4WRdMdoIn8jhRB0A2arUaMTExOHLkCPbs2YM77rijzWPT09OxceNGh20bNmxAenq6u5tJfsRZVfOcdTko07swO9g82ElMvGzwQz7M2S3Pkyebfj5+3JohYid4Io/x6iiw2tpaHD161L5eWlqKoqIiaDQaJCUlYe3atYiJiUFSUhKKi4vx6KOPIjs7G2PHjrU/Ztq0aejVqxcWLVoEAHj00UcxatQovPrqq5gwYQLWrFmDPXv24L333vP46yPf1bKqeUpEChQhCs5gTF3j7JYnYA18bPy0EzyRWHk1A7Rnzx4MHjwYgwcPBgDMnTsXgwcPxnPPPQcAOHPmDHJyctCvXz888sgjyMnJwerVqx3OcfLkSYdO0cOGDcOqVavw3nvvYdCgQfjkk0/w+eef4+qrr/bcCyOf17Kqed7UPM5gTF3X8pbnsmVAixpp/tIJnshXSARBELzdCLExGAxQq9XQ6/Wi7A9kMptQ31jf5v7QoFDIgmUebJF/MtYb0WNRDwBA7bxa1/e5MRqBHtbzo7a2VfkLtz+/SPnt627+/338uHUU2IED1vWUFECp7FA/MCJqW2c+v716C4w6zyJYUHiyEJUXK9s8JiY8Bhm9MyCV+EQXL6LAY8sI2W6F5eUBUVEMfog8iJ+QPkYqkUIpU0Jv0kMlU7Va9CY9lDIlgx8isWMneCKv4qekD9JpdFDL1DBbzAgPCbcvZosZapmaRVV9hLHe6PRnIiJyP94C80G2IqrFFcVQyZrucVYaKzEgbgCLqvoKhQKS560/1ir8pJ8LEbWLfTjFgwGQj9JpdCi5UAKDyQCVTAWDyQBFqILZHxeyTTpIROQK7MMpLrzCPsqWBao0Wn+RKo2VSI1MZfbHj7i1GCsReRz7cIoLM0BiYDIB9W2nRBEaCshap0RtWaDThtPM/vgZZ8VYlaFKzkVE5ONsf7fNFrNDFwaDycA+nB7GAMjbLBagsBCobDslipgYICMDaFEE1pYF2vPLHlyXcB2zP37EWTHW1MhU1xVjJc9TKIDm064Z2fE9ELEPp3gwz+ZtUql1AjS9HlCpWi96vXW/1Pl/VZomDYPiBiFNk+bhhpM7ub0YKxF5jU6jgyJUAYPJAADsw+klDIDEQKcD1GrAbAbCw5sWs9m6Xdf2L0WkPBLDk4YjUh7pwQaTu3mkGCsReQX7cIpDl26BTZw4ERKJpNV2iUSCsLAw6HQ6/Pa3v0Xfvn273cCAoNEAqalAcbE162NTWQkMGGDdTwElkIuxtuz8HRUe5Z/9nlreEqOAwj6c3telDJBarUZ+fj6+//57SCQSSCQS7Nu3D/n5+TCbzfjoo48waNAgbNu2zdXt9V86nfUPosGaEoXBYF1vJ/tD/itQi7E66/w9ZvkYnxoBZzKbUGOqaXMxmU3ebiKJgC0LpDfpmf3xki5lgOLj4/Hb3/4WixcvhvTXvikWiwWPPvoolEol1qxZg4ceegjPPPMMCgsLXdpgv9UsC1SvCEPjL2WwDLgKFkUIYKpxOJQTZfmHy2U6mv+cqEr0n6Kg7fD1zt+c54U6I02ThobGBvbh9JIuVYOPiYnBtm3bcMUVVzhs//nnnzFs2DBUVVWhuLgYI0aMQHV1tava6jFeqwZ//jws3+ThpzPFMJiNKB8+EPXqHq0O4x9Q31d1sQqjc0fjQKW1GnhKREqrYe5+WxX9MjaWbETmikz7+rb7t2GYdpgXW9Q5u0/vxr7yfdCqWndYLzOUYXD8YNzQ6wYvtIzI/3Xm87tLn6BmsxmHDh1qtf3QoUNobGwEAISFhTntJ0St2VPmihDUJSUgtLYOJ6NCYImIQLAkGGHBYZwoy884y3TU1Neg0ljpcLvEJlBum/hD52/W6iPyDV26BZaTk4OZM2di/vz5uP766wEA3333Hf76179i2rRpAIDNmzfjqquucl1L/VTLlHkIahGSGIZ9ivOwnN4FeYgcapkag3sORm19Lf+A+gnbMPfmmY4Zg2bgh4of8EPFDwCASw2X7Pt2nNqB8Wnj/T7w9YfO35znhcg3dCkAev311xEXF4eXXnoJFRUVAIC4uDg8/vjjeOaZZwAAY8eORVZWluta6qdsU6MfvXDUmjKPVQGxCehZ9TNKq0vRKDSiZ4+ekEqk/APqR5xlOhZ/txivZL6CmB4xAIAQaYh9X4/QHn4f/ABNnb9T3kwBYO387YujwFirj0j8uhQABQUF4dlnn8Wzzz4Lw6+jllrea0tKSup+6wKEs6nRUzWpOGU4BYlEgl6qXvwD6gea9+k5/uhxh0yHrb9IkDQI4SHhAAAJmm4hp0amerCl3uUPnb9bZoH45YVIfLr9lVKlUnm2o7AfajkpFgCoZCqEBYdBFiyz/wHlUEn/0XKY+4acDVh6+1KYGp339eH/u++xzfbLeV6IxKnLtcA++eQTfPzxxzh58iTqWxTy/P7777vdsEDjLGWeEpkCAPwD6qdaZjpiFDE4X3fe/h6oaTH9AfkW1uojErcuZYD+8Y9/4L777kNcXBz27duHG264AVFRUSgpKcH48eNd3caA0DwLJDHVo/psGa5R9ME1ij64eL4CupA4aMwhQE2NtXo8+Z2WmUBfmvyPnGOtPiLx6lIG6K233sJ7772HKVOmIDc3F08//TRSU1Px3HPP4fz5865uY8DQaXQoOXcUDVsKoLtQi37x1skOlfoa9Dp5DAi1djhvqzo8+b7m0+Pb+gKR77LV6vMqoxHo8et8YrW11hnmiahrGaCTJ09i2DDrxGRyuRw1NdZUfU5ODlavXu261gUYjVyD1CgdLoSY0VNQoEd0AnpEJ6Bvn+vRIzqhQ9Xhybc1nx6/d2RvbzeHiMhvdelTND4+3p7pSUpKws6dOwEApaWl6MLE0tRMmiYNSddmIKZnny5VhyffZ7tt0ieyj7ebQkTkt7oUAI0ZMwbr168HANx33314/PHHccstt2Dy5MmYOHGiSxsYaCLlkRg6cDx69BtorQbfXGWltV4Yq8P7Ndttk0h5pLebQkTkt7rUB+i9996DxWIBAMyePRvR0dHYtm0bbr/9djz00EMubWDA0umAkhJrVXiVitXhPY39JoiI/FqXAiCpVIr6+np8//33OHv2LORyOTIzrVP65+Xl4bbbbnNpIwNSs+rwUKms2Z8BA5j9Ib+nCFVAWMBb6UTkXl0KgPLy8pCTk4Nz58612ieRSOwFUambbFmg06eZ/SGirqlqNp3CqVNAVBQQ7VulRfyKyQS0mDvPQWio9d/LHSOTubZdAahLAdDDDz+Me+65B8899xzi4uJc3SaysWWB9uwBrruO2R8i6pyqKmDChKb1rCzrKNL8fAZB3mCxAIWFrft3NhcVBUgkjoFrS5wKxSW6FABVVFRg7ty5DH48IS0NaGiw/ks+rfnEhqcMpxAVHsVbPeRedXXW/mw2x49bv1TV1XmtSQFNKrUGoEePAlpt6/1lZdb/HwA4dqz9Yxj8dFuXruBdd92FgoICFzeFnIqMBIYPt/5LntPytkF738Y6crqLVZiwqumbeNa/szBm+RjO9kzupdUCS5c6bluxwvkHK3mGTmedzqS9aU46cgx1W5cyQIsXL8bdd9+NrVu3YsCAAQgJCXHY/8gjj7ikcURe0dXbBu2MHKtrqIOxoemb+PHq40iNTEVdA7+JkxuVlQGzZjluy8kBCgoYBHlLywEuNi0HunTkGOqWLgVAq1evxrfffouwsDAUFBRAIpHY90kkEgZA5NvccNtAq9Zi6W1Lkbki075txcQV0Kr5IURuJJc7TuGQkmJdl8s7fg5OCeF6HZnmhFOhuF2XboE9++yzWLhwIfR6PY4fP47S0lL7UlJS0uHzbNmyBbfddhsSEhIgkUjw+eefO+yvqKjAjBkzkJCQgPDwcGRlZeHIkSPtnjM3NxcSicRhCQsL68rLpEDlhtsGZfoyzPqP4zfxnHU5KNOXdfmcRJcVHQ189VXTel4eO0CLgS0LZOsM7WyS244cQ93SpQCovr4ekydPhrSbnbCMRiMGDRqEJUuWtNonCAKys7NRUlKCL774Avv27UNycjIyMzNhbP7t3AmVSoUzZ87YlxMnTnSrnRRg2rptUNb1YEUeIocipOmbc0pEChQhCshDOvFNnKgrmgc7iYkMfsRCp7NmdNqb5qQjx1CXdekW2PTp0/HRRx9h/vz53Xry8ePHY/z48U73HTlyBDt37sT+/ftx1VVXAQDefvttxMfHY/Xq1ZjV8gOqGYlEgvj4+G61jQKYK24btBAdHo2vfvsVUt5MAQDkTc1DVHgUosPb/jDihIBEfqwj05xwKhS36lIA1NjYiJdeegnffPMNBg4c2KoT9GuvvdbthplMJgBwuH0llUohk8lQWFjYbgBUW1uL5ORkWCwWXHvttfjrX/9qD6KILst22yAlxbqel+eSyeOaBzuJqkQoQtmXgiigdWSaE06F4jZdCoCKi4sxePBgAMD+/fsd9jXvEN0d/fr1Q1JSEubNm4d3330XCoUCr7/+Ok6dOoUzZ860+bi+ffvigw8+wMCBA6HX6/HKK69g2LBhOHDgABITE50+xmQy2QMuADAYDC55DeTDWt42YMdPIufYSbrrbNOcdPcY6pIuBUCbNm1ydTtaCQkJwWeffYaZM2dCo9EgKCgImZmZGD9+PASh7dsC6enpSE9Pt68PGzYM/fv3x7vvvosXX3zR6WMWLVqEhQsXuvw1EBERkTiJeirJIUOGoKioCNXV1Thz5gzy8vJw7tw5pNpmyuyAkJAQDB48GEePHm3zmHnz5kGv19uXsm50dvUYkwmoqWl7aZbRIg9x8eSJRETkPl3KAHmaWq0GYO0YvWfPnjYzOc40NjaiuLgY//d//9fmMTKZDDJfKizXkXoyrBXjWay5RGKlUADtZM0vi8VUyU95NQCqra11yMyUlpaiqKgIGo0GSUlJWLt2LWJiYpCUlITi4mI8+uijyM7OxtixY+2PmTZtGnr16oVFixYBAF544QXceOON0Ol0qK6uxssvv4wTJ06022na53S0ngyDn67r7IcGay4FLJPZhPrGtit3hwaFQhbsQ1+wmmNg7xV+/Z4SEa8GQHv27EFGRoZ9fe7cuQCsw+xzc3Nx5swZzJ07FxUVFejZsyemTZuGP/3pTw7nOHnypMN8RBcuXMADDzyA8vJyREZGYsiQIdi+fTuuvPJKz7woT7HNEmo2O06VbjCwVow32CZPzGya6Zk1l/yfRbCg8GQhKi+2nY2NCY9BRu8MSCU++IWEgb3HgxG/f0+JiERor0dxgDIYDFCr1dDr9VA1Dy7EZvdua62YPn2ath07Zq0Vc8MN3mtXICorA0aOtH5A2KSmOtRcMtYb0WORdbRM7bxaDoN3IW9e292nd2Nf+T5oVa2D3TJDGQbHD8YNvXz493HjRsfAfts2YNiwpvUTJ5qmjDh0yK9ukVkECzaVbvJ4MOL37yk36sznN8NHX2abJdQ2bJ+1YrzHDZMnkm/QaXRQy9QwW8wIDwm3L2aLGWqZGjqND/8+Xm5WdGe3yMaM8ZsBAFKJFEqZEnqTHiqZqtWiN+mhlCldnonx6/eUiDAA8mWsFSMerLkUsDRyDVIjU1FpdMwSVBorkRqZCo3ch38fLxfYO7tFZjQ63iIzGgGJxLpcpoyRGHkjGPHr95SIMADydawVIx6suRSwdBodFKEKGEzWbKzBZIAiVOH739QvF9i7oXCw2HgrGPHb95SIMADydbYskF7P7I/I2Wp7CQsE9v/xMy0/JP3qm3p7gb0bCgeLkTeCEb9+T4kEAyB/kJYGDBrEWjFEXmT7kDxtOB0439QDpO+bt4KRgHxPeRADIH9gqxUTGentlhAFLNuHpN6kD5xv6gHU980bwUhAvqc8yCdmgiYi8gVpmjQ0NDYgTRNA2dgAKRxsC0b2/LIH1yVc57FgJCDfUx7CAIiIyEUi5ZEYnsTK3f7KG8EI31Puw1tgROTzqi42zTtzynDKYZ3IVWzBSKSc3Q38ATNARK7S3aKT1CVVF6swYVXTZHxZ/86CMlSJ/On5iA53fV+UgKvTxPc1+SkGQETk0+oa6mBsaJpg73j1caRGpqKuwfX1qlinqQtYTZ5Eir+hROTTtGotlt7mOBnfiokroFW7fjI+b5VGEDVbhkgQWneA9vNSGeTbAui3lIj8UZm+DLP+4zgZX866HJTp3TMZH+s0dUJHSmUQeQkDICLyafIQORQhTZmHlIgUKEIUkIe4ZzI+1mnqhAAolUG+iwEQEfm06PBofPXbpsn48qbmua0DtA3rNHVQgJTKIN/EAIiIfF7zYCdRlejW4AdgnaYOC5BSGeSbOAqMyMUCbph0gNJpdCi5UMI6Te2xlcpISbGu5+VxFBiJBgMgIhfiMOnA4a3SCD4nQEplkO9hAETkQrZh0kcvHIVW1bqjZ5mhDKmRqQx+/ATrNBH5LgZARC5muzVitpihkqns2w0mA4dJ+xnWaSLyXfwaSuRiHCZNRCR+DICI3IDDpIn8jNEISCTWpfnkjuSzeAuMfJpYR1zZskDFFcVQyVSoNFZiQNwAZn/cRBGqgLCABTuJqOMYAJHPEvuIKw6TJiISL94CI58l9sKUtiyQ3qRn3x8iIpFhBoh8mthHXHGYNBGRODEDRD5N7COubMOkI+WRXm0HkdcoFIAgWBdOgkgiwgCIfB5HXBERUWcxACKfx8KURETUWQyAyC/YskAccUVERB3BAIj8AkdcERFRZ3AUGPkNjrgiIqKOYgBEfoOFKYmIqKN4C4yIiIgCjlcDoEWLFuH666+HUqlEbGwssrOzcfjwYYdjLl26hNmzZyMqKgo9evTApEmTUFFR0e55BUHAc889h549e0IulyMzMxNHjhxx50shIiIiH+LVAGjz5s2YPXs2du7ciQ0bNqChoQFjx46FsVml3ccffxz/+c9/sHbtWmzevBm//PIL7rzzznbP+9JLL+Ef//gH3nnnHezatQsKhQLjxo3DpUuX3P2SiIiIyAdIBEEQTQnlyspKxMbGYvPmzRg5ciT0ej1iYmKwatUq3HXXXQCAQ4cOoX///tixYwduvPHGVucQBAEJCQl44okn8OSTTwIA9Ho94uLikJubi9/85jeXbYfBYIBarYZer4dKpbrs8URE5OeMRqBHD+vPtbWc1VqkOvP5Lao+QHq9HgCg0ViHMO/duxcNDQ3IzMy0H9OvXz8kJSVhx44dTs9RWlqK8vJyh8eo1WoMHTq0zceYTCYYDAaHhYiIiPyXaAIgi8WCxx57DMOHD8fVV18NACgvL0doaCgiIiIcjo2Li0N5ebnT89i2x8XFdfgxixYtglqtti9arbabr4aIiPxKVVXTz6dOOa5T5xiNgERiXZp1efE00QRAs2fPxv79+7FmzRqPP/e8efOg1+vtS1lZmcfbQEREIlVVBUyY0LSelQWMGcMgyMeJYh6gOXPm4Msvv8SWLVuQmJho3x4fH4/6+npUV1c7ZIEqKioQHx/v9Fy27RUVFejZs6fDY6655hqnj5HJZJDJZN1/IUREImAym1DfWN/m/tCgUMiC+Tevw+rqHDMVx48DqanW7eSzvBoACYKAhx9+GOvWrUNBQQF69+7tsH/IkCEICQnBxo0bMWnSJADA4cOHcfLkSaSnpzs9Z+/evREfH4+NGzfaAx6DwYBdu3bhd7/7nVtfDxGRt1kECwpPFqLyYmWbx8SExyCjdwakEtHcBBA3rRZYuhRo1rcUK1ZYt5PP8uq7f/bs2Vi5ciVWrVoFpVKJ8vJylJeXo+7XqFqtVmPmzJmYO3cuNm3ahL179+K+++5Denq6wwiwfv36Yd26dQAAiUSCxx57DH/+85+xfv16FBcXY9q0aUhISEB2drY3XiYRkcdIJVIoZUroTXqoZKpWi96kh1KmZPDTGWVlwKxZjttycqzbyWd5NQP09ttvAwBGjx7tsH3ZsmWYMWMGAOD111+HVCrFpEmTYDKZMG7cOLz11lsOxx8+fNg+ggwAnn76aRiNRjz44IOorq7GTTfdhLy8PISFhbn19RARiYFOo0PJhRKYLWaoZE1DgQ0mA9QyNXQanRdb54Pkcsdh7ykp1nW53GtNou4T1TxAYsF5gIjI1+0+vRvFFcXoo+lj33bs/DEMiBuAG3rd4MWW+agTJ6yBDwAcOgRERQHR0V5tks9y45xKnfn8FkUnaCIici1bFshgMkAlU8FgMkARqmD2p6uaBzuJif43EaLJBNS33XEeoaGAnw0WYgBEROSHNHINUiNTUVxRDJVMhUpjJQbEDYBGrvF200hsLBagsBCobLvjPGJigIwMQOo/fcf855UQEZEDnUYHRagCpw2nmf2htkmlgFIJ6PWAStV60eut+/0o+AEYABER+S1bFkhv0iM1MpXZH2qbTgeo1YDZDISHNy1ms3W7zv+CZ94CIyLyY2maNDQ0NiBNk+btppCYaTTWyR2Li61ZH5vKSmDAAOt+P8MMEBGRH4uUR2J40nBEyiO93RQSO53O2rnbVhDcYLCu+2H2B2AAREREREBTFsjWGbqy0rruh9kfgAEQERER2diyQKdPuy/707yI7KlTXisqywCIiIiIrGxZIL3ePdmfqipgwoSm9awsYMwYrwRB7ARNRERETdLSgIYG67+uVldnnQna5vhxa6D1aw1QT2IGiIiIiJpERgLDh1v/dTWtFli61HHbihXW7R7GAIiIiIg8o6wMmDXLcVtOjnW7h/EWmCcEYI0VTzGZTahvbPvahgaFQhbMa0tdx/cYkQvJ5Y511FJSrOtyucebwgDI3QK0xoonWAQLCk8WovJi29c2JjwGGb0zIJXw2lLn8T1G5GLR0cBXX1kDHwDIywOiohyLzXoIf2PdLUBrrHiCVCKFUqaE3qSHSqZqtehNeihlSn4wUZfxPUbkBs2DncRErwQ/AAMgzwjAGiueotPooJapYbaYER4Sbl/MFjPUMjWLP1K38T1GAKy3aQTBujS/hUM+iwGQJ7ScXdPGz2fZ9ARbscdKo+O1rTRWsvgjuQTfY0T+iQGQpwRYjRVP0ml0UIQqYDBZr63BZIAiVMFv5uQyfI8R+R8GQJ4SYDVWPMZkgsYcAl1IHKrPliGo9iKqz5ZBFxIHjTnEOgKPqJtaZoGY/SHyfRwF5kk6HVBS4t4aK4Gk2Qi7fvW1qC8/DItwEDqJFP3iZUBoBUfYkcvoNDqUXCjBacNpZn8ocBmNQI8e1p9ra326PxQ/FTzJ3TVWAk2zEXY9ohMQFd8b1TILouJ7o0d0AkfYkUvZskB6kz4gsj8mswk1ppo2F5OZ2VXybcwAeZo7a6wEIltWzWxGQpwO9bJgJESkACaOsCPXS9OkoaGxAWka//795fxHFAj4zvU0d9ZYCUTN+lYpZUoMiBsApUzJPlbkFpHySAxPGo5IuX///nL+IwoEzACR63ir5IctC2QwWCeX5Ag7om6z9XkyW8xQyVT27QaTgfMfUWs+WPKJAZA3+OAb5bK8WfLDlgUqLrYGQJWVwIABzP4QdYOtz1NxRbFDAFRprMSAuAF+3weKOsFHSz4xAPI0H32jXJatQ/LRo4BW23p/WZk1SHHXa+IIOyKXs2WBDCYDVDIV5z8i57z997+LxNWaQODHtcFMKVrUyUNx8WINLgajablYgzp5KEwpTn4xXIUj7IhcjvMfUYf5YMknZoC8odnIJaiaUsswGET7Rrkci2BBYe1PaAw5DfVPZTBq4+z7FGUV0KdpEVT7EzJi4tzXcZIj7IhcjvMfUYe07Ipg46xLgq2umpf5XprBH/hhbTDbqJFf4sIRqoyA0gSEh4RDaQJClRH4JS7c/aNGOMKOyOUCbf4j6gYfK/nEAMhbfOyN0hE6jQ5hsQmoSYyBUn8JYcFhUOovoSYxBmGxCfzmSOSj0jRpGBQ3yO/nP6Ju8rGSTwyAvMXH3igdYfumeCI6BJbwMISWV8ISHoYT0SH85kjkwwJl/iNyAduXex8YkMIAyJt86I3SUTqNDiExcaiKVyG4xoiqeBVCYuKY/SEiCgQ+NCCFAZA3+dAbpaPsWaCYUNT21+FETCizP0REgSQtDRg0SPQDUrwaAC1atAjXX389lEolYmNjkZ2djcOHDzscc+nSJcyePRtRUVHo0aMHJk2ahIqKinbPO2PGDEgkEoclKyvLnS+l63zkjdIZOo0OIdGxOHhFJEKiY72a/WFBRyIiD/ORASleHQa/efNmzJ49G9dffz3MZjPmz5+PsWPH4qeffoJCoQAAPP744/jqq6+wdu1aqNVqzJkzB3feeSe2bdvW7rmzsrKwbNky+7pMrDMr294ofsSWBdrzyx5cl3Cd17I/LOhIRERt8WoAlJeX57Cem5uL2NhY7N27FyNHjoRer8f777+PVatWYcyYMQCAZcuWoX///ti5cyduvPHGNs8tk8kQHx/v1vZT28RQNds2NP/ohaPQqlpPwlhmKEOf8ERIa41tn8QXy5IQEblLVVXTz6dOAVFRQHQ0TGYT6hvbLvEUGhQKWbC4/paKaiJEvV4PAND82hdm7969aGhoQGZmpv2Yfv36ISkpCTt27Gg3ACooKEBsbCwiIyMxZswY/PnPf0ZUVJR7XwDZ2UaNeFu7BR1DlOh7qBLY/VXbJ/DFsiRERO5QVQVMmNC0npUFKJWwbPwfCmuKfS7bLpoAyGKx4LHHHsPw4cNx9dVXAwDKy8sRGhqKiIgIh2Pj4uJQXl7e5rmysrJw5513onfv3jh27Bjmz5+P8ePHY8eOHQgKCmp1vMlkgsnU1BfEYJubh3ze5Qo6qi4BKNvnU/VriIhcrUMZnLo6wNgsY378OJCaCukl02Wz7amRqaIKfgARBUCzZ8/G/v37UVhY2O1z/eY3v7H/PGDAAAwcOBB9+vRBQUEBbr755lbHL1q0CAsXLuz285I4tVvQUQ6/K0tC5DNMJqC+7Q9d3oL2jE71l1y6FGh2VwYrVgBaLXR1iraz7TK1KKdCEUUANGfOHHz55ZfYsmULEhMT7dvj4+NRX1+P6upqhyxQRUVFp/r3pKamIjo6GkePHnUaAM2bNw9z5861rxsMBmidZQSoe7z0x65lFsiW/dHINdYAqKP1a4jIdSwWoLCwdUmg5ngL2iM60l8yNTIV0lOngVmzHHfm5AAFBdBote1m28U4FYpXAyBBEPDwww9j3bp1KCgoQO/evR32DxkyBCEhIdi4cSMmTZoEADh8+DBOnjyJ9PT0Dj/PqVOncO7cOfTs2dPpfplMJt5RYv7Cy3/s2i3oaCtOazBYgyA/KEtCJHpSKaBUAkeP8ha0CLTbX9KWwTFarH8bbVJSrOtyucM5nGbbRcir76zZs2dj5cqVWLVqFZRKJcrLy1FeXo66ujoAgFqtxsyZMzF37lxs2rQJe/fuxX333Yf09HSHDtD9+vXDunXrAAC1tbV46qmnsHPnThw/fhwbN27EHXfcAZ1Oh3HjxnnldRKa/tjp9dYgo+Wi11v3u+mPXbsFHf2wLAmRT9DprLeazWYgPLxpMZt5C9rDbH8jK42OX1IrjZVNfzOjo4Gvmg0aycsD8vOt252cw+GxIuTVDNDbb78NABg9erTD9mXLlmHGjBkAgNdffx1SqRSTJk2CyWTCuHHj8NZbbzkcf/jwYfsIsqCgIPz4449Yvnw5qqurkZCQgLFjx+LFF19klsfbbJkWL/W3aXdovq1tflSWhMibOtSp1vblg7egRaFDGZxfgx0AQGKiY0YIl8m2i4zXb4FdTlhYGJYsWYIlS5Z06DxyuRzffPONS9pHLublP3btDs23tW3PHuC66/iHl6gbOtqpdph2GMzaOAQfOgChqgJQKQFDDSQhUpi1cQg1m0Q3d4w/a7e/ZCfP4e2JcDtCFJ2gKYCIrb9N847Z8fHWkiTx8UBNjXUbR6EQdVpHOtWmRKRge9l2VF6shCbkNNQ/lcGojYOirAL6NC3On9uBmDrxzR3j71yRwRHDRLgdwQCI3MZpClwRAqk2HtLiAwhSpCHUm6nutjpmb9/e9DNHoRB1yeU61V4RdQWOnj+KoxeOIkqXhtDyGoSevwgoIyDRpUFvqhbl3DH+zhUZHLFMhHs5DIDILdpLgYeiFvGGw1D9cApX9hwAqbeyPxyFQuQ2l5uEVCPX2IOkuhA5LKm9ofzxEGoG6lCnkkPdIIi6/4g/85UMTnfxLzu5hS0FrjfpoZKpHJaw2ASciQuHos4MaR+dd/vbcBQKkdvoNDooQhUwmKyz67fsVNt81FBdSi/U9tehLqWX6EcP+TtbBidS7ljN3WQ2ocZUY1+vMdU4LCazqeWpRI0ZIHKb9lLg0Omg0fay9rnxJo5CIXKbjnSqtf2dOB8iwHzd1dYgqeHXIIkzRYuGLat/vqoMd/+6Le9oHhrDw+zHtFfvS4zFUhkAkdu0mwJPGQh1rxu82LpmxNYxm8iPXK5TbZtBkiwC2LSJM0WLhC2rf7y+qVamSqZCo8waALVX76tTpTY82OeL7xpyq8ulwEWBEyESuU27k5D+yvZ3wiFI8vLkqdSaTqODKrTpy6w8RI7wkHCYLeZ263211yVCJVNBb9JDKVN6vMM73znkVj4zM6hOZ836cCJEv2frx9DW4mv9GHxBmiYNg+IGtdmpts0giX30REUj16B3ZO9W2zvyd12n0UEtU8NsMSM8JNy+XC54cifeAiO384mZQTkRYkAQayre33VkWLTTkUfsoyc6qZGpDusdzep3ZFSgp/E3nNyuIylwUUhLAwYN8n7HbHIbsabiqe2RR/bsrOHXvifso+dVLf9+dyarL7YuEfwtJ4+4XApcFCIjgeHDrf+S3xJjKp7awT56ovWL4ZdOBTBi6xLBAIg8os1vd0Qe1qGq1yQu7KMnSoZ6Q6d/Z5x2ePcSBkAU0NghNjCJLRVPl2HLAun1zP6IyIDYAZ3O6oupSwQ7QVPAYofYwOWKqtfkYWlpQEMD++h5m0IBCAIAIL2LpxBLqQ3+VaeAxQ6xgU1MqXjqAPbR8xti6RLBv+wU0NghNnCJKRVPRJ7HAIgCGjvEBjafGJ1IRG7BPkAU8GwTNRpMBqhkKnaIDSAdmaCPRIzFUqkbGABRwGOHWCIfZLEAhYUslkpdxgCICD5SroM8wmQ2ob6x7axCaFAoZMHMKnidrVjq0aOAVtt6f1mZdcg8gx9qAwMgIjRlgfb8sgfXJVzH7E+A4tQI4nLZYDRFC1lJibU4avNaYQYDi6XSZTEAIvqVWOamIO+xTY1w9MJRaFWtswplhjKkRqYy+PGADgejqb0hLd7PYqnUafwtJvqVWOamIO/i1Aji0OF5unRpLJZKXcIAiIioGU6NIB4dCkZZLJW6iAEQEVELrBUmDh0ORlkslbqAARARUQstP3iZ/fGeDgWjLJZKXcBO0ERETnBqhPZ5arqADs/TxWKp1EkMgIiInODUCG3z9HQBHQpGbcVSiTqIt8CIiNrAWmHOdXiEloumC2DhWnIHZoCIiNrAWmFts2VlzBYzVLKmOXgMJoNbpgvgPF3kaswAERFRp3l6ugDO00WuxgCIiIi6hNMFkC9jAERERF3C6QLIlzEAIiKiLrNlgThdAPkarwZAixYtwvXXXw+lUonY2FhkZ2fj8OHDDse89957GD16NFQqFSQSCaqrqzt07iVLliAlJQVhYWEYOnQodu/e7YZXQEQU2DhCi3yVVwOgzZs3Y/bs2di5cyc2bNiAhoYGjB07Fkaj0X7MxYsXkZWVhfnz53f4vB999BHmzp2LBQsW4Pvvv8egQYMwbtw4nD171h0vg4gooHG6APJFEkEQBG83wqayshKxsbHYvHkzRo4c6bCvoKAAGRkZuHDhAiIiIto9z9ChQ3H99ddj8eLFAACLxQKtVouHH34Yf/jDHy7bDoPBALVaDb1eD5VKddnjiYiIyPs68/ktqj5Aer0eAKDpRh2X+vp67N27F5mZmfZtUqkUmZmZ2LFjh9PHmEwmGAwGh4WIiIj8l2gCIIvFgsceewzDhw/H1Vdf3eXzVFVVobGxEXFxcQ7b4+LiUF5e7vQxixYtglqtti9arbbLz09ERETiJ5oAaPbs2di/fz/WrFnj8eeeN28e9Hq9fSkrK/N4G4iIiMhzRFEKY86cOfjyyy+xZcsWJCYmdutc0dHRCAoKQkVFhcP2iooKxMfHO32MTCaDTNb9qsVERETkG7yaARIEAXPmzMG6deuQn5+P3r17d/ucoaGhGDJkCDZu3GjfZrFYsHHjRqSnp3f7/EREROT7vBoAzZ49GytXrsSqVaugVCpRXl6O8vJy1NXV2Y8pLy9HUVERjh49CgAoLi5GUVERzp8/bz/m5ptvto/4AoC5c+fiX//6F5YvX46DBw/id7/7HYxGI+677z7PvTgiIiISLa/eAnv77bcBAKNHj3bYvmzZMsyYMQMA8M4772DhwoX2fbbh8c2POXbsGKqqquzHTJ48GZWVlXjuuedQXl6Oa665Bnl5ea06RhMREVFgEtU8QGLBeYCIiIh8j8/OA0RERETkCQyAiIiIKOAwACIiIqKAwwCIiIiIAg4DICIiIgo4DICIiIgo4IiiFAYREVFnmcwm1DfWt7k/NCgUsmCWOSLnGAAREZHPsQgWFJ4sROXFyjaPiQmPQUbvDEglvNlBrfFdQUREPkcqkUIpU0Jv0kMlU7Va9CY9lDIlgx9qE98ZRETkk3QaHdQyNcwWM8JDwu2L2WKGWqaGTqPzdhNJxBgAERGRT9LINUiNTEWl0fE2WKWxEqmRqdDINV5qGfkCBkBEROSzdBodFKEKGEwGAIDBZIAiVMHsD10WAyAiIvJZLbNAzP5QRzEAIiIin2bLAp02nGb2hzqMARAREfk0WxZIb9Iz+0MdxnmAiIjI56Vp0tDQ2IA0TZq3m0I+ggEQERH5vEh5JIYnDfd2M8iH8BYYERERBRwGQERERBRwGAARERFRwGEARERERAGHARAREREFHAZAREREFHAYABEREVHAYQBEREREAYcBEBEREQUcBkBEREQUcFgKwwlBEAAABoPByy0hIiKijrJ9bts+x9vDAMiJmpoaAIBWq/VyS4iIiKizampqoFar2z1GInQkTAowFosFv/zyC5RKJSQSSZfOYTAYoNVqUVZWBpVK5eIWBhZeS9fgdXQdXkvX4bV0HV5La+anpqYGCQkJkErb7+XDDJATUqkUiYmJLjmXSqUK2Deiq/Faugavo+vwWroOr6XrBPq1vFzmx4adoImIiCjgMAAiIiKigMMAyE1kMhkWLFgAmUzm7ab4PF5L1+B1dB1eS9fhtXQdXsvOYSdoIiIiCjjMABEREVHAYQBEREREAYcBEBEREQUcBkBEREQUcBgA/er555+HRCJxWPr162fff+zYMUycOBExMTFQqVS45557UFFR4XCO8+fPY+rUqVCpVIiIiMDMmTNRW1vrcIwgCHjllVdwxRVXQCaToVevXvjLX/7icExBQQGuvfZayGQy6HQ65Obmuu11u4OnruU333yDG2+8EUqlEjExMZg0aRKOHz/ucAyvJfCXv/wFw4YNQ3h4OCIiIpw+z8mTJzFhwgSEh4cjNjYWTz31FMxms8MxvnwtPXEdf/jhB0yZMgVarRZyuRz9+/fHm2++2eo4X76OgOfekzbnzp1DYmIiJBIJqqurHfbxWnb8Wubm5mLgwIEICwtDbGwsZs+e7bD/xx9/xIgRIxAWFgatVouXXnrJpa9VjBgANXPVVVfhzJkz9qWwsBAAYDQaMXbsWEgkEuTn52Pbtm2or6/HbbfdBovFYn/81KlTceDAAWzYsAFffvkltmzZggcffNDhOR599FEsXboUr7zyCg4dOoT169fjhhtusO8vLS3FhAkTkJGRgaKiIjz22GOYNWsWvvnmG89cBBdx97UsLS3FHXfcgTFjxqCoqAjffPMNqqqqcOeddzocw2sJ1NfX4+6778bvfvc7p+dvbGzEhAkTUF9fj+3bt2P58uXIzc3Fc889Zz/GH66lu6/j3r17ERsbi5UrV+LAgQN49tlnMW/ePCxevNh+jD9cR8D917K5mTNnYuDAga2281padeRavvbaa3j22Wfxhz/8AQcOHMD//vc/jBs3zr7fYDBg7NixSE5Oxt69e/Hyyy/j+eefx3vvvee+Fy4GAgmCIAgLFiwQBg0a5HTfN998I0ilUkGv19u3VVdXCxKJRNiwYYMgCILw008/CQCE7777zn7Mf//7X0EikQinT5+2HxMcHCwcOnSozXY8/fTTwlVXXeWwbfLkycK4ceO6+tI8zhPXcu3atUJwcLDQ2NhoP2b9+vWCRCIR6uvrBUHgtWxp2bJlglqtbrX966+/FqRSqVBeXm7f9vbbbwsqlUowmUyCIPj+tfTEdXTm97//vZCRkWFf9/XrKAievZZvvfWWMGrUKGHjxo0CAOHChQv2fbyWjtq6lufPnxfkcrnwv//9r812vPXWW0JkZKT9910QBOGZZ54R+vbt2/EX44OYAWrmyJEjSEhIQGpqKqZOnYqTJ08CAEwmEyQSicPkUmFhYZBKpfZofceOHYiIiMB1111nPyYzMxNSqRS7du0CAPznP/9BamoqvvzyS/Tu3RspKSmYNWsWzp8/b3/Mjh07kJmZ6dCucePGYceOHW573e7g7ms5ZMgQSKVSLFu2DI2NjdDr9VixYgUyMzMREhJiP0+gX8uO2LFjBwYMGIC4uDj7tnHjxsFgMODAgQP2Y3z9Wrr7Ojqj1+uh0Wjs6/5wHQHPXMuffvoJL7zwAj788EOnRS15LTtmw4YNsFgsOH36NPr374/ExETcc889KCsrsx+zY8cOjBw5EqGhofZt48aNw+HDh3HhwgUXvEpxYgD0q6FDhyI3Nxd5eXl4++23UVpaihEjRqCmpgY33ngjFAoFnnnmGVy8eBFGoxFPPvkkGhsbcebMGQBAeXk5YmNjHc4ZHBwMjUaD8vJyAEBJSQlOnDiBtWvX4sMPP0Rubi727t2Lu+66y/6Y8vJyhw8iAIiLi4PBYEBdXZ2br4JreOJa9u7dG99++y3mz58PmUyGiIgInDp1Ch9//LH9MbyWHdPWdbLta+8YX7mWnriOLW3fvh0fffSRw61bX7+OgGeupclkwpQpU/Dyyy8jKSnJ6TG8lh1TUlICi8WCv/71r3jjjTfwySef4Pz587jllltQX18PoGN/A/wRA6BfjR8/HnfffTcGDhyIcePG4euvv0Z1dTU+/vhjxMTEYO3atfjPf/6DHj16QK1Wo7q6Gtdee63TbyZtsVgsMJlM+PDDDzFixAiMHj0a77//PjZt2oTDhw+78dV5lieuZXl5OR544AFMnz4d3333HTZv3ozQ0FDcddddEPxocnNPXMtA4OnruH//ftxxxx1YsGABxo4d6+JX412euJbz5s1D//79ce+997rxlXifpz53Ghoa8I9//APjxo3DjTfeiNWrV+PIkSPYtGmTG1+d+AV7uwFiFRERgSuuuAJHjx4FAIwdOxbHjh1DVVUVgoODERERgfj4eKSmpgIA4uPjcfbsWYdzmM1mnD9/HvHx8QCAnj17Ijg4GFdccYX9mP79+wOwjsLp27cv4uPjW/Xyr6iogEqlglwud9vrdSd3XMslS5ZArVY7jFRYuXIltFotdu3ahRtvvJHXsoPi4+Oxe/duh22262a73v52Ld1xHW1++ukn3HzzzXjwwQfxxz/+0WGfv11HwD3XMj8/H8XFxfjkk08AwP6lJjo6Gs8++ywWLlzIa9lBPXv2BABceeWV9m0xMTGIjo62325r61ra9vkrfk1sQ21tLY4dO2Z/89hER0cjIiIC+fn5OHv2LG6//XYAQHp6Oqqrq7F37177sfn5+bBYLBg6dCgAYPjw4TCbzTh27Jj9mJ9//hkAkJycbD/Pxo0bHZ5zw4YNSE9Pd/2L9BB3XMuLFy+2+hYUFBQEAPYREryWHZOeno7i4mKHoHPDhg1QqVT2P5r+di3dcR0B4MCBA8jIyMD06dNbTW8B+N91BNxzLT/99FP88MMPKCoqQlFREZYuXQoA2Lp1q334Nq9lxwwfPhwAHO4ynD9/HlVVVQ6fO1u2bEFDQ4P9mA0bNqBv376IjIzszksSN2/3whaLJ554QigoKBBKS0uFbdu2CZmZmUJ0dLRw9uxZQRAE4YMPPhB27NghHD16VFixYoWg0WiEuXPnOpwjKytLGDx4sLBr1y6hsLBQSEtLE6ZMmWLf39jYKFx77bXCyJEjhe+//17Ys2ePMHToUOGWW26xH1NSUiKEh4cLTz31lHDw4EFhyZIlQlBQkJCXl+eZC+ECnriWGzduFCQSibBw4ULh559/Fvbu3SuMGzdOSE5OFi5evCgIAq+lzYkTJ4R9+/YJCxcuFHr06CHs27dP2Ldvn1BTUyMIgiCYzWbh6quvFsaOHSsUFRUJeXl5QkxMjDBv3jz7OXz9WnriOhYXFwsxMTHCvffeK5w5c8a+2J5DEHz/OgqCZ65lS5s2bWo1CozX0qoj1/KOO+4QrrrqKmHbtm1CcXGxcOuttwpXXnmlfcRsdXW1EBcXJ+Tk5Aj79+8X1qxZI4SHhwvvvvuu5y6GFzAA+tXkyZOFnj17CqGhoUKvXr2EyZMnC0ePHrXvf+aZZ4S4uDghJCRESEtLE1599VXBYrE4nOPcuXPClClThB49eggqlUq47777Wv1Cnz59WrjzzjuFHj16CHFxccKMGTOEc+fOORyzadMm4ZprrhFCQ0OF1NRUYdmyZW573e7gqWu5evVqYfDgwYJCoRBiYmKE22+/XTh48KDDMbyWgjB9+nQBQKtl06ZN9mOOHz8ujB8/XpDL5UJ0dLTwxBNPCA0NDQ7n8eVr6YnruGDBAqf7k5OTHc7jy9dREDz3nmzOWQBk285reflrqdfrhfvvv1+IiIgQNBqNMHHiROHkyZMO5/nhhx+Em266SZDJZEKvXr2Ev/3tb2597WIgEQQ/6jFKRERE1AHsA0REREQBhwEQERERBRwGQERERBRwGAARERFRwGEARERERAGHARAREREFHAZAREREFHAYABEREVHAYQBERD5vxowZkEgkeOihh1rtmz17NiQSCWbMmGE/Njs7u9VjJRIJQkJCEBcXh1tuuQUffPCBva4cEfkfBkBE5Be0Wi3WrFmDuro6+7ZLly5h1apVSEpKavexWVlZOHPmDI4fP47//ve/yMjIwKOPPopbb70VZrPZ3U0nIi9gAEREfuHaa6+FVqvFZ599Zt/22WefISkpCYMHD273sTKZDPHx8ejVqxeuvfZazJ8/H1988QX++9//Ijc3180tJyJvYABERH7j/vvvx7Jly+zrH3zwAe67774unWvMmDEYNGiQQ0BFRP6DARAR+Y17770XhYWFOHHiBE6cOIFt27bh3nvv7fL5+vXrh+PHj7uugUQkGsHebgARkavExMRgwoQJyM3NhSAImDBhAqKjo7t8PkEQIJFIXNhCIhILBkBE5Ffuv/9+zJkzBwCwZMmSbp3r4MGD6N27tyuaRUQiw1tgRORXsrKyUF9fj4aGBowbN67L58nPz0dxcTEmTZrkwtYRkVgwA0REfiUoKAgHDx60/9wRJpMJ5eXlaGxsREVFBfLy8rBo0SLceuutmDZtmjubS0RewgCIiPyOSqVqc5/FYkFwsOOfvry8PPTs2RPBwcGIjIzEoEGD8I9//APTp0+HVMpEOZE/kgiCIHi7EUREnpKVlQWdTofFixd7uylE5EX8akNEAeHChQv48ssvUVBQgMzMTG83h4i8jLfAiCgg3H///fjuu+/wxBNP4I477vB2c4jIy3gLjIiIiAIOb4ERERFRwGEARERERAGHARAREREFHAZAREREFHAYABEREVHAYQBEREREAYcBEBEREQUcBkBEREQUcBgAERERUcD5/yJeUQRx5imyAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABP90lEQVR4nO3deXhTVcIG8DcpbZqGJDR0o7QFajogIAVRoTDKYm3LgFLUGdxYFIYPp6iICuI8LjiOdUBxFEFBFBAFXEYEFYtIWSwWlaUKDLIjZWlpgSY0LWnanO+PTAKhDXTJft/f89wHcu6Sc29D83LuuefIhBACRERERBIi93UFiIiIiLyNAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIgkQSaTYdKkSb6uBhH5CQYgIomRyWRXXcaOHdvo7QBg4MCBLrf57bffAAC//fYbpk6dip49e0KtVqNdu3YYOnQotm3bVq+On3/+OUaOHInk5GRERESgc+fOeOKJJ1BRUeHFK0VEwayVrytARN61dOlSl+teeOEFHDp0CJ07d3ba7siRI3juuecwYcIE3HzzzY7ya665xvH3hIQE5Obm1jtmfHw8AGDhwoV47733cNddd+Fvf/sbDAYD5s+fj759+yIvLw/p6emOfSZMmID4+Hg88MADSEpKwq5du/DWW29hzZo12LFjB5RKZYuuARERBBGREOLdd98VAMQjjzxSb93PP/8sAIhFixY1uO+AAQNEt27drnj8bdu2ifPnzzuVlZeXi+joaNG/f3+n8g0bNtTbf8mSJQKAePfdd698Ii4AEDk5Oc3al4iCD2+BERH27NmDRx99FL169cKsWbM88h69e/dG69atncratm2Lm2++GXv37nUqHzhwYL39R4wYAQD1tn311VfRr18/tG3bFkqlEr1798Znn33msh4fffQROnfujPDwcPTu3RubN292Wv/CCy9AJpNh//79eOCBB6DVahEdHY1nn30WQggUFxdj+PDh0Gg0iIuLw2uvvea0/5gxYxAeHl6vnpmZmYiMjMTJkycBXPlW5NGjR3H69GlER0dj4MCBEEI4jnPw4EGoVCqMHDnS6Xp1794dv/76KwYMGICIiAjo9XrHddi0aRP69OkDpVKJzp0747vvvnN5fYikggGISOKqqqrwl7/8BSEhIVixYgUUCkWzjlNXV4fy8nKnpbKy8qr7lZSUICoqqlHbAai37RtvvIFevXrhxRdfxMsvv4xWrVrhz3/+M77++ut6x9i0aRMmT56MBx54AC+++CLOnDmDrKws7N69u962I0eOhNVqxSuvvII+ffrgpZdewr///W/cdtttaN++Pf71r39Br9fjySefdApRb7zxBqKjozFmzBjU1dUBAObPn49vv/0Wc+bMcdwSXLp0ab2lQ4cOUCqVaN26NWJiYvD2229j06ZNmDNnDgDAarVi7NixUKvVmDdvnlN9z507h2HDhqFPnz6YOXMmFAoF7rnnHnz88ce455578Kc//QmvvPIKTCYT7r77bpw/f/6q15woqPm6CYqIfOuhhx4SAMSSJUtcbtOYW2AA6i1jxoy54ntv3rxZyGQy8eyzz161nuPGjRMhISFi//79TuVVVVVOr2tqakT37t3F4MGDncrtddq2bZuj7Pfffxfh4eFixIgRjrLnn39eABATJkxwlNXW1oqEhAQhk8nEK6+84ig/d+6cUCqV9c5z7dq1AoB46aWXxOHDh0Xr1q1Fdnb2Fc9v5syZAoD44IMPnMrvvfdeERERIfbv3y9mzZolAIgvvvjCaRv79V+2bJmj7LfffhMAhFwuF1u3bq1XN1c/SyKpYAAikrCPPvpIABCjRo264naNCUAdO3YU69atc1r27Nnj8pilpaUiISFBJCcn1+sb5KqeU6dOveJ2Z8+eFWVlZeLhhx8Wbdq0cVoHQKSlpdXbZ+TIkSIiIkLU1tYKIS4GoJ9++slpu+zsbAFAlJWVOZX37NlT3HzzzfWO+3//938iLCxM9OzZU0RFRYnS0lKX9c7PzxchISEN9r86c+aMaNeunejRo4cIDw9v8Gc1YMAA0bp1a2G1Wp3K27RpU69vVkVFhQDQqNBJFMz4FBiRRB04cAATJ07EH/7wh3q3U5pDpVI5Pcl1JSaTCcOGDcP58+dRUFBQr2/Qpb7//nuMGzcOmZmZ+Oc//1lv/VdffYWXXnoJRUVFMJvNjnKZTFZv25SUlHplf/jDH1BVVYWysjLExcU5ypOSkpy202q1CA8Pr3cLTqvV4syZM/WO++qrr2LVqlUoKirCsmXLEBMT0+D5HT9+HCNHjkT//v0xe/bseut1Oh3efPNN/PnPf0ZsbCzefPPNBo+TkJBQ75y1Wi0SExPrlQG2W2ZEUsY+QEQSZDabMXLkSNTU1GDFihVXDCDuVlNTgzvvvBO//vorVq1ahe7du7vc9pdffsEdd9yB7t2747PPPkOrVs7/Z/v+++9xxx13IDw8HPPmzcOaNWuwbt063HfffU4dh5sjJCSkUWUAGnyvnTt34vTp0wCAXbt2NbhfTU0N7r77bigUCnzyySf1zs9u7dq1AGyh5fjx442ub1PrTCQlbAEikqAnn3wSO3fudHQg9har1YrRo0dj/fr1+OSTTzBgwACX2x46dAhZWVmIiYnBmjVrGgxp//nPfxAeHo61a9c6dd5etGhRg8c8cOBAvbL9+/cjIiIC0dHRzTijhplMJjz44IPo2rUr+vXrh5kzZ2LEiBG48cYbnbZ79NFHUVRUhM2bNyM2NrbBY+Xl5WHhwoWYOnUqPvroI4wZMwY//vijy7BERI3DFiAiiVm5ciXeeust3HHHHXj00Ue9+t6PPPIIPv74Y8ybNw933nmny+1KSkqQkZEBuVyOtWvXugwnISEhkMlkjqetAODo0aP44osvGty+sLAQO3bscLwuLi7GqlWrkJGR4bKlpDmmTZuGY8eOYcmSJZg9ezY6duyIMWPGON2iW7RoEebPn4+5c+fipptuavA4FRUVGD9+PG666Sa8/PLLWLhwIXbs2IGXX37ZbXUlkir+F4JIQk6dOoVx48YhJCQEt956Kz788MMGt7vmmmuQlpbm1vf+97//jXnz5iEtLQ0RERH13nvEiBFQqVQAgKysLBw+fBhTp05FQUEBCgoKHNvFxsbitttuAwAMHToUs2fPRlZWFu677z6cPn0ac+fOhV6vx6+//lqvDt27d0dmZiYeffRRKBQKR9+nGTNmuO088/PzMW/ePDz//PO4/vrrAdjCzsCBA/Hss89i5syZKC8vx9/+9jd07doVCoXC5bV47LHHcObMGXz33XcICQlBVlYWxo8fj5deegnDhw9Hamqq2+pNJDk+7oRNRF60YcOGBh9Xv3y5/LFud4wEPWbMmCu+55EjRxzbXmm7AQMGOB33vffeEykpKUKhUIguXbqIRYsWOZ7kuhT+NxL0hx9+6Ni+V69e9Uadtu97+dNeY8aMESqV6ornbjQaRYcOHcT1118vLBaL03aPP/64kMvlorCwUBw5cuSq12LVqlUCgHjttdecjmN/j9TUVFFTU3PF69+hQwcxdOjQeuX2a0EkZTIh2BOOiIiIpIV9gIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHI4EGIDrFYrTp48CbVa3eCEikREROR/hBA4f/484uPjIZdfuY2HAagBJ0+erDeDMhEREQWG4uJiJCQkXHEbBqAGqNVqALYLqNFofFwbIiIiagyj0YjExETH9/iVMAA1wH7bS6PRMAAREREFmMZ0X2EnaCIiIpIcBiAiIiKSHAYgIiIikhz2ASIiIgoidXV1sFgsvq6GR4SGhiIkJMQtx2IAIiIiCgJCCJSUlKCiosLXVfGoNm3aIC4ursXj9DEAERERBQF7+ImJiUFERETQDeQrhEBVVRVOnz4NAGjXrl2LjscAREREFODq6uoc4adt27a+ro7HKJVKAMDp06cRExPTotth7ARNREQU4Ox9fiIiInxcE8+zn2NL+zkxABEREQWJYLvt1RB3nSMDEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERH51Pnz53H//fdDpVKhXbt2eP311zFw4EBMnjzZY+/JAEREFGhMJkAmsy0mk69rQ0GmvKocxYZiAECxoRjlVeUef88pU6Zgy5YtWL16NdatW4fvv/8eO3bs8Oh7ciBEIiIfMdWY0Dq3NQCgcnolVGEqH9eIpK68qhyDlwyGyWLC0hFLMWrlKKhCVcgfk4+oiCiPvOf58+exZMkSLFu2DLfeeisAYNGiRYiPj/fI+9mxBYiIyFdMJogXAPECmtaSU37J/8iPH3d+TdQC1ZZqmCwmHD53GP3f74/D5w7DZDGh2lLtsfc8fPgwLBYLbrrpJkeZVqtF586dPfaeAAMQEVFgKS8Hhg69+DorCxg8mCGI3CJRm4ilI5Y6lS0dsRSJ2kQf1chzGICIiHzk7PGDjr+X7NuOM8f2XX2n6mrn1qKjR22vqz33P3SSjmJDMUatHOVUNmrlKEefIE9ITk5GaGgofv75Z0eZwWDA/v37PfaeAAMQEZFPnDm2D+f+NMjx2jJ8GM6k9bx6CEpMBBYudC5butRWTtRCylAlVKEqJEcmY8tDW5AcmQxVqArKUKXH3lOtVmPMmDF46qmnsGHDBuzZswfjxo2DXC736NQe7ARNRNQI7u6wbD5fgbCaWsfrxLNWlGtrYT5fceUdi4uB8eOdy0aNAjZuZAiiFouKiEL+mHxUW6qRqE3ExjEboQxVeqwDtN3s2bMxceJEDBs2DBqNBlOnTkVxcTHCw8M99p5sASIi8oH4bn1wfvYrTmXGd99CfLc+V95RqQRUl4Svjh1tr5We+x86SUtURJSjz0+iNtHj4QewtQJ99NFHMJlMOHXqFCZMmIB9+/ZBr9d77D0ZgIiIGuHSsVCOG4+3eGyUk3t+hHrK005lmr9Owsk9P15xP5NGCdXwPRcL8vKA/HwgyvNfUkSesnPnTixfvhyHDh3Cjh07cP/99wMAhg8f7rH35C0wIqKrKC/7HR1iOkIAUD0DZH2UBXWYukVjoyjUbVAT1gpADQCgWCeHvFUrtFa3adqBEhKcW4SIAtSrr76Kffv2ISwsDL1798b333+PKA8GewYgIqKruGC54PT6aMVRJEcmt2hslLZJnVG1ZgPQoz8AIHTVV2gTn4y2SVcf+6QqDJC9wMETKXj06tUL27dv9+p78hYYEUlLM6aRSLA4d8TUmdwzNoou4WL/hrjOvRsVfojIPRiAiIiupLwcNVkZTkVffwQ8uvQ+j46N4nacP4zICQMQEUlLU6eRqK5GSLXzLTBtXQgiRXiLx0ZRRcYAQgBC2P7eCM3ujM3pM4icMAARkWSYTv0O1YKOFwsaM41EYiJC3nvfqUixaCmWP17glceDL1VeVY6hyy5Og5H1URYGLxl89RDE6TOI6mEAIiLpuKwlp1HTSDQw8GDs5GcQdcb7U0/YJ6q0O1pxtHETVXL6DKJ6GICISDoSEuqXXW0aicsGHjQt6wiVQu2TgQcTtYlYeLvzNBiN6ozN6TOI6mEAIiLJOHtwV/3CUaNsrTyuREUBX3998bUPBx4sNhRj/JfOrVGNmqjS1fQZVzpvoiDHAEREklBeVY57vhrrVHa8bShqleFXb825NOwkJPhs1GX7RJV2Hdt0bNxElZw+g6geBiAikoRqSzVOKsxOZWP/Lxalq5ddPdCoVI6ntXw56nJURBS+vu9ia1Te/XmNG43aj1qxiK6mpqbGK+/DAEREktBQ/5mXRi9G++RUH9WoeS4NOwmahMY/ieYnrVhElxs4cCAmTZqEyZMnIyoqCpmZmV55X06FQUSSYO8/Y59GAgCS107AxriNLR7ROSDYW7GIrqa83PaEYGKirZ+YUunxwLxkyRI8/PDD2LJli0ff51IMQEQkCc3uP0MkJeXltjGiTCbbk4KjRtnCs4dvmaakpGDmzJkeO35DfHoLbPPmzbj99tsRHx8PmUyGL774wml9ZWUlJk2ahISEBCiVSnTt2hXvvPPOVY/76aefokuXLggPD8d1112HNWvWeOgMiChQNLv/DJGU2MeMOnwY6N/f9qcXxozq3bu3R4/fEJ8GIJPJhNTUVMydO7fB9VOmTEFeXh4+/PBD7N27F5MnT8akSZOwevVql8f84YcfcO+992LcuHHYuXMnsrOzkZ2djd27d3vqNIjIy0w1JshmyCCbIYOppvHzWjW7/4wfUYWpIJ4XEM8LzgRP7peYaGv5uZQXxoxS+eDhAp8GoCFDhuCll17CiBEjGlz/ww8/YMyYMRg4cCA6duyICRMmIDU1FT/99JPLY77xxhvIysrCU089hWuvvRb/+Mc/cP311+Ott97y1GkQEREFh+Ji222vSwXpmFF+/RRYv379sHr1apw4cQJCCGzYsAH79+9HRkaGy30KCwuRnp7uVJaZmYnCwkKX+5jNZhiNRqeFiIKP1FtPmttyRhJiHzMqORnYssX2Z5COGeXXnaDnzJmDCRMmICEhAa1atYJcLse7776LW265xeU+JSUliI2NdSqLjY1FSUmJy31yc3MxY8YMt9WbiIgoIEVF2To8258C27jRK0+B+YLfB6CtW7di9erV6NChAzZv3oycnBzEx8fXa+VpienTp2PKlCmO10ajEYmcI4eIiKTo0rDjhe/CjRs3evw9GuK3Aai6uhrPPPMMVq5ciaFDhwIAevTogaKiIrz66qsuA1BcXBxKS0udykpLSxEXF+fyvRQKBRQKhfsqT0QeVV5V7vj7ceNxtI1oG5Admr2N143oIr/tA2SxWGCxWCCXO1cxJCQEVqvV5X5paWlYv369U9m6deuQlpbmkXoSkXeVV5Vj6LKhjtdZH2Vh8JLBTl/uVB+vG5Ezn7YAVVZW4uDBg47XR44cQVFREXQ6HZKSkjBgwAA89dRTUCqV6NChAzZt2oQPPvgAs2fPduwzevRotG/fHrm5uQCAxx57DAMGDMBrr72GoUOHYsWKFdi2bRsWLFjg9fMjIvertlTDWnke4gXba9UzRyGPTUa1xbPjlAS6aks1TJaLHZ+PVhxFciSvG0mXT1uAtm3bhl69eqFXr14AbOP+9OrVC8899xwAYMWKFbjxxhtx//33o2vXrnjllVfwz3/+ExMnTnQc49ixYzh16pTjdb9+/bBs2TIsWLAAqamp+Oyzz/DFF1+ge/fu3j05IvKIRG0i5v7JeeywpSOWSmM6ixZoaC40XjeSMpkQnBzmckajEVqtFgaDARqNxtfVIaJLFBuKkTn/j/jvtGMAANUzQFxsMjaOkcicXs1UbCjGLYtvwdGKo46y5Ehet2Bx4cIFHDlyBB07doQyCB9Zv1R1dTWOHj2KTp06ITw83GldU76//bYPEBFRQy6f06uDNolzejUC50ILbqGhoQCAqqoqH9fE8+znaD/n5vLbp8CIiBoSFRGFz9MXAugPAPjylnfQJj4Zbfk00xXZ50Lr+EZHALa50Br9FJjJBLRubft7ZaVtYDzyKyEhIWjTpg1Onz4NAIiIiIBMJvNxrdxLCIGqqiqcPn0abdq0QUhISIuOxwBERIGlvBy6+8c7XsaNmgiVUuvx2aqDweVzoUlxNOxgZh/uxR6CglWbNm2uOLRNYzEAEVFgqa4Gqi+ZxuHoMSAp2eOzVUuVqcaEmJdbw3HFjx8H2rZl2PRDMpkM7dq1Q0xMDCwWi6+r4xGhoaEtbvmxYwAiosCSmAjMnQtk3n6xzAuzVUvWmcvGCcrKAtRqtrj5sZCQELeFhGDGTtBEFFiKi6H6v0ccL1W1CNrZqt2tWZPBVl9wfn30qK1PEFvcKMAxABFRYLHPVm3XsWPQzlbtFxIS6pexxY2CAAMQEQWWqCjg668vvs7L4+0YTzp+vH4ZW9woCLAPEBEFnkvDTkICH8v2oDPCeVyZug5JCGGLGwUBtgAREVGDyqvK8ae1o5zKsscocOarT9niRgGPLUBEFHhUKoCz+Hjc5ROoAsCR1hZUaSPQ1kd1InIXtgAREVGD7BOoVoUBshdsy4J7PuLcYRQUGICIiKhBxYZijP9yvFPZqJWjUGxgB2gKfLwFRkREDfKrCVTNZqCmxvX6sDBAofBefSjgMQAREVGDWjSBqjtZrUBBAVBW5nqb6Ghg0CBAzhsb1Dj8pBARkUuXT6Dq9fAD2EKNWg0YDIBGU38xGGzrGX6oCfhpISIi/6fXA1otUFsLRERcXGprbeV6va9rSAGGAYiIiPyfTgckJ9e/DVZWZivX6XxTLwpYDEBERBQY9HrbGFBGo+210Wh7zdYfagZ2giYiIpfsM8j7BXsr0K5dtr4/ZWXAddex9YeahS1AREQUOOytQCdOsPWHWoQBiIiIAoe9FchgYN8fahHeAiMiosCSkgJYLLY//ZXJBLRubft7ZaWttYr8CgMQEREFlshIoH9/X9eCAhxvgREREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERuVt5+cW/Hz/u/Jr8AgMQERGRO5WXA0OHXnydlQUMHswQ5GcYgIiIiNyputo2EKLd0aO219XVPqsS1ccARERE5E6JicDChc5lS5fayslvMAARERG5U3ExMH68c9moUbZy8hsMQERERO6kVDrP/dWxo+21UumzKlF9DEBERETuFBUFfP31xdd5eUB+vq38akwmQCazLZf2IyK342SoRERE7nZp2ElI4GzwfogtQERERCQ5DEBEREQkOQxAREREJDkMQERERP6CU2h4jU8D0ObNm3H77bcjPj4eMpkMX3zxhdP6yspKTJo0CQkJCVAqlejatSveeeedKx5z8eLFkMlkTkt4eLgHz4KIiMgNOIWGV/n0KTCTyYTU1FQ89NBDuPPOO+utnzJlCvLz8/Hhhx+iY8eO+Pbbb/G3v/0N8fHxuOOOO1weV6PRYN++fY7XMpnMI/UnIiJqkEoFCNG0fRqaQiM52bNTaJhMQOvWtr9XVkrqaTWfBqAhQ4ZgyJAhLtf/8MMPGDNmDAYOHAgAmDBhAubPn4+ffvrpigFIJpMhLi7O3dUlIiLyHPsUGunpF8s4hYbH+HUfoH79+mH16tU4ceIEhBDYsGED9u/fj4yMjCvuV1lZiQ4dOiAxMRHDhw/Hnj17rri92WyG0Wh0WoiIiLyKU2h4lV8HoDlz5qBr165ISEhAWFgYsrKyMHfuXNxyyy0u9+ncuTPef/99rFq1Ch9++CGsViv69euH48ePu9wnNzcXWq3WsSQybRMR+SVTjQmyGTLIZshgqgmykZI5hYZX+fVI0HPmzMHWrVuxevVqdOjQAZs3b0ZOTg7i4+ORfmkT4SXS0tKQlpbmeN2vXz9ce+21mD9/Pv7xj380uM/06dMxZcoUx2uj0cgQRERE3mWfQqNjR9vrvDygbdvGTaFBTea3Aai6uhrPPPMMVq5ciaH/6xXfo0cPFBUV4dVXX3UZgC4XGhqKXr164eDBgy63USgUUCgUbqk3ERFRs3EKDa/x21tgFosFFosFcrlzFUNCQmC1Wht9nLq6OuzatQvt2rVzdxWJiIgoQPm0BaiystKpZebIkSMoKiqCTqdDUlISBgwYgKeeegpKpRIdOnTApk2b8MEHH2D27NmOfUaPHo327dsjNzcXAPDiiy+ib9++0Ov1qKiowKxZs/D7779j/OUdy4iIiEiyfBqAtm3bhkGDBjle2/vhjBkzBosXL8aKFSswffp03H///Th79iw6dOiAf/7zn5g4caJjn2PHjjm1Ep07dw5//etfUVJSgsjISPTu3Rs//PADunbt6r0TIyIiIr8mE6KpIzUFP6PRCK1WC4PBAI1G4+vqEBHR/5hqTGidaxu4r3J6JVRh7CPTIkE2EGJTvr/9tg8QERERkacwABEREZHkMAARERFJlYRnn2cAIiIikiKJzz7PAEREHhXUUxcQBbKGZp83mTw7+7wfYQAiIiKSIvvs85eS0OzzDEBERERSJPHZ5xmAiIgoYJRXXeyfctx43Ok1NVFLZ583mQCZzLaYAu/2NgMQEREFhPKqcgxddrHTbtZHWRi8ZDBDUHPZZ5+3y8sD8vMlM/s8AxAREQWEaks1TJaLLQ1HK47CZDGh2iKNTrsecfns8xIJPwADEBERBYhEbSIW3u7caXfpiKVI1Eqj0y65FwMQEREFhGJDMcZ/6dxpd9TKUSg2SKPTLrkXAxAREQUEZagSqtCLnXY7tukIVagKytBGdtolukQrX1eAiIioMaIiovD1fV+j4xsdAQB59+ehbURbREVIp98KuQ8DEBERBYxLw06CJgGqMNUVtiZyjbfAiMijOG4LEfkjBiAi8hiO20JE/ooBiIgapxmjvnLcFqIgdums8cePB9ws8gxAROQxHLeFKEiVlwNDL7buIisLGDw4oEIQAxAReQzHbSEKUtXVzi3BR4/aXlcHTusuAxAReQzHbSHycyoVIIRtUTXhibrERGChc+suli61lQcIBiAi8hj7uC12effnIX9MPsdtIQp0xcXAeOfWXYwaZSsPEBwHiIg8iuO2EAUhpdK5xahjR9trZeC07jIAERERUdNERQFff20LPgCQlwe0bRtQs8kzABEREVHTXRp2EhKa1ofID7APEBEREUkOAxARNU6AD3pGRHQp3gIjoqtraNAztRrIzw+oe/4U+FRhKojnha+rQUGALUBEdHVBMOgZEdGlGICI6OqCYNAzIqJLMQAR0dUFwaBnROQnmjGxsicwABHR1SmVMKkvDnBm0icF3KBnRESXYidoIrq6qChg5X8AfVfb65VfAHGJ7ABNRAGLAYiIGkfX9uLf27cHIhsXfvjUDlGQsk+kGqB4C4yIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIvMdP5hVkACIiIiLvaGhewcGDfRKC+Bg8ETWOSgXZC7a/VqpUPq0KEQWohuYVTE72ybyCPm0B2rx5M26//XbEx8dDJpPhiy++cFpfWlqKsWPHIj4+HhEREcjKysKBAweuetxPP/0UXbp0QXh4OK677jqsWbPGQ2dAREREjeZH8wr6NACZTCakpqZi7ty59dYJIZCdnY3Dhw9j1apV2LlzJzp06ID09HSYrjB3yA8//IB7770X48aNw86dO5GdnY3s7Gzs3r3bk6dCREREV+NH8wrKhPCPYRxlMhlWrlyJ7OxsAMD+/fvRuXNn7N69G926dQMAWK1WxMXF4eWXX8b4yy/g/4wcORImkwlfffWVo6xv377o2bMn3nnnnUbVxWg0QqvVwmAwQKPRtOzEiIKEqcaE1rmtAQCV0yuhCuNtMCJqovJyYOBAYM8e2+uOHQG1GsjPd8vUOk35/vbbTtBmsxkAEB4e7iiTy+VQKBQoKChwuV9hYSHS09OdyjIzM1FYWHjF9zIajU4LERERuVlUFPD11xdf5+W5Lfw0ld8GoC5duiApKQnTp0/HuXPnUFNTg3/96184fvw4Tp065XK/kpISxMbGOpXFxsaipKTE5T65ubnQarWOJdEH9yKJiIgk4dKwk5Dgs0mV/TYAhYaG4vPPP8f+/fuh0+kQERGBDRs2YMiQIZDL3Vvt6dOnw2AwOJZiH9yLJCKi4GCuNeO8+bzLxVxr9nUVCX7+GHzv3r1RVFQEg8GAmpoaREdHo0+fPrjhhhtc7hMXF4fS0lKnstLSUsTFxbncR6FQQKFQuK3eREQkTVZhRcGxApRVlbncJjoiGoM6DYJc5rdtEJIQEFdfq9UiOjoaBw4cwLZt2zB8+HCX26alpWH9+vVOZevWrUNaWpqnq0lERBInl8mhVqhhMBugUWjqLQazAWqFmuHHD/i0BaiyshIHDx50vD5y5AiKioqg0+mQlJSETz/9FNHR0UhKSsKuXbvw2GOPITs7GxkZGY59Ro8ejfbt2yM3NxcA8Nhjj2HAgAF47bXXMHToUKxYsQLbtm3DggULvH5+REQkPXqdHofPHUattRYaxcUnkYxmI7QKLfQ6vQ9rR3Y+jaDbtm1Dr1690KtXLwDAlClT0KtXLzz33HMAgFOnTmHUqFHo0qULHn30UYwaNQrLly93OsaxY8ecOkX369cPy5Ytw4IFC5CamorPPvsMX3zxBbp37+69EyMiIsnSKXVIjkxGmcn5NliZqQzJkcnQKXU+qhldym/GAfInHAeIqD6OA0TUeGerz+LbQ98iIjQCGoUGRrMRVZYqZFyTwQBkMgGtbb9LUFkJuHFqnaAYB4iIiChQXd4KxNYf/8MARERE5AF6nR6qMBVOGE9AFaZi3x87lQoQwrb4cGJlBiAiIiIPsLcCGcwGtv74Ib8eB4iI/Ed5Vbnj78eNx9E2oi2iInwzgitRoEjRpcBSZ0GKLsXXVaHLMAAR0VWVV5Vj6LKhjtdZH2VBHaZG/ph8hiCiK4hURqJ/Un9fV4MawFtgRHRV1ZZqmCwmx+ujFUdhsphQban2Ya2IiJqPAYiIripRm4iFty90Kls6YikStZw4mIgCEwMQEV1VsaEY478c71Q2auUoFBs4cTARBSYGICK6KmWoEqrQi4+rdmzTEapQFZShSh/Wioio+dgJmoiuKioiCl/f9zU6vtERAJB3fx6fAiOigMYARESNcmnYSdAkcCoMIgpovAVGREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLTrIEQR4wYAZlMVq9cJpMhPDwcer0e9913Hzp37tziChIRERG5W7NagLRaLfLz87Fjxw7IZDLIZDLs3LkT+fn5qK2txccff4zU1FRs2bLF3fUlIiIiarFmtQDFxcXhvvvuw1tvvQW53JahrFYrHnvsMajVaqxYsQITJ07EtGnTUFBQ4NYKExEREbVUs1qA3nvvPUyePNkRfgBALpfjkUcewYIFCyCTyTBp0iTs3r3bbRUlIiIicpdmBaDa2lr89ttv9cp/++031NXVAQDCw8Mb7CdERERE5GvNugU2atQojBs3Ds888wxuvPFGAMDPP/+Ml19+GaNHjwYAbNq0Cd26dXNfTYmIiIjcpFkB6PXXX0dsbCxmzpyJ0tJSAEBsbCwef/xxTJs2DQCQkZGBrKws99WUiIiIyE1kQgjRkgMYjUYAgEajcUuF/IHRaIRWq4XBYAiq8yJqCVONCa1zWwMAKqdXQhWm8nGNiIicNeX7u1ktQJdiQCAiIqJA0+wA9Nlnn+GTTz7BsWPHUFNT47Rux44dLa4YERERkac06ymwN998Ew8++CBiY2Oxc+dO3HTTTWjbti0OHz6MIUOGuLuORERERG7VrAA0b948LFiwAHPmzEFYWBimTp2KdevW4dFHH4XBYHB3HYmIiIjcqlkB6NixY+jXrx8AQKlU4vz58wBsj8cvX77cfbUjIiIi8oBmBaC4uDicPXsWAJCUlIStW7cCAI4cOYIWPlRGRERE5HHNCkCDBw/G6tWrAQAPPvggHn/8cdx2220YOXIkRowY4dYKEhEREblbs8YBslqtsFqtaNXK9hDZxx9/jC1btiAlJQUTJ05EaGio2yvqTRwHiIiIKPA05fu72QMhXrhwAb/++itOnz4Nq9V68YAyGW6//fbmHNJvMAAREREFHo8PhJiXl4dRo0bhzJkz9dbJZDLHhKhERERE/qhZfYAeeeQR/OUvf8GpU6cct8PsC8MPERER+btmBaDS0lJMmTIFsbGx7q4PERERkcc1KwDdfffd2Lhxo5urQkREROQdzeoEXVVVhT//+c+Ijo7GddddV++pr0cffdRtFfQFdoImIiIKPB7vBL18+XJ8++23CA8Px8aNGyGTyRzrZDJZowPQ5s2bMWvWLGzfvh2nTp3CypUrkZ2d7VhfWlqKadOm4dtvv0VFRQVuueUWzJkzBykpKS6PuXjxYjz44INOZQqFAhcuXGjaSRIREVHQatYtsL///e+YMWMGDAYDjh49iiNHjjiWw4cPN/o4JpMJqampmDt3br11QghkZ2fj8OHDWLVqFXbu3IkOHTogPT0dJpPpisfVaDQ4deqUY/n999+bfI5EREQUvJrVAlRTU4ORI0dCLm9WfnIYMmSIy9njDxw4gK1bt2L37t3o1q0bAODtt99GXFwcli9fjvHjx7s8rkwmQ1xcXIvqRkRERMGrWQlmzJgx+Pjjj91dFydmsxkAEB4e7iiTy+VQKBQoKCi44r6VlZXo0KEDEhMTMXz4cOzZs+eq72U0Gp0WIiIiCl7NagGqq6vDzJkzsXbtWvTo0aNeJ+jZs2e3uGJdunRBUlISpk+fjvnz50OlUuH111/H8ePHcerUKZf7de7cGe+//z569OgBg8GAV199Ff369cOePXuQkJDQ4D65ubmYMWNGi+tMREREgaFZT4ENGjTI9QFlMuTn5ze9IjJZvU7Q27dvx7hx4/DLL78gJCQE6enpkMvlEELgm2++adRxLRYLrr32Wtx77734xz/+0eA2ZrPZ0eIE2HqRJyYm8ikw8hlzrRk1dTUu14eFhEHRSuHFGhER+T+PPwW2YcOGZlWsqXr37o2ioiIYDAbU1NQgOjoaffr0wQ033NDoY4SGhqJXr144ePCgy20UCgUUCn6ZkH+wCisKjhWgrKrM5TbREdEY1GkQ5LKW9cMjIpKqgPjtqdVqER0djQMHDmDbtm0YPnx4o/etq6vDrl270K5dOw/WkMh95DI51Ao1DGYDNApNvcVgNkCtUDP8EBG1QLNagNylsrLSqWXmyJEjKCoqgk6nQ1JSEj799FNER0cjKSkJu3btwmOPPYbs7GxkZGQ49hk9ejTat2+P3NxcAMCLL76Ivn37Qq/Xo6KiArNmzcLvv/9+xafGiPyNXqfH4XOHUWuthUZxsRnXaDZCq9BCr9P7sHZERIHPpwFo27ZtTv2JpkyZAsD2lNnixYtx6tQpTJkyBaWlpWjXrh1Gjx6NZ5991ukYx44dc3oc/9y5c/jrX/+KkpISREZGonfv3vjhhx/QtWtX75wUkRvolDokRyZjV+kupwBUZirDdbHXQafU+bB2RESBr1mdoIMdp8Igf3C2+iy+PfQtIkIjoFFoYDQbUWWpQsY1GQxAREQNaMr3NzsREPkpeytQmcnWGbrMVIbkyGSGHyIiN2AAIvJjep0eqjAVThhPQBWmYt8fIiI3YQAi8mP2ViCD2cDWHyIiN/JpJ2giuroUXQosdRak6FJ8XRUioqDBAETk5yKVkeif1N/X1SAiCiq8BUZERESSwwBEREREksMARERERJLDAERERESSwwBEREREksOnwIj8kdkM1NS4Xh8WBigU3qsPEVGQYQAi8jdWK1BQAJSVud4mOhoYNAiQsxGXiKg5+NuTyN/I5YBaDRgMgEZTfzEYbOsZfoiImo2/QYn8kV4PaLVAbS0QEXFxqa21les5JxgRUUswABH5I50OSE6ufxusrMxWruOcYERELcEAROSv9HpApQKMRttro9H2mq0/REQtxgBE5K8ubwVi6w8RkdswABH5M3sr0IkTbP0hInIjBiAif2ZvBTIY2PpDRORGHAeIyN+lpAAWi+1PIiIfM9eaUVPneqDWsJAwKFr5/0CtDEBE/i4yEujf39e1ICKCVVhRcKwAZVWuB2qNjojGoE6DIJf5900mBiAiIiIfC5RWFblMDrVCjYPnDiJRk1hvfbGxGMmRyX4ffgAGICIiIp8KtFYVvU6Pw+cOo9ZaC41C4yg3mo3QKrTQ6wLjYQ3fX0kiIiIJs7eqGMwGaBSaeovBbIBaofaL8AMAOqUOyZHJKDM5B7YyUxmSI5OhUwbGwxr+cTWJiIgkTK/TQ6vQotZai4jQCMdSa631y1YVvU4PVZgKRrNtoFaj2QhVmMrv6nklDEBEREQ+FmitKpfX11/reSUMQERERH4g0FpV7PU9YTzh1/V0hQGIiIjIDwRaq4q9vgazwa/r6QqfAiMiIvIT9iesAqVVJUWXAkudBSm6wBuolQGIyFPMZqDG9bgeCAsDFL4f14OI/Ie9VWXbyW24If4Gv29ViVRGon9SYA7UygBE5AlWK1BQcHEm94ZERwODBgFy3okmoosCuVUlkDAAEXmCXA6o1cDBg0Bi/dFSUVxsm9yU4YeILhPIrSqBhL99iTxFrwe0WqC2FoiIuLjU1trK9f59b5+IKJgxABF5ik5na+W5/DZYWZmtXOff9/aJiIIZAxCRJ+n1gEoFGG3jesBotL1m6w8RkU8xABF50uWtQGz9ISLyCwxARJ5mbwU6cYKtP0REfoIBiMjT7K1ABgNbf4iI/AQfgyfyhpQUwGKx/UlERD7HAETkDZGRQH+O60FE5C94C4yIiIgkx6cBKDc3FzfeeCPUajViYmKQnZ2Nffv2OW1z4cIF5OTkoG3btmjdujXuuusulJaWXvG4Qgg899xzaNeuHZRKJdLT03HgwAFPngoREREFEJ8GoE2bNiEnJwdbt27FunXrYLFYkJGRAZPJ5Njm8ccfx5dffolPP/0UmzZtwsmTJ3HnnXde8bgzZ87Em2++iXfeeQc//vgjVCoVMjMzceHCBU+fEhEREQUAmRBC+LoSdmVlZYiJicGmTZtwyy23wGAwIDo6GsuWLcPdd98NAPjtt99w7bXXorCwEH379q13DCEE4uPj8cQTT+DJJ58EABgMBsTGxmLx4sW45557rloPo9EIrVYLg8EAjUbj3pMkIiIij2jK97df9QEyGAwAAN3/HhPevn07LBYL0tPTHdt06dIFSUlJKCwsbPAYR44cQUlJidM+Wq0Wffr0cbmP2WyG0Wh0WoiIiCh4+U0AslqtmDx5Mvr374/u3bsDAEpKShAWFoY2bdo4bRsbG4uSkpIGj2Mvj42NbfQ+ubm50Gq1jiWxodm7iYiIKGj4TQDKycnB7t27sWLFCq+/9/Tp02EwGBxLcXGx1+tARERE3uMXAWjSpEn46quvsGHDBiQkJDjK4+LiUFNTg4qKCqftS0tLERcX1+Cx7OWXPyl2pX0UCgU0Go3TQkRERMHLpwFICIFJkyZh5cqVyM/PR6dOnZzW9+7dG6GhoVi/fr2jbN++fTh27BjS0tIaPGanTp0QFxfntI/RaMSPP/7och8iIiKSFp8GoJycHHz44YdYtmwZ1Go1SkpKUFJSgurqagC2zsvjxo3DlClTsGHDBmzfvh0PPvgg0tLSnJ4A69KlC1auXAkAkMlkmDx5Ml566SWsXr0au3btwujRoxEfH4/s7GxfnCYRERH5GZ9OhfH2228DAAYOHOhUvmjRIowdOxYA8Prrr0Mul+Ouu+6C2WxGZmYm5s2b57T9vn37HE+QAcDUqVNhMpkwYcIEVFRU4I9//CPy8vIQHh7u0fMhIiKiwOBX4wD5C44DREREFHgCdhwgIiIiIm9gACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJaeXrCpBr5lozaupqXK4PCwmDopXCizUiIiIKDgxAfsoqrCg4VoCyqjKX20RHRGNQp0GQy9iQR0RE1BT85vRTcpkcaoUaBrMBGoWm3mIwG6BWqBl+iIiImoHfnn5Mr9NDq9Ci1lqLiNAIx1JrrYVWoYVep/d1FYmIiAISA5Af0yl1SI5MRpnJ+TZYmakMyZHJ0Cl1PqoZERFRYGMA8nN6nR6qMBWMZiMAwGg2QhWmYusPERFRCzAA+bnLW4HY+kNERNRyDEABwN4KdMJ4gq0/REREbsAAFADsrUAGs4GtP0RERG7AcYACRIouBZY6C1J0KVff2GwGalwPoIiwMEDBARSJiEi6GIACRKQyEv2T+l99Q6sVKCgAylwPoIjoaGDQIEDOBkAiIpImfgMGG7kcUKsBgwHQaOovBoNtPcMPERFJGL8Fg5FeD2i1QG0tEBFxcamttZXr2YmaiIikjQEoGOl0QHJy/dtgZWW2ch07URMRkbSxD1Cw0uuBw4cBo9F268toBFQqtv40FzuWExEFFQagYGVvBdq1yxaAysqA665j609zsGM5EVHQ4W/rYKbX21p9Tpxg609LsGM5EVHQYQtQMLO3Am3bBtxwg+9af4Lh9pH9lmJtrS302BmN7FhORBSAGICCXUoKYLHY/vSFYLl9dPktRTveWiQiCkgMQMEuMhLo34gBFD3Ffvvo4EEgMbH++uJiW7C4PPz4Y6sRO5YTEQUNBiAvMNeaUVPn+ss8LCQMilZ+fguoJZp6+8jPWo0cPz9VKOSJcZDv2gMR3gmyk8WwXtcNrTQqBPFPj4j8mOS/X1rApwEoNzcXn3/+OX777TcolUr069cP//rXv9C5c2fHNhcuXMATTzyBFStWwGw2IzMzE/PmzUNsbKzL444dOxZLlixxKsvMzEReXp7HzsUVq7Ci4FgByqpcf5lHR0RjUKdBkMv8+BZQSzT19lFzW4084PKfXxgqEWfcB9mOvRByOUqggPZYXXD//IjIL/H7pWV8ekU2bdqEnJwcbN26FevWrYPFYkFGRgZMJpNjm8cffxxffvklPv30U2zatAknT57EnXfeedVjZ2Vl4dSpU45l+fLlnjwVl+QyOdQKNQxmAzQKTb3FYDZArVAH/4fT/kSa0Wh7fbXbR34ymvXlP7/wmHiIa5KhvmCFuCYZZeF10vj5EZHf4fdLy/i0BejyFpnFixcjJiYG27dvxy233AKDwYD33nsPy5Ytw+DBgwEAixYtwrXXXoutW7eib9++Lo+tUCgQFxfn0fo3ll6nx+Fzh1FrrYVGcbEFxGg2QqvQQq+TQB+Spo5L5Eedji//+Qn9NagRrWBM1EGrkEvj50dEfonfL83nV7HQYDAAAHT/+3Lbvn07LBYL0tPTHdt06dIFSUlJKCwsvOKxNm7ciJiYGHTu3BkPP/wwzpw547mKX4VOqUNyZDLKTM7NlGWmMiRHJkOndO+XubnWjPPm8y4Xc63Zre/XaE0dl6iprUYecvnPr1arhvGG7jjZqtojPz8iosby9vdLMPGbTtBWqxWTJ09G//790b17dwBASUkJwsLC0KZNG6dtY2NjUVJS4vJYWVlZuPPOO9GpUyccOnQIzzzzDIYMGYLCwkKEhITU295sNsNsvhgKjPYvXDeyp3Sj2QiNQgOj2QhVmMrt6dxT94Td0tGuqeMS+dFo1t76+RERNRV/PzWP3wSgnJwc7N69GwUFBS0+1j333OP4+3XXXYcePXrgmmuuwcaNG3HrrbfW2z43NxczZsxo8fteiT2l7yrdBY1CgzJTGa6Lvc7t6dx+T/jguYNI1NTvQFxsLEZyZHKTwo9bQ1VTxyWyP0Hm49GsvfXzIyJqKv5+ah6/uAU2adIkfPXVV9iwYQMSEhIc5XFxcaipqUFFRYXT9qWlpU3q35OcnIyoqCgcPHiwwfXTp0+HwWBwLMXFxc06j6vR6/RQhalwwnjCo+lcr9NDq9Ci1lqLiNAIx1JrrW3WPWG3drSzj0sUGdm4N7e3AhkMPp/J3ls/PyKipuLvp6bzaQASQmDSpElYuXIl8vPz0alTJ6f1vXv3RmhoKNavX+8o27dvH44dO4a0tLRGv8/x48dx5swZtGvXrsH1CoUCGo3GaXEne5+cUHkoYlWxKDWVIlYVi1B5qEf65HjinrC7Q1WTpKQAqam+G836f+zX1WA28N46EfkV/n5qOp/eAsvJycGyZcuwatUqqNVqR78erVYLpVIJrVaLcePGYcqUKdDpdNBoNHjkkUeQlpbm9ARYly5dkJubixEjRqCyshIzZszAXXfdhbi4OBw6dAhTp06FXq9HZmam18/x8ttHlTWVOH/hPA6dO4RSUykAz4zT4O57wpc3sdo1pqm1xf2HfD2a9SVSdCmw1FmQovNtGCMiuhx/PzWNTwPQ22+/DQAYOHCgU/miRYswduxYAMDrr78OuVyOu+66y2kgxEvt27fP8QRZSEgIfv31VyxZsgQVFRWIj49HRkYG/vGPf0Dhgwk3L++To1FoEK+Od6xvTp+cxvDEPeHmhKpgG6grUhmJ/kn+EcaIiC7F309N49MAJIS46jbh4eGYO3cu5s6d26jjKJVKrF271i31cxdfjdNgf1933RNuTqjyRKdsIiKiluK3jhf4apwGT9wTbk5HO5/2HyIiImoAA5CX2IOD0WwbY8hb4zSk6FKQGpvqtnvCzQlVfjNQl9kMnD/vejH7aIBIIiLyOr8ZByjY+WqcBk/cE25ORzufD9TlZzPMExGRb/E3vRcFyzgN9lAVqWzkWD6o3wrk9dYf+wzzBoNtVOnLF4PBtp7hh4hIEvjb3oukPk6DzwOgn8wwT0REvscA5GXu7pMTSHweAO2jSl9+G6yszOejTBMRkXexD5CXSX2cBp8P1GWfW8xotN368tEM80RE5FsMQORVTQmAbpmB/nJ+NMM8ERH5DgMQ+SWPjiDtJzPMExGR77APEPklt85Afzk/mmGeiIh8gy1A5Lc8OoVISgpgsfh8hnkiIvINtgCR3/LoCNL2GeYjGz+WERERBQ8GIPJrvppChIiIghsDEPk1n48gTUREQYkBiPyez0eQJiKioMMARH7P5yNIExFR0OFTYBQQfD6CNBERBRUGIAoIUp9ChIiI3Iu3wIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyWvm6AkTBzFxrRk1djcv1YSFhULRSeLFGREQEMAAReYxVWFFwrABlVWUut4mOiMagToMgl7ExlojIm/hbl8hD5DI51Ao1DGYDNApNvcVgNkCtUDP8EBH5AH/zEnmQXqeHVqFFrbUWEaERjqXWWgutQgu9Tu/rKhIRSRIDEJEH6ZQ6JEcmo8zkfBuszFSG5Mhk6JQ6H9WMiEjafBqAcnNzceONN0KtViMmJgbZ2dnYt2+f0zYLFizAwIEDodFoIJPJUFFR0ahjz507Fx07dkR4eDj69OmDn376yQNnQHR1ep0eqjAVjGYjAMBoNkIVpmLrDxGRD/k0AG3atAk5OTnYunUr1q1bB4vFgoyMDJhMJsc2VVVVyMrKwjPPPNPo43788ceYMmUKnn/+eezYsQOpqanIzMzE6dOnPXEaRFd0eSsQW3+IiHxPJoQQvq6EXVlZGWJiYrBp0ybccsstTus2btyIQYMG4dy5c2jTps0Vj9OnTx/ceOONeOuttwAAVqsViYmJeOSRR/D0009ftR5GoxFarRYGgwEajabZ50Nkd7b6LL499C3qrHUIkYcg45oMBiAiIjdryve3X/UBMhgMAACdrvlfDDU1Ndi+fTvS09MdZXK5HOnp6SgsLGxwH7PZDKPR6LQQuZO9FchgNrD1h4jID/hNALJarZg8eTL69++P7t27N/s45eXlqKurQ2xsrFN5bGwsSkpKGtwnNzcXWq3WsSQmJjb7/YlcSdGlIDU2FSm6FF9XhYhI8vwmAOXk5GD37t1YsWKF1997+vTpMBgMjqW4uNjrdaDgF6mMRP+k/ohURvq6KkREkucXI0FPmjQJX331FTZv3oyEhIQWHSsqKgohISEoLS11Ki8tLUVcXFyD+ygUCigUnI6AiIhIKnzaAiSEwKRJk7By5Urk5+ejU6dOLT5mWFgYevfujfXr1zvKrFYr1q9fj7S0tBYfn4iIiAKfTwNQTk4OPvzwQyxbtgxqtRolJSUoKSlBdXW1Y5uSkhIUFRXh4MGDAIBdu3ahqKgIZ8+edWxz6623Op74AoApU6bg3XffxZIlS7B37148/PDDMJlMePDBB713ckREROS3fHoL7O233wYADBw40Kl80aJFGDt2LADgnXfewYwZMxzr7I/HX7rNoUOHUF5e7thm5MiRKCsrw3PPPYeSkhL07NkTeXl59TpGExERkTT51ThA/oLjABEREQWegB0HiIiIiMgbGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIcvxiJGh/Y38wjpOiEhERBQ7793ZjHnBnAGrA+fPnAYCTohIREQWg8+fPQ6vVXnEbjgPUAKvVipMnT0KtVkMmk7X4eEajEYmJiSguLua4QpfgdXGN18Y1XpuG8bq4xmvjWrBdGyEEzp8/j/j4eMjlV+7lwxagBsjl8hZPytoQjUYTFB8wd+N1cY3XxjVem4bxurjGa+NaMF2bq7X82LETNBEREUkOAxARERFJDgOQFygUCjz//PNQKBS+ropf4XVxjdfGNV6bhvG6uMZr45qUrw07QRMREZHksAWIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBqAEvvPACZDKZ09KlSxfH+kOHDmHEiBGIjo6GRqPBX/7yF5SWljodY//+/Rg+fDiioqKg0Wjwxz/+ERs2bGjw/c6cOYOEhATIZDJUVFQ4rdu4cSOuv/56KBQK6PV6LF682N2n2yTeujaXv4dMJsOKFSuctvGna+PNz8zixYvRo0cPhIeHIyYmBjk5OU7rf/31V9x8880IDw9HYmIiZs6c6ZmTbiRvXJvFixc3+JmRyWQ4ffq0YzspfmZ+/vln3HrrrWjTpg0iIyORmZmJX375xWkbKX5mAGD9+vXo168f1Go14uLiMG3aNNTW1jptE4zXZseOHbjtttvQpk0btG3bFhMmTEBlZaXTNseOHcPQoUMRERGBmJgYPPXUU/WujT/9e2oOBiAXunXrhlOnTjmWgoICAIDJZEJGRgZkMhny8/OxZcsW1NTU4Pbbb4fVanXsP2zYMNTW1iI/Px/bt29Hamoqhg0bhpKSknrvNW7cOPTo0aNe+ZEjRzB06FAMGjQIRUVFmDx5MsaPH4+1a9d67sQbwVvXZtGiRU7vk52d7Vjnj9fGG9dl9uzZ+Pvf/46nn34ae/bswXfffYfMzEzHeqPRiIyMDHTo0AHbt2/HrFmz8MILL2DBggXeuxAN8PS1GTlypNPxT506hczMTAwYMAAxMTEApPmZqaysRFZWFpKSkvDjjz+ioKAAarUamZmZsFgsAKT7mfnll1/wpz/9CVlZWdi5cyc+/vhjrF69Gk8//bTjGMF4bU6ePIn09HTo9Xr8+OOPyMvLw549ezB27FjH8evq6jB06FDU1NTghx9+wJIlS7B48WI899xzjm388d9Tkwmq5/nnnxepqakNrlu7dq2Qy+XCYDA4yioqKoRMJhPr1q0TQghRVlYmAIjNmzc7tjEajQKAYxu7efPmiQEDBoj169cLAOLcuXOOdVOnThXdunVz2n7kyJEiMzOzhWfYfN66NgDEypUrXdbD366NN67L2bNnhVKpFN99953LesybN09ERkYKs9nsKJs2bZro3LlzS06vRbz578nu9OnTIjQ0VHzwwQeOMil+Zn7++WcBQBw7dsyxza+//ioAiAMHDgghpPuZmT59urjhhhucjr169WoRHh4ujEajECI4r838+fNFTEyMqKurc2xz+WdizZo1Qi6Xi5KSEsc2b7/9ttBoNI5r4W//npqDLUAuHDhwAPHx8UhOTsb999+PY8eOAQDMZjNkMpnToFHh4eGQy+WOFN62bVt07twZH3zwAUwmE2prazF//nzExMSgd+/ejv3++9//4sUXX8QHH3zQ4KRthYWFSE9PdyrLzMxEYWGhJ0650bxxbQAgJycHUVFRuOmmm/D+++9DXDJklT9eG09fl3Xr1sFqteLEiRO49tprkZCQgL/85S8oLi52HLewsBC33HILwsLCHGWZmZnYt28fzp07543L0CBvfWbsPvjgA0RERODuu+92lEnxM9O5c2e0bdsW7733HmpqalBdXY333nsP1157LTp27AhAup8Zs9mM8PBwp/dUKpW4cOECtm/fDiA4r43ZbEZYWJjTd45SqQQAxzaFhYW47rrrEBsb69gmMzMTRqMRe/bscWzjb/+emooBqAF9+vTB4sWLkZeXh7fffhtHjhzBzTffjPPnz6Nv375QqVSYNm0aqqqqYDKZ8OSTT6Kurg6nTp0CYOu/8t1332Hnzp1Qq9UIDw/H7NmzkZeXh8jISAC2D+G9996LWbNmISkpqcF6lJSUOH0AASA2NhZGoxHV1dWevQgueOPaAMCLL76ITz75BOvWrcNdd92Fv/3tb5gzZ45jvb9dG29cl8OHD8NqteLll1/Gv//9b3z22Wc4e/YsbrvtNtTU1ABwfV3s63zBW5+ZS7333nu47777HL/YAWl+ZtRqNTZu3IgPP/wQSqUSrVu3Rl5eHr755hu0amWbC1uqn5nMzEz88MMPWL58Oerq6nDixAm8+OKLAOA4TjBem8GDB6OkpASzZs1CTU0Nzp0757jt15Tz9rd/T83BANSAIUOG4M9//jN69OiBzMxMrFmzBhUVFfjkk08QHR2NTz/9FF9++SVat24NrVaLiooKXH/99Y5ELYRATk4OYmJi8P333+Onn35CdnY2br/9dscHbPr06bj22mvxwAMP+PJUm8wb1wYAnn32WfTv3x+9evXCtGnTMHXqVMyaNctXp31V3rguVqsVFosFb775JjIzM9G3b18sX74cBw4ccNnB3h946zNjV1hYiL1792LcuHHePtUm8cZ1qa6uxrhx49C/f39s3boVW7ZsQffu3TF06FC//pLyxrXJyMjArFmzMHHiRCgUCvzhD3/An/70JwBosEXeX7T02nTr1g1LlizBa6+9hoiICMTFxaFTp06IjY316/P2CB/efgsoN9xwg3j66aedysrKyhx9dmJjY8XMmTOFEEJ899139e7DCiGEXq8Xubm5QgghUlNThVwuFyEhISIkJETI5XIBQISEhIjnnntOCCHEzTffLB577DGnY7z//vtCo9F44Aybz93XpiFfffWVACAuXLgghAiMa+Pu6/L+++8LAKK4uNhpm5iYGLFgwQIhhBCjRo0Sw4cPd1qfn58vAIizZ8+669RazJOfmYceekj07NmzXrkUPzMLFy6s19/DbDaLiIgIsXz5ciEEPzNWq1WcOHFCVFVVif/+978CgPjpp5+EEMF5bS5VUlIizp8/LyorK4VcLheffPKJEEKIZ599tl4/o8OHDwsAYseOHUKIwPj3dDUSi3vNU1lZiUOHDqFdu3ZO5VFRUWjTpg3y8/Nx+vRp3HHHHQCAqqoqAPX/FyGXyx098f/zn//gl19+QVFREYqKirBw4UIAwPfff+94rDktLQ3r1693Osa6deuQlpbm/pNsJk9cm4YUFRUhMjLScW/b36+NJ65L//79AQD79u1zrD979izKy8vRoUMHALbrsnnzZscTPoDtunTu3Nnl7SJv8+RnprKyEp988kmDrT9S/MxUVVVBLpdDJpM5rZfJZI5tpP6ZkclkiI+Ph1KpxPLly5GYmIjrr78eQHBem0vFxsaidevW+PjjjxEeHo7bbrsNgO28d+3a5TSExLp166DRaNC1a1fHNv7876lRfJ3A/NETTzwhNm7cKI4cOSK2bNki0tPTRVRUlDh9+rQQwpZyCwsLxcGDB8XSpUuFTqcTU6ZMcexfVlYm2rZtK+68805RVFQk9u3bJ5588kkRGhoqioqKGnzPDRs21HsK7PDhwyIiIkI89dRTYu/evWLu3LkiJCRE5OXlefT8r8Qb12b16tXi3XffFbt27RIHDhwQ8+bNExEREY6WMSH879p46zMzfPhw0a1bN7Flyxaxa9cuMWzYMNG1a1dRU1MjhLA98REbGytGjRoldu/eLVasWCEiIiLE/PnzvXtBLuHNf08LFy4U4eHhTv+O7KT4mdm7d69QKBTi4YcfFv/973/F7t27xQMPPCC0Wq04efKkEELan5mZM2eKX3/9VezevVu8+OKLIjQ01Onp02C8NkIIMWfOHLF9+3axb98+8dZbbwmlUineeOMNx/ra2lrRvXt3kZGRIYqKikReXp6Ijo4W06dPd2zjb/+emoMBqAEjR44U7dq1E2FhYaJ9+/Zi5MiR4uDBg47106ZNE7GxsSI0NFSkpKSI1157TVitVqdj/PzzzyIjI0PodDqhVqtF3759xZo1a1y+Z0MByF7es2dPERYWJpKTk8WiRYvceapN5o1r880334iePXuK1q1bC5VKJVJTU8U777zj1IwvhH9dG299ZgwGg3jooYdEmzZthE6nEyNGjHB6xFkIIX755Rfxxz/+USgUCtG+fXvxyiuveO7EG8Gb/57S0tLEfffd57IuUvzMfPvtt6J///5Cq9WKyMhIMXjwYFFYWOi0jVQ/M4MGDRJarVaEh4eLPn36NPiZCsZrM2rUKKHT6URYWJjo0aOH03ARdkePHhVDhgwRSqVSREVFiSeeeEJYLBanbfzp31NzyIS45NliIiIiIglgHyAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIKeGPHjoVMJsPEiRPrrcvJyYFMJsPYsWMd22ZnZ9fbVyaTITQ0FLGxsbjtttvw/vvvX3F+OiIKbAxARBQUEhMTsWLFClRXVzvKLly4gGXLliEpKemK+2ZlZeHUqVM4evQovvnmGwwaNAiPPfYYhg0bhtraWk9XnYh8gAGIiILC9ddfj8TERHz++eeOss8//xxJSUno1avXFfdVKBSIi4tD+/btcf311+OZZ57BqlWr8M0332Dx4sUerjkR+QIDEBEFjYceegiLFi1yvH7//ffx4IMPNutYgwcPRmpqqlOgIqLgwQBEREHjgQceQEFBAX7//Xf8/vvv2LJlCx544IFmH69Lly44evSo+ypIRH6jla8rQETkLtHR0Rg6dCgWL14MIQSGDh2KqKioZh9PCAGZTObGGhKRv2AAIqKg8tBDD2HSpEkAgLlz57boWHv37kWnTp3cUS0i8jO8BUZEQSUrKws1NTWwWCzIzMxs9nHy8/Oxa9cu3HXXXW6sHRH5C7YAEVFQCQkJwd69ex1/bwyz2YySkhLU1dWhtLQUeXl5yM3NxbBhwzB69GhPVpeIfIQBiIiCjkajcbnOarWiVSvnX315eXlo164dWrVqhcjISKSmpuLNN9/EmDFjIJezoZwoGMmEEMLXlSAi8pasrCzo9Xq89dZbvq4KEfkQ/2tDRJJw7tw5fPXVV9i4cSPS09N9XR0i8jHeAiMiSXjooYfw888/44knnsDw4cN9XR0i8jHeAiMiIiLJ4S0wIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSnP8HNquT2Olwct4AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYJUlEQVR4nO3de1zUVf4/8NcMlwHGmYHhToJCoHjXsJS0EiXFtRS1zcxQyrL2i5q6pUvbzbZvaNo9dbe8pnnJXS+lu5hfEQ1DS5RfWkbeUFRANJnRUQeGOb8/ZhkYAcUR5vp6Ph6fB3zO58z5nMMg8/Z8zkUihBAgIiIiotsmtXcFiIiIiJwVAykiIiIiKzGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiomaSSCSYPHlyq98nPT0d7du3b7Xyy8vL8dhjjyEwMBASiQQffvhhq92LyNUxkCKi2yaRSG55pKenNzsfAAwYMKDJPL/++isA4Ndff8XMmTPRs2dPKBQKhIeHY9iwYdi/f3+DOhYVFWH69Om4//774ePjA4lEguLiYhv+lBzX9OnTsW3bNmRmZmLlypVISUmxd5WInJanvStARM5n5cqVTV578803cfz4cXTs2NEi38mTJ/H6669j0qRJeOCBB8zpd999t/n7tm3bIisrq0GZERERAIDFixdjyZIlGD16NP7nf/4HGo0G//jHP9C3b19kZ2cjOTnZ/Jr8/Hx8/PHH6Ny5Mzp16oTCwsI7abJLycnJwYgRI/DSSy/ZuypETo+BFBHdtqeeeqrR9MWLF+P48eOYMmUKMjMzLa7t378fr7/+OhITE5t8vUqlavIaAIwdOxZvvvkm2rRpY0575pln0KlTJ7z55psWgdTw4cNRWVkJhUKB+fPnM5Cq5/z58/D397d3NYhcAh/tEVGL+PnnnzF16lT06tUL8+bNa5V7JCQkWARRABAYGIgHHngAR44csUhXq9VQKBTNKnf+/Pm4//77ERgYCF9fXyQkJOCf//xnk/m//PJLdOzYET4+PkhISMDu3bvN1/75z39CIpFg165dDV73j3/8AxKJBIcPHzanbdq0CV27doWPjw+6du2KjRs3Wl3Hmz1OffPNN7F8+XJIJBIIIbBgwQLzNSKyHnukiOiOXb16FY8//jg8PDywdu1ayGQyq8qpqanBhQsXLNJ8fHwaBE83KisrQ1BQkFX3BICPPvoIw4cPx7hx41BVVYW1a9fij3/8I7Zs2YJhw4ZZ5N21axfWrVuHqVOnQiaTYeHChUhJScEPP/yArl27YtiwYWjTpg2++uorPPTQQxavXbduHbp06YKuXbsCAL799luMHj0anTt3RlZWFi5evIinn34abdu2taqOzz//vEWvHABkZ2fjyy+/REhICB588EGsXLkSaWlpePjhhzF+/Hirf2ZE9F+CiOgOPfPMMwKAWLFiRZN5fvzxRwFALFu2rNHrDz30kADQ4JgwYcJN7717924hkUjEa6+91mSeefPmCQDi5MmTjV6/evWqxXlVVZXo2rWrGDhwoEV6bZ32799vTjt16pTw8fERI0eONKeNHTtWhISECIPBYE4rLS0VUqlUvPXWW+a0nj17ivDwcFFZWWlO+/bbbwUA0a5dO6vqWN/Ro0eFSqUSDz/8sEVdAIiMjIwmX0dEzcceKSK6I6tXr8bSpUuRlpZ2xz0c7du3x+eff26RVjvQvDHnz5/Hk08+iejoaMycOdPq+/r6+pq/v3TpEmpqavDAAw9gzZo1DfImJiYiISHBfB4VFYURI0bgm2++QU1NDTw8PDBmzBisWbMGubm5GDRoEADTIz+j0YgxY8YAAEpLS1FYWIi//OUvUKlU5vIefvhhdO7cGTqdzuo6AoBOp8PIkSMREBCANWvWwMPDw4qfDBHdCgMpIrLa0aNH8cILL6BDhw5YuHDhHZcnl8sbPJpqik6nwyOPPILLly8jLy/vlo//bmbLli14++23UVhYCL1eb05vbPxQXFxcg7QOHTrg6tWrqKioQFhYGFJSUqBSqbBu3TpzILVu3Tr07NkTHTp0AACcOnWqyfI6duyIAwcOWF1HAHjuuedw/PhxfP/99wgMDLzVj4CIrMTB5kRkFb1ejzFjxpjH69xJIHO7qqqqMGrUKPz000/YvHmzecyRNb777jsMHz4cPj4+WLhwIf79739j+/btePLJJyGEsKpMmUyG1NRUbNy4EQaDAWfPnsWePXvMvVGtXcePPvoIa9asweeff46ePXtadU8iah72SBGRVV566SUcPHgQH330EXr16mWz+xqNRowfPx47duxodED37frXv/4FHx8fbNu2zWKQ/LJlyxrNf/To0QZpv/32G/z8/BAcHGxOGzNmDFasWIEdO3bgyJEjEEJYBFLt2rVrsryioiKr6/jdd9/hpZdewrRp0zBu3Limmk1ELYQ9UkR02zZu3IhPP/0Uw4cPx9SpU2167ylTpmDdunVYuHAhRo0adcfleXh4QCKRoKamxpxWXFyMTZs2NZo/Pz/f4rFbSUkJNm/ejMGDB1uMQ0pOToZarca6deuwbt063HfffYiOjjZfDw8PR8+ePbFixQpoNBpz+vbt2/HLL79YVcfS0lI8/vjj6N+/f6stQUFEltgjRUS3pbS0FBMnToSHhwcGDRqEVatWNZrv7rvvRmJiYove+8MPP8TChQuRmJgIPz+/BvceOXIk5HI5AECj0eCTTz4BAOzZswcA8Omnn8Lf3x/+/v7mPfOGDRuG999/HykpKXjyySdx/vx5LFiwALGxsfjpp58a1KFr164YMmSIxfIHADB79myLfF5eXhg1ahTWrl0LnU6H+fPnNygrKysLw4YNQ//+/fHMM8/g999/xyeffIIuXbrgypUr5nzNrePUqVNRUVGBmTNnYu3atRb36t69O7p37968HzQRNZ+dZw0SkZPZuXNno8sU3HjcuGxBc5Y/6NKly03vPWHChJves/7yBidPnmwy341LCyxZskTExcUJmUwm4uPjxbJly8Qbb7whbvwTif8uG7Bq1Spz/l69eomdO3c2Wt/t27cLAEIikYiSkpJG8/zrX/8SnTp1EjKZTHTu3Fls2LBBTJgwwao6NrWEBADxxhtvNGgHEd05iRBWjqYkIiIicnMcI0VERERkJQZSRERERFZiIEVERERkJQZSRERERFZiIEVERERkJQZSRERERFbigpxWMhqNOHfuHBQKRZObhhIREZFjEULg8uXLiIiIgFR65/1JDKSsdO7cOURGRtq7GkRERGSFkpIStG3b9o7LYSBlJYVCAcD0RiiVSjvXhoiIiJpDq9UiMjLS/Dl+pxhIWan2cZ5SqWQgRURE5GRaalgOB5sTERERWYmBFBEREZGVGEgRERERWYljpIiIiNxMTU0Nqqur7V2NVuHl5QUPDw+b3Y+BFBERkZsQQqCsrAyVlZX2rkqr8vf3R1hYmE3WeWQgRURE5CZqg6iQkBD4+fm53ILSQghcvXoV58+fBwCEh4e3+j0ZSBEREbmBmpoacxAVGBho7+q0Gl9fXwDA+fPnERIS0uqP+TjYnIiIyA3Ujony8/Ozc01aX20bbTEOjIEUERGRG3G1x3mNsWUb+WiPyB3o9UBVVdPXvb0Bmcx29SEichEMpIhcndEI5OUBFRVN5wkOBpKSgBbYCZ2IyJ3wryaRq5NKAYUC0GgApbLhodGYrjOIIiK6bfzLSeQOYmMBlQowGAA/v7rDYDClx8bau4ZERE6JgRSRO1CrgZiYho/3KipM6Wq1fepFRNQMly9fxrhx4yCXyxEeHo4PPvgAAwYMwLRp0+xdNQZSRG4jNhaQywGt1nSu1ZrO2RtFRLfpwtULKNGUAABKNCW4cPVCq95vxowZ2LNnD77++mts374d3333HQ4cONCq92wuDjYnche1vVKHDpnGRlVUAN26sTeKiG7LhasXMHDFQOiqdVg5ciXSNqZB7iVHzoQcBPkFtfj9Ll++jBUrVmD16tUYNGgQAGDZsmWIiIho8XtZgz1SRO6ktlfq7Fn2RhGRVa5VX4OuWocTl06g39J+OHHpBHTVOlyrvtYq9ztx4gSqq6tx3333mdNUKhU6duzYKve7XQykiNxJba+URsOxUURklUhVJFaOXGmRtnLkSkSqIu1UI/tiIEXkbuLigB49TF+JiG5TiaYEaRvTLNLSNqaZx0y1tJiYGHh5eeHHH380p2k0Gvz222+tcr/bxUCKyN0EBAD9+pm+EhHdJl8vX8i95IgJiMGeZ/YgJiAGci85fL18W+V+CoUCEyZMwMsvv4ydO3fi559/xsSJEyGVSh1iuxsONiciIqJmC/ILQs6EHFyrvoZIVSRyJ+TC18u3VQaa13r//ffxwgsv4JFHHoFSqcTMmTNRUlICHx+fVrtnczGQIiIiottSP2iyxdgohUKBL7/80nyu0+kwe/ZsTJo0qdXvfSsMpIiIiMihHTx4EL/++ivuu+8+aDQavPXWWwCAESNG2LlmDKSIiIjICcyfPx9FRUXw9vZGQkICvvvuOwQFtd7jxOZiIEVEREQOrVevXigoKLB3NRrFWXtEREREVmIgRURERGQlBlJEREREVmIgRURERGQlBlJEREREVmIgRURERGQlBlJEREREVmIgRURERGQlBlJERETkVKqqquxdBTO7BlK7d+/Go48+ioiICEgkEmzatMnienl5OdLT0xEREQE/Pz+kpKTg6NGjtyx3/fr1iI+Ph4+PD7p164Z///vfFteFEHj99dcRHh4OX19fJCcnN6tcIiIisr0BAwZg8uTJmDZtGoKCgjBkyBB7V8nMroGUTqdDjx49sGDBggbXhBBITU3FiRMnsHnzZhw8eBDt2rVDcnIydDpdk2V+//33GDt2LCZOnIiDBw8iNTUVqampOHz4sDnPu+++i48//hh///vfsW/fPsjlcgwZMgTXr19vlXYSERG5lAsXgJIS0/clJabzVrZixQp4e3tjz549+Pvf/97q92s24SAAiI0bN5rPi4qKBABx+PBhc1pNTY0IDg4Wn3/+eZPlPP7442LYsGEWaX369BHPP/+8EEIIo9EowsLCxLx588zXKysrhUwmE2vWrGl2fTUajQAgNBpNs19DRERkL9euXRO//PKLuHbt2p0VVFEhRLduQsTECLFnj+lrt26m9Fby0EMPiV69ejU7/83a2tKf3w47Rkqv1wMAfHx8zGlSqRQymQx5eXlNvi4/Px/JyckWaUOGDEF+fj4A4OTJkygrK7PIo1Kp0KdPH3Oepuqj1WotDiIiIrdz7Rqg0wEnTgD9+pm+6nSm9FaUkJDQquVby2EDqfj4eERFRSEzMxOXLl1CVVUV5s6dizNnzqC0tLTJ15WVlSE0NNQiLTQ0FGVlZebrtWlN5WlMVlYWVCqV+YiMjLS2aURERM4rMhJYudIybeVKU3orksvlrVq+tRw2kPLy8sKGDRvw22+/Qa1Ww8/PDzt37sTQoUMhldq+2pmZmdBoNOajpPbZMBERkTspKQHS0izT0tLqxky5GYcNpABTN15hYSEqKytRWlqK7OxsXLx4ETExMU2+JiwsDOXl5RZp5eXlCAsLM1+vTWsqT2NkMhmUSqXFQURE5HZ8fQG5HIiJAfbsMX2Vy03pbsihA6laKpUKwcHBOHr0KPbv348RI0Y0mTcxMRE7duywSNu+fTsSExMBANHR0QgLC7PIo9VqsW/fPnMeIiIiakJQEJCTA+TmAvffb/qak2NKd0Oe9rz5lStXcOzYMfP5yZMnUVhYCLVajaioKKxfvx7BwcGIiorCoUOH8OKLLyI1NRWDBw82v2b8+PG46667kJWVBQB48cUX8dBDD+G9997DsGHDsHbtWuzfvx+fffYZAEAikWDatGl4++23ERcXh+joaLz22muIiIhAamqqTdtPRETklOoHTTYYM5ybm9vq97CWXQOp/fv3IykpyXw+Y8YMAMCECROwfPlylJaWYsaMGSgvL0d4eDjGjx+P1157zaKM06dPW4yZuv/++7F69Wq8+uqreOWVVxAXF4dNmzaha9eu5jwzZ86ETqfDpEmTUFlZif79+yM7O9tihiARERHRrUiEEMLelXBGWq0WKpUKGo2G46WIiMjhXb9+HSdPnkR0dLTLdxzcrK0t/fntFGOkiIiIiBwRAykiIiIiKzGQIiIiciPuMKLHlm2062BzIrINvUGPqpqqJq97e3hD5imzYY2IyNa8vLwAAFevXoWvi6/5dPXqVQB1bW5NDKSIXJxRGJF3Og8VVyuazBPsF4yk6CRIJeykJnJVHh4e8Pf3x/nz5wEAfn5+kEgkdq5VyxJC4OrVqzh//jz8/f3h4eHR6vdkIEXk4qQSKRQyBY5dOoZIZcP1Xkq0JYgJiGEQReQGanfwqA2mXJW/v/9NdytpSQykiNxArDoWJy6dgMFogFJWN91Xq9dCJVMhVh1rx9oRka1IJBKEh4cjJCQE1dXV9q5Oq/Dy8rJJT1QtBlJEbkDtq0ZMQAwOlR+yCKQqdBXoFtoNal+1HWtHRLbm4eFh02DDlbEvn8hNxKpjIfeWQ6vXAjD1Rsm95eyNIiK6AwykiNxEba9Uhc406LxCV4GYgBj2RhER3QEGUkRupLZX6qz2LHujiIhaAAMpIjdS2yul0WvYG0VE1AI42JzIzcSp41BdU404dZy9q0J0R7jQLDkCBlJEbibANwD9ovrZuxpEd4QLzZKj4G8XEZGt6XSARGI6dDp718Yp1S40q9FroJQpGxwavQYKmYJBFLU6/oYREZFTilXHQiVTwWA0wM/Lz3wYjAYuNEs2w0CKiIic0o1LetTi0h5kSwykiIjIaXGhWbI3BlJERHeKY57shgvNkr0xkCIiIqfGhWbJnhhIEZFrY2+Ry+NCs2RPXEeKiIicHheaJXthIEVERE6PC82SvfDRHhEREZGVGEgRERERWYmBFBGRrV24UPf9mTOW50TkVBhIERHZ0oULwLBhdecpKcDAgQymiJwUAykiIlu6ds1yGYbiYtP5tWtNv4ZLOBA5LAZSRES2FBkJLF5smbZypSmdiJwOAykiojt1O2OeSkqAZ5+1TEtLM6UTkdNhIEVEdCdud8yTry8gl9edt29vOvf1bdVqElHrYCBFRHQnbnfMU1AQsHVr3Xl2NpCTY0onIqfDQIqIXFtrLzVgzZin+kFT27YMooicGAMpInJdtlhqgGOeiNyaXQOp3bt349FHH0VERAQkEgk2bdpkcb28vBzp6emIiIiAn58fUlJScPTo0ZuW+fnnn+OBBx5AQEAAAgICkJycjB9++MEiT3p6OiQSicWRkpLS0s0jInuzZqmB28UxT0Ruza6BlE6nQ48ePbBgwYIG14QQSE1NxYkTJ7B582YcPHgQ7dq1Q3JyMnQ3WUclNzcXY8eOxc6dO5Gfn4/IyEgMHjwYZ8+etciXkpKC0tJS87FmzZoWbx8R2ZktlhrgmCcit+Zpz5sPHToUQ4cObfTa0aNHsXfvXhw+fBhdunQBACxatAhhYWFYs2YNnr2xK/2/vvzyS4vzxYsX41//+hd27NiB8ePHm9NlMhnCwsJaqCVE5JCaeuyWm9vywVSttm0te6iIyKU57BgpvV4PAPDx8TGnSaVSyGQy5OXlNbucq1evorq6Gmq12iI9NzcXISEh6NixI/70pz/h4sWLLVNxInIcfOxGRK3MYQOp+Ph4REVFITMzE5cuXUJVVRXmzp2LM2fOoLS0tNnlzJo1CxEREUhOTjanpaSk4IsvvsCOHTswd+5c7Nq1C0OHDkVNTU2T5ej1emi1WouDiBwcH7sRUSuz66O9m/Hy8sKGDRswceJEqNVqeHh4IDk5GUOHDoUQolllzJkzB2vXrkVubq5Fz9YTTzxh/r5bt27o3r077r77buTm5mLQoEGNlpWVlYXZs2ffWaOIyPZc4bHbjUs4BAYyGCRyEA7bIwUACQkJKCwsRGVlJUpLS5GdnY2LFy8iJibmlq+dP38+5syZg2+//Rbdu3e/ad6YmBgEBQXh2LFjTebJzMyERqMxHyWc2kxEtmCLJRyIyGoOHUjVUqlUCA4OxtGjR7F//36MGDHipvnfffdd/O1vf0N2djZ69+59y/LPnDmDixcvIjw8vMk8MpkMSqXS4iAianXWLOGg0wESiem4ySxnIrpzdg2krly5gsLCQhQWFgIATp48icLCQpw+fRoAsH79euTm5pqXQHj44YeRmpqKwYMHm8sYP348MjMzzedz587Fa6+9hqVLl6J9+/YoKytDWVkZrly5Yr7nyy+/jL1796K4uBg7duzAiBEjEBsbiyFDhtiu8UTkvuRyQAjTcatHjbZYwoGIrGbXQGr//v3o1asXevXqBQCYMWMGevXqhddffx0AUFpairS0NMTHx2Pq1KlIS0trsN7T6dOnLQafL1q0CFVVVXjssccQHh5uPubPnw8A8PDwwE8//YThw4ejQ4cOmDhxIhISEvDdd99BJpPZqOVERM3EldOJHJpENHfkNlnQarVQqVTQaDR8zEfkyHQ6oE0b0/dXrrTOYPPWvMeFC8CAAcDPP5vO27cHFIqbzz60RZuJnFRLf3477Kw9IiJC3RIO7dubzrOzOWuPyIEwkHIEej1QVdX0dW9vgI8didyXKyzhQOSiGEjZm9EI5OUBFRVN5wkOBpKSAKlTTLIkcj+1g8eJyO3wk9nepFLTeAeNBlAqGx4ajek6gygiIiKHw09nRxAbC6hUgMEA+PnVHQaDKT021t41JHJet7PUABHRbWIg5QjUaiAmpuHjvYoKU/oNGy4TERGRY2Ag5ShiY03/W67dDFmrNZ2zN4qIiMhhMZByFDf2SrE3ioiIyOExkHIktb1SZ8+yN4qIiMgJMJByJLW9UhoNe6OIiIicANeRcjRxcUB1tekrEZE1Llyo+/7MGa6ETtSK2CPlaAICgH79TF+JiG7XhQvAsGF15ykpwMCBlsHVjXQ6QCIxHTpd69eRyIUwkCIiciXXrlkGQ8XFpvNr1+xWJSJXxkCKiKg+R+yduZ1FRSMjgcWLLdNWrjSlE1GLYyBFRORKSkqAZ5+1TEtLM6UTUYtjIEVE5Ep8fS17rdq3N537+tqtSkSujLP2iIhcSVAQsHWrKYACgOxsztojakUMpIiIXE39oKltW27WTNSK+GiPiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiI3N2FC3XfnzljeU5EN8VAiojInV24AAwbVneekgIMHMhgiqiZuNceEZE7u3YN0OnqzouLgZgYU7qN6Q16VNVUNXnd28MbMk+ZDWtEdGsMpIiI6rvxMVdgoOUmwM5ALgeEaF7eyEhg8WIgObkubeVKU7oNGYUReafzUHG1osk8wX7BSIpOglTChynkOPjbSERUyx0fc5WUAM8+a5mWlmZKtyGpRAqFTAGNXgOlTNng0Og1UMgUDKLI4fA3koioVmOPuXQ6uzzmshlfX1MPVq327U3nvr42r0qsOhYqmQoGowF+Xn7mw2A0QCVTIVYda/M6Ed0KAykiolq1j7nqs8NjLpsKCgK2bq07z84GcnLs8jhT7atGTEAMKnSWj/cqdBWICYiB2ldt8zoR3QoDKSKiWg7ymMvm6gdNbdvadUxYrDoWcm85tHotAECr10LuLWdvFDksuwZSu3fvxqOPPoqIiAhIJBJs2rTJ4np5eTnS09MREREBPz8/pKSk4OjRozctc/ny5ZBIJBaHj4+PRR4hBF5//XWEh4fD19cXycnJtyyXiNyAAz3mclc39kqxN4ocnV0DKZ1Ohx49emDBggUNrgkhkJqaihMnTmDz5s04ePAg2rVrh+TkZOjqj2FohFKpRGlpqfk4deqUxfV3330XH3/8Mf7+979j3759kMvlGDJkCK5fv96i7SMiJ+NAj7ncWW2v1FntWfZGkcOz6/IHQ4cOxdChQxu9dvToUezduxeHDx9Gly5dAACLFi1CWFgY1qxZg2dv7H6vRyKRICwsrNFrQgh8+OGHePXVVzFixAgAwBdffIHQ0FBs2rQJTzzxxB22ioic2o2Puer3UJFN1PZK7T+3H70jerM3ihyaw46R0uv1AGDxWE4qlUImkyEvL++mr71y5QratWuHyMhIjBgxAj///LP52smTJ1FWVobkemumqFQq9OnTB/n5+Tetj1artTiIiKh1xKnj0CO0B+LUcfauCtFNOWwgFR8fj6ioKGRmZuLSpUuoqqrC3LlzcebMGZSWljb5uo4dO2Lp0qXYvHkzVq1aBaPRiPvvvx9nzpwBAJSVlQEAQkNDLV4XGhpqvtaYrKwsqFQq8xHpyrN4iIjsLMA3AP2i+iHAN8DeVSG6KYcNpLy8vLBhwwb89ttvUKvV8PPzw86dOzF06FBIpU1XOzExEePHj0fPnj3x0EMPYcOGDQgODsY//vGPO6pPZmYmNBqN+Shx9Vk8RETORKcDJBLTcYtxtEQtyaG3iElISEBhYSE0Gg2qqqoQHByMPn36oHfv3s0uw8vLC7169cKxY8cAwDx2qry8HOHh4eZ85eXl6NmzZ5PlyGQyyGTc44mIiIjqOGyPVH0qlQrBwcE4evQo9u/fbx4k3hw1NTU4dOiQOWiKjo5GWFgYduzYYc6j1Wqxb98+JCYmtnjdiYiIyHXZtUfqypUr5p4iwDQQvLCwEGq1GlFRUVi/fj2Cg4MRFRWFQ4cO4cUXX0RqaioGDx5sfs348eNx1113ISsrCwDw1ltvoW/fvoiNjUVlZSXmzZuHU6dOmWf5SSQSTJs2DW+//Tbi4uIQHR2N1157DREREUhNTbVp+4mIiMi52TWQ2r9/P5KSksznM2bMAABMmDABy5cvR2lpKWbMmGF+DDd+/Hi89tprFmWcPn3aYszUpUuX8Nxzz6GsrAwBAQFISEjA999/j86dO5vzzJw5EzqdDpMmTUJlZSX69++P7OzsBgt3EhEREd2MRAgh7F0JZ6TVaqFSqaDRaKBUKu1dHSJqKTod0KaN6fsrV9xjHSlXaLMrtIFsoqU/v51ijBQRERGRI3LoWXvuRG/Qo6qmqsnr3h7ekHly1iAREZEjYSDlAIzCiLzTeai4WtFknmC/YCRFJ0EqYSciERGRo+CnsgOQSqRQyBTQ6DVQypQNDo1eA4VMwSCKiFqHXA4IYTo4tojotvCT2UHEqmOhkqlgMBrg5+VnPgxGA1QyFXc/JyIickAMpBxE7W7nFTrLx3sVugrEBMRw93MiIiIHxEDKgcSqYyH3lkOr1wIAtHot5N5y9kaR/XD/MiKim2Ig5UBu7JVibxSRHXC8EBHdBgZSDqa2V+qs9ix7o4iIiBwcAykHU9srpdFr2BtFRETk4LiOlAOKU8ehuqYaceo4e1eFiIiIboKBlAMK8A1Av6h+9q4GERER3QIf7RER3YHzV85DMlsCyWwJzl85b+/qEJGNMZAiIiIishIDKSIiIiIrMZAiIiIishIDKSIiIiIrMZAiIiIishIDKSIiIiIrMZAiIpemq9KZlyfQVXHjZWph3Njb7TGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiIiJ741grp8VAioiIHA8DC3ISDKSIiIiIrMRAioiIiMhKDKSIiIiIrMRAioiIiMhKDKSIiIiIrMRAioiIiMhKDKSIiO7Asd+Pmb8vOFeAogtFdqwNEdkaAykionpuZ5PjogtFSFqeZD5/ZM0j6Pn3ngymiNwIAykiIitVXq+EQRjM50YYYRAGVF6vtF+liMimGEgREVmpT9s+mDNojkXap0M/RZ+2fexUIyKyNasCqZEjR2LUqFENjtGjR2PcuHF44403UFR0667t3bt349FHH0VERAQkEgk2bdpkcb28vBzp6emIiIiAn58fUlJScPTo0ZuWOWDAAEgkkgbHsGHDzHnS09MbXE9JSbHmR0FEbmzfmX34y46/WKRN/s9k7Duzz041IiJbsyqQUqlUyMnJwYEDB8yByMGDB5GTkwODwYB169ahR48e2LNnz03L0el06NGjBxYsWNDgmhACqampOHHiBDZv3oyDBw+iXbt2SE5Ohu4m+y5t2LABpaWl5uPw4cPw8PDAH//4R4t8KSkpFvnWrFljzY+CiNyYv48/PCWe5nMppPCUeMLfx99+lSIim/K8dZaGwsLC8OSTT+LTTz+FVGqKxYxGI1588UUoFAqsXbsWL7zwAmbNmoW8vLwmyxk6dCiGDh3a6LWjR49i7969OHz4MLp06QIAWLRoEcLCwrBmzRo8++yzjb5OrVZbnK9duxZ+fn4NAimZTIawsLBmt5mI6EYdgzpiZ/pO9FvWDwCwZewWxKhj0DGo401fp6vSoU1WGwDAlcwrkHvLW72uRNQ6rOqRWrJkCaZNm2YOogBAKpViypQp+OyzzyCRSDB58mQcPnzY6orp9XoAgI+Pj8U9ZDLZTYOzxur6xBNPQC63/EOVm5uLkJAQdOzYEX/6059w8eLFW9ZHq9VaHEQu78KFuu/PnLE8dxIXrtbV+Yz2jMV5S4hVx5q/T4hIuGUQRUSuxapAymAw4Ndff22Q/uuvv6KmpgaAKQCSSCRWVyw+Ph5RUVHIzMzEpUuXUFVVhblz5+LMmTMoLS1tVhk//PADDh8+3KD3KiUlBV988QV27NiBuXPnYteuXRg6dKi57o3JysqCSqUyH5GRkVa3jcgpXLgA1BtbiJQUYOBApwqmLly9gGGr69qQ8mUKBq4Y2OLBVGu7nSUZiMi2rHq0l5aWhokTJ+KVV17BvffeCwD48ccf8c4772D8+PEAgF27dpkfyVnDy8sLGzZswMSJE6FWq+Hh4YHk5GQMHToUQohmlbFkyRJ069YN9913n0X6E088Yf6+W7du6N69O+6++27k5uZi0KBBjZaVmZmJGTNmmM+1Wi2DKXJt164B9ccjFhcDMTGmdCdxrfoadNV1bSiuLEZMQAyuVTtPG4jIsVkVSH3wwQcIDQ3Fu+++i/LycgBAaGgopk+fjlmzZgEABg8efMcz4RISElBYWAiNRoOqqioEBwejT58+6N279y1fq9PpsHbtWrz11lu3zBsTE4OgoCAcO3asyUBKJpNBJpPddhuInFZkJLB4MZCcXJe2cqUp3UlEqiKx+NHFSF5Z14aVI1ciUuU8bSAix2bVoz0PDw/89a9/RWlpKSorK1FZWYnS0lK88sor8PDwAABERUWhbdu2LVJJlUqF4OBgHD16FPv378eIESNu+Zr169dDr9fjqaeeumXeM2fO4OLFiwgPD2+J6hK5hpIS4MZJHWlppnQnUaIpwbPfWLYhbWMaSjTO0wYicmxW9UjVp1QqrX7tlStXcOxY3T5VJ0+eRGFhIdRqNaKiorB+/XoEBwcjKioKhw4dwosvvojU1FQMHjzY/Jrx48fjrrvuQlZWlkXZS5YsQWpqKgIDAxvcc/bs2Rg9ejTCwsJw/PhxzJw5E7GxsRgyZIjVbSFyOb6+QP1JGu3bm859fe1Wpdvl6+ULuVddG9r7t4fcSw5fL+dpAzXTjRMjAgOBoCD71YfchtWB1D//+U989dVXOH36NKqqqiyuHThwoFll7N+/H0lJdftU1Y5BmjBhApYvX47S0lLMmDED5eXlCA8Px/jx4/Haa69ZlHH69GmL2YMAUFRUhLy8PHz77bcN7unh4YGffvoJK1asQGVlJSIiIjB48GD87W9/46M7ovqCgoCtW00BFABkZzvdh1OQXxC2PrkV7T9qDwDIHpeNQL9ABPk5TxuoGRqbGKFQADk5TvX76uj0Bj2qaqqavO7t4Q2Zp/t9jloVSH388cf461//ivT0dGzevBlPP/00jh8/jh9//BEZGRnNLmfAgAE3HTg+depUTJ069aZl5ObmNkjr2LFjk+X6+vpi27Ztza4jkVur/yHUtq1lD5WTqB80tVW25ZpNrsgFJkY4OqMwIu90HiquVjSZJ9gvGEnRSZBK3Gv3Oatau3DhQnz22Wf45JNP4O3tjZkzZ2L79u2YOnUqNBpNS9eRiIioabUTI+pzsokRjk4qkUIhU0Cj10ApUzY4NHoNFDKF2wVRgJWB1OnTp3H//fcDMPXwXL58GYBpWQRutUJERDblAhMjnEGsOhYqmQoGowF+Xn7mw2A0QCVTWSxO606sCqTCwsLw+++/AzDNztu7dy8A02Dx5q7xRERE1CJcYGKEM1D7qhETEIMKneXjvQpdBWICYqD2VTfxStdmVSA1cOBAfP311wCAp59+GtOnT8fDDz+MMWPGYOTIkS1aQSIiopuqnRhRKzubA81bSaw6FnJvObR60zZpWr0Wcm+52/ZGAVYONv/ss89gNBoBABkZGQgKCsKePXswfPhwvPDCCy1aQSIioluy18SIllp2wUmWb6jtlTpUfghKmRIVugp0C+3mtr1RgJU9UlKpFAaDAT/88AO2bNkCX19fJCcno127dsjOzm7pOhIR2Uxrb3JMLqSl9qN0sn0ta3ulzmrPun1vFGBlj1R2djbS0tJw8eLFBtckEslNN/8lInJUjW1yrPBWIGdCDteeooZaatkFJ1u+obZXav+5/egd0dute6MAK3ukpkyZgscffxylpaUwGo0WB4MoInJWjW1yrKvWcZNjalxLLbvghMs3xKnj0CO0B+LUcfauit1ZFUiVl5djxowZCA0Nben6EBHZTe0mx/Vxk2NqUkstu2BtOefPAxKJ6Th//vbueYcCfAPQL6ofAnwDbHpfR2RVIPXYY481uqI4EZEzc9dNjnVVOkhmSyCZLYGuSnfrF9jCjYOvHXG8UEstu8DlG5yaVWOkPv30U/zxj3/Ed999h27dusHLy8vi+q22dSEickTc5NhBOMveeS21H6UL7GvpzqwKpNasWYNvv/0WPj4+yM3NhUQiMV+TSCQMpIjIKVmzyXFImxCIN7gQcYtypsHXLbXsggvsa+murAqk/vrXv2L27Nn4y1/+AqnU/fbVISLXZYtNjm9cYuFWwZrbqR18nZxcl+bgg6/JfVkVBVVVVWHMmDEMooiIblNjSywMXDGQ61XVx73zyIlYFQlNmDAB69ata+m6EBG5PC6x0AwcfE1OxKpHezU1NXj33Xexbds2dO/evcFg8/fff79FKkdE5Gpql1hIXln32IpLLNyAg6/JiVgVSB06dAi9evUCABw+fNjiWv2B50REZKmpJRZyJ+S2WDClq9KhTVYbAMCVzCutMs6r1XHwNTkJqwKpnTt3tnQ9iIjcApdYIHItVgVSRETOQu4td6jlCaxZYoGIHBen3RER2diNSyzcKoi6cbkEzvAjchwMpIiIHBiXSyBybAykiIgcGJdLIHJsDKSIiBxY7XIJ9XG5BCLHwUCKiMiBNbVcQomGq3wTOQIGUkREDozLJRA5Ni5/QETkwLhcApFjYyBFROTgblwuwSlXKidyUXy0R0RERGQlBlJEREREVuKjPSIiotukN+hRVVMF6HVQ/Dftsv4y4GkEAHh7eEPmKbNfBclmGEgRUdPkckA4zj51tuBoe/OR4zEKI/JO56HiagU8rl7HH/+bnn0sGzV+PgCAYL9gJEUnQSrhgx9Xx3eYiIjoNkglUihkCmj0GihlSnO6UqaEUqaERq+BQqZo/SDq2LG67wsKgKKi1r0fNYqBFBER0W2KVcdCJVPBYDSY03y9fGEwGqCSqRCrjm3dChQVAUlJdeePPAL07Mlgyg4YSBEREd0mta8aMQExDTaPrtBVICYgBmpfdetWoLISMNQFcTAaTeeVla17X2rAroFUVlYW7r33XigUCoSEhCA1NRVFN0TT169fR0ZGBgIDA9GmTRuMHj0a5eXlNy1XCIHXX38d4eHh8PX1RXJyMo4ePWqR5/fff8e4ceOgVCrh7++PiRMn4sqVKy3eRiIick2x6lj4efmZzy/rL0PuLW/93igA6NMHmDPHMu3TT03pZFN2DaR27dqFjIwM7N27F9u3b0d1dTUGDx4Mna5up/Pp06fjm2++wfr167Fr1y6cO3cOo0aNumm57777Lj7++GP8/e9/x759+yCXyzFkyBBcv37dnGfcuHH4+eefsX37dmzZsgW7d+/GpEmTWq2tRETkWtS+akQHRJvPL1y9YJveKADYtw/4y18s0yZPNqWTTdl11l52drbF+fLlyxESEoKCggI8+OCD0Gg0WLJkCVavXo2BAwcCAJYtW4ZOnTph79696Nu3b4MyhRD48MMP8eqrr2LEiBEAgC+++AKhoaHYtGkTnnjiCRw5cgTZ2dn48ccf0bt3bwDAJ598gj/84Q+YP38+IiIiWrnlRETkCmICYszf+3n52aY3CgD8/QFPT6CqynQulZrO/f1tc38yc6gxUhqNBgCgVpui+YKCAlRXVyM5OdmcJz4+HlFRUcjPz2+0jJMnT6KsrMziNSqVCn369DG/Jj8/H/7+/uYgCgCSk5MhlUqxr4loXq/XQ6vVWhxEROTe6vc+RQdEW98bVbvUiBCm72+lY0dg58668y1bgMJCUzrZlMMEUkajEdOmTUO/fv3QtWtXAEBZWRm8vb3hf0OEHRoairKyskbLqU0PDQ1t8jVlZWUICQmxuO7p6Qm1Wt1kuVlZWVCpVOYjMjLytttIRESu6+6Au217w9h6vV8JCQyi7MRhAqmMjAwcPnwYa9eutXdVGpWZmQmNRmM+SkpK7F0lInJStYt+ijcENyB2IQG+AfauAtmBQwRSkydPxpYtW7Bz5060bdvWnB4WFoaqqipU3jCds7y8HGFhYY2WVZt+48y++q8JCwvD+fPnLa4bDAb8/vvvTZYrk8mgVCotDiIiV1B/Cv8Z7ZkGU/rpJm73kRy5HLsGUkIITJ48GRs3bkROTg6io6MtrickJMDLyws7duwwpxUVFeH06dNITExstMzo6GiEhYVZvEar1WLfvn3m1yQmJqKyshIFBQXmPDk5OTAajejDqaNE5EYuXL2AYauHmc9TvkzBwBUDGUwRNZNdA6mMjAysWrUKq1evhkKhQFlZGcrKynDt2jUApkHiEydOxIwZM7Bz504UFBTg6aefRmJiosWMvfj4eGzcuBEAIJFIMG3aNLz99tv4+uuvcejQIYwfPx4RERFITU0FAHTq1AkpKSl47rnn8MMPP2DPnj2YPHkynnjiCc7YIyK3cq36GnTVdUvOFFcWQ1etw7Xqa3asFZHzsOvyB4sWLQIADBgwwCJ92bJlSE9PBwB88MEHkEqlGD16NPR6PYYMGYKFCxda5C8qKjLP+AOAmTNnQqfTYdKkSaisrET//v2RnZ0NHx8fc54vv/wSkydPxqBBg8zlf/zxx63TUCIiBxWpisTiRxcjeWXdTOeVI1ciUsUJNUTNIRHCzbZ2byFarRYqlQoajYbjpYioVemqdGiT1QYAcCXzyi0HqN9O/hJNCR5c/iCKK4vNaTEBMcidkGvfYEqnA9qY2oArV249/uh287uC8+eB2hnq5eXADbPRqXEt/flt1x4pIiKyL18vX8i96oKO9v7tIfeSw9fL1461Qt0gbiIH5xCz9oiIqOXcziy8IL8gbH1yq/k8e1w2cibkIMgvqFXrSOQqGEgREbkQa2bh1Q+a2irbMogiug0MpIiIXAhn4RHZFgMpIiIXUjsLrz7OwiNqPQykiIhcSImmBM9+86xFWtrGNJRouK0VUWvgrD0iIgdXuzdfczjsLLzWxll+ZCcMpIiIXEjtLLz2H7UHYJqFF+gXyAHkRK2EgRQRkYu5cRberRbwJCLrcYwUERERkZUYSBERERFZiYEUERERkZUYSBERERFZiYEUERERkZU4a4+IiMgZhYRw7SwHwB4pIiIiIisxkCIiIiKyEgMpIiIiIisxkCIiIiKyEgebE9XS64Gqqqave3sDMpnt6kNERA6PgRQRABiNQF4eUFHRdJ7gYCApCZCyI5eIiEz4iUAEmIIjhQLQaAClsuGh0ZiuM4giIqJ6+KlAVCs2FlCpAIMB8POrOwwGU3psrL1rSEREDoaBFFEttRqIiWn4eK+iwpSuVtunXkRE5LAYSBHVFxsLyOWAVms612pN5+yNIiKiRjCQIqrvxl4p9kYREdFNMJAiulFtr9TZs+yNIiKim2IgRXSj2l4pjYa9UUREdFNcR4qoMXFxQHW16SsREVETGEgRNSYgAOjXz961ICIiB8dHe0RERERWYiBFREREZCU+2iMicnNybznEG8Le1SBySuyRIiIiIrISAykiIiIiK9k1kMrKysK9994LhUKBkJAQpKamoqioyCLP9evXkZGRgcDAQLRp0wajR49GeXl5k2VWV1dj1qxZ6NatG+RyOSIiIjB+/HicO3fOIl/79u0hkUgsjjlz5rRKO4mIiMg12TWQ2rVrFzIyMrB3715s374d1dXVGDx4MHQ6nTnP9OnT8c0332D9+vXYtWsXzp07h1GjRjVZ5tWrV3HgwAG89tprOHDgADZs2ICioiIMHz68Qd633noLpaWl5mPKlCmt0k4iIiJyTXYdbJ6dnW1xvnz5coSEhKCgoAAPPvggNBoNlixZgtWrV2PgwIEAgGXLlqFTp07Yu3cv+vbt26BMlUqF7du3W6R9+umnuO+++3D69GlERUWZ0xUKBcLCwlqhZUREROQOHGqMlEajAQCo/7slR0FBAaqrq5GcnGzOEx8fj6ioKOTn599WuRKJBP7+/hbpc+bMQWBgIHr16oV58+bBYDA0WYZer4dWq7U4iIgcUe0sPPGGgNxbbu/qELk0h1n+wGg0Ytq0aejXrx+6du0KACgrK4O3t3eDACg0NBRlZWXNKvf69euYNWsWxo4dC6VSaU6fOnUq7rnnHqjVanz//ffIzMxEaWkp3n///UbLycrKwuzZs61rHBEREbkkhwmkMjIycPjwYeTl5bVYmdXV1Xj88cchhMCiRYssrs2YMcP8fffu3eHt7Y3nn38eWVlZkMlkDcrKzMy0eI1Wq0VkZGSL1ZWIiIicj0M82ps8eTK2bNmCnTt3om3btub0sLAwVFVVobKy0iJ/eXn5Lcc21QZRp06dwvbt2y16oxrTp08fGAwGFBcXN3pdJpNBqVRaHEREROTe7BpICSEwefJkbNy4ETk5OYiOjra4npCQAC8vL+zYscOcVlRUhNOnTyMxMbHJcmuDqKNHj+L//u//EBgYeMu6FBYWQiqVIiQkxPoGERERkVux66O9jIwMrF69Gps3b4ZCoTCPe1KpVPD19YVKpcLEiRMxY8YMqNVqKJVKTJkyBYmJiRYz9uLj45GVlYWRI0eiuroajz32GA4cOIAtW7agpqbGXK5arYa3tzfy8/Oxb98+JCUlQaFQID8/H9OnT8dTTz2FgIAAu/wsiIiIyPlIhBB222BJIpE0mr5s2TKkp6cDMA0W//Of/4w1a9ZAr9djyJAhWLhwocWjPYlEYn5NcXFxg56tWjt37sSAAQNw4MAB/M///A9+/fVX6PV6REdHIy0tDTNmzGh0fFRjtFotVCoVNBqNUz/m0xv0qKqpavK6t4c3ZJ7N+5kQkXvTVenQJqsNAOBK5hXOGCTr6HRAG9PvEa5cAeQt+3vU0p/fdg2knJkrBFJGYcTOkztRcbWiyTzBfsFIik6CVOIQw+mIyIExkKIW4WSBlMPM2iPbk0qkUMgUOHbpGCKVDWcglmhLEBMQwyDKCuzpIyJyDwyk3FysOhYnLp2AwWiAUlYXmWv1WqhkKsSqY+1YO+dkFEbknc5jTx8RkRvgX3E3p/ZVIyYgBhU6yw/9Cl0FYgJioPZV26lmzqu2p0+j10ApUzY4NHoNFDIFgygiIhfAv+SEWHUs5N5yaPWmbW+0ei3k3nL2Rt2BWHUsVDIVDEYD/Lz8zIfBaGBPHxGRC2EgRQ16pdgbdefY00dE5B4YSBGAul6ps9qz7I1qIezpIyJyfQykCEBdD4pGr2GPSQthTx8RkevjrD0yi1PHobqmGnHqOHtXxWXUzopkTx8RkWtijxSZBfgGoF9UPwT4cpuclsKePiIi18YeKaJWxp4+IiLXxUCKqJXV9vQREZHr4aM9IiIiIisxkCIiIiKyEh/tuTu9HqhqenNdeHsDMm6uS0RE1BgGUu7MaATy8oCKpjfXRXAwkJQESNl5SUREdCN+OrozqRRQKACNBlAqGx4ajek6gygiIqJG8RPS3cXGAioVYDAAfn51h8FgSo/lApJERERNYSDl7tRqICam4eO9igpTupoLSBIRETWFY6TI1Ot04gSg1Zoe6Wm1gFzu9L1ReoMeVTVND6T39vCGzJMD6YmIyHoMpKiuV+rQIVMgVVEBdOvm1L1RRmFE3uk8VFxteiB9sF8wkqKTIJWwY5aIiKzDTxAyiY019UKdPesSvVFSiRQKmQIavQZKmbLBodFroJApGEQREdEd4acImdT2Smk0LjM2KlYdC5VMBYPRAD8vP/NhMBqgkqkQq3buYJGIiOyPgRTViYsDevQwfXUBal81YgJiUKGzfLxXoatATEAM1L7OHywSEZF9cYwU1QkIAPq51ua6sepYnLh0Alq9FkqZElq9FnJvOXujiMhhcGKMc2MgRa5Lr4fa4IVYr1D8cv4XBAREo/JSCTqHdIba4GXaHofb3xCRHXFijPNjIEWuqd72N/FVV1BVVgSjOIJYiRTxYTLAu5zb3xCR3dVOjDl26RgilZENrpdoSxATEMMgyoHxnSHXVG/7mzZBEQgMi0alzIjAsGi0CYrg9jdE5DA4MeYGFy7UfX/mjOW5A+KnCLmuetvfRITGol14J0SExnL7GyJyKJwYU8+FC8CwYXXnKSnAwIEOHUwxkCKHozfocVl/uclDb9A3r6B6298oZAp0C+0GhUzB7W+IyOHEqmMh95ZDq9cCgPtOjLl2DdDp6s6Li03n167ZrUq3wjFS5FBafOCli25/Q0SupbZX6lD5IShlSlToKtAttJt79UYBQGQksHgxkJxcl7ZypSndQbFHihxKi69IfuOmzOyNIiIHVdsrdVZ71j17owCgpAR49lnLtLQ0U7qDYiBFDqfFB1662PY3ROSaanulNHqN+42NquXra/o7Xat9e9O5r6/dqnQrDKTI4bT4wEsX3P6GiFxTnDoOPUJ7IE7tGjtM3LagIGDr1rrz7GwgJ8eU7qA4RoocUouvSB4XB1RXu8z2N0TkmgJ8A9AvyrV2mLht9YOmtm0te6gckF17pLKysnDvvfdCoVAgJCQEqampKCoqsshz/fp1ZGRkIDAwEG3atMHo0aNRXl5+03LT09MhkUgsjpSUFIs8v//+O8aNGwelUgl/f39MnDgRV65cafE2knVu7JW642nAtdvfBAS0YC2JqL4LV+umqJ/RnrE4J3JVdg2kdu3ahYyMDOzduxfbt29HdXU1Bg8eDF29qY/Tp0/HN998g/Xr12PXrl04d+4cRo0adcuyU1JSUFpaaj7WrFljcX3cuHH4+eefsX37dmzZsgW7d+/GpEmTWryNZD2nHnip1wOXLzd96Ju5hAORk7hw9QKGra5b/yflyxQMXDGQwRS5PLs+2svOzrY4X758OUJCQlBQUIAHH3wQGo0GS5YswerVqzFw4EAAwLJly9CpUyfs3bsXffv2bbJsmUyGsLCwRq8dOXIE2dnZ+PHHH9G7d28AwCeffII//OEPmD9/PiIiIlqohXQnanul9p/bj94RvZ1n4GW97WmaxO1pyMVcq74GXXXdf4KLK4sRExCDa9WOu/4PUUtwqL/iGo0GAKD+72DggoICVFdXI7neehLx8fGIiopCfn7+TcvKzc1FSEgIOnbsiD/96U+4ePGi+Vp+fj78/f3NQRQAJCcnQyqVYt++fS3ZJLpDTjnwst72NFAqGx7cnoZcUKQqEosfXWyRtnLkSkSqHHf9H6KW4DB/yY1GI6ZNm4Z+/fqha9euAICysjJ4e3vD39/fIm9oaCjKysqaLCslJQVffPEFduzYgblz52LXrl0YOnQoampqzOWGhIRYvMbT0xNqtbrJcvV6PbRarcVBra924GWAr5ONbaq3PQ38/OoObk9DLqpEU4Jnv7Fc/ydtYxpKNI67/g9RS3CYWXsZGRk4fPgw8vLy7risJ554wvx9t27d0L17d9x9993Izc3FoEGDrCozKysLs2fPvuO6kZuoXXLh0CFTL1StigqgWzcuwUAux9fLF3KvutlV7f3bQ+4lh6+X467/Q9QSHKJHavLkydiyZQt27tyJtm3bmtPDwsJQVVWFyspKi/zl5eVNjn9qTExMDIKCgnDs2DFzuefPn7fIYzAY8PvvvzdZbmZmJjQajfkoceBVVslB1C4EWtt7ye1pyIUF+QVh65N16/9kj8tGzoQcBPk57vo/RC3BroGUEAKTJ0/Gxo0bkZOTg+joaIvrCQkJ8PLywo4dO8xpRUVFOH36NBITE5t9nzNnzuDixYsIDw8HACQmJqKyshIFBQXmPDk5OTAajejTp0+jZchkMiiVSouD6Ka4PQ25mfpBU1tlWwZR5BbsGkhlZGRg1apVWL16NRQKBcrKylBWVoZr/93lWaVSYeLEiZgxYwZ27tyJgoICPP3000hMTLSYsRcfH4+NGzcCAK5cuYKXX34Ze/fuRXFxMXbs2IERI0YgNjYWQ4YMAQB06tQJKSkpeO655/DDDz9gz549mDx5Mp544gnO2KOWxe1piIhcml0DqUWLFkGj0WDAgAEIDw83H+vWrTPn+eCDD/DII49g9OjRePDBBxEWFoYNGzZYlFNUVGSe8efh4YGffvoJw4cPR4cOHTBx4kQkJCTgu+++g0wmM7/myy+/RHx8PAYNGoQ//OEP6N+/Pz777DPbNJzcB7enISJyaRIhhLB3JZyRVquFSqWCRqPhYz66uUuXgF9+ATp35srq5NJ0VTq0yWoDALiSeQVyb8fe2oMclE4HtDH9HuHKlRbfIqalP78dZtYekcuq3Z6GiIhcjkPM2iMiIiJyRgykiIiIiKzEQIqIiIjISgykiIiIiKzEQIqIiIjISpy1R0RE5CT0Bj2qaqqavO7t4Q2Zp6zJ69TyGEgRERE5AaMwIu90HiquVjSZJ9gvGEnRSZBK+MDJVviTJiIicgJSiRQKmQIavQZKmbLBodFroJApGETZGH/aRERETiJWHQuVTAWD0QA/Lz/zYTAaoJKpEKvmfp62xkCKiIjISah91YgJiEGFzvLxXoWuAjEBMVD7cj9PW2MgRURE5ERi1bGQe8uh1WsBAFq9FnJvOXuj7ISBFBERkRO5sVeKvVH2xVl75Hj0eqCq6em98PYGZJzeS0TuK1YdixOXTuCs9ix7o+yMgRQ5FqMRyMsDKpqe3ovgYCApCZCyQ5WI3FNtr9T+c/vRO6K3a/VGyeWAEPauRbMxkCLHIpUCCgVw7BgQGdnwekkJEBPDIIqI3F6cOg7VNdWIU8fZuypujYEUOZ7YWODECcBgAJTKunStFlCpTNeJiNxcgG8A+kX1s3c13B7/W0+OR6029Trd+HivosKUrnahLmwiInJqDKTIMcXGmp6Ta03Te6HVms7ZG0VERA6EgRQ5pht7pdgbRUREDoiBFDmu2l6ps2fZG0VERA6JgRQ5rtpeKY2GvVFEROSQOGuPHFtcHFBdbfpKRETkYBhIkWMLCAD6cXovERE5Jj7aIyIiIrISAykiIiIiKzGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiIiIiKzGQIiIiIrISAykiIiIiK3FBTiIiahFybznEG8Le1SCyKfZIEREREVmJgRQRERGRlewaSGVlZeHee++FQqFASEgIUlNTUVRUZJHn+vXryMjIQGBgINq0aYPRo0ejvLz8puVKJJJGj3nz5pnztG/fvsH1OXPmtEo7iYiIyDXZNZDatWsXMjIysHfvXmzfvh3V1dUYPHgwdDqdOc/06dPxzTffYP369di1axfOnTuHUaNG3bTc0tJSi2Pp0qWQSCQYPXq0Rb633nrLIt+UKVNapZ1ERETkmuw62Dw7O9vifPny5QgJCUFBQQEefPBBaDQaLFmyBKtXr8bAgQMBAMuWLUOnTp2wd+9e9O3bt9Fyw8LCLM43b96MpKQkxMTEWKQrFIoGeYmIiIiay6HGSGk0GgCAWq0GABQUFKC6uhrJycnmPPHx8YiKikJ+fn6zyiwvL8fWrVsxceLEBtfmzJmDwMBA9OrVC/PmzYPBYGiyHL1eD61Wa3EQERGRe3OY5Q+MRiOmTZuGfv36oWvXrgCAsrIyeHt7w9/f3yJvaGgoysrKmlXuihUroFAoGjwOnDp1Ku655x6o1Wp8//33yMzMRGlpKd5///1Gy8nKysLs2bNvv2FERETkshwmkMrIyMDhw4eRl5fXouUuXboU48aNg4+Pj0X6jBkzzN93794d3t7eeP7555GVlQWZTNagnMzMTIvXaLVaREZGtmhdiYiIyLk4RCA1efJkbNmyBbt370bbtm3N6WFhYaiqqkJlZaVFr1R5eXmzxjZ99913KCoqwrp1626Zt0+fPjAYDCguLkbHjh0bXJfJZI0GWEREROS+7DpGSgiByZMnY+PGjcjJyUF0dLTF9YSEBHh5eWHHjh3mtKKiIpw+fRqJiYm3LH/JkiVISEhAjx49bpm3sLAQUqkUISEht98QIiIickt27ZHKyMjA6tWrsXnzZigUCvO4J5VKBV9fX6hUKkycOBEzZsyAWq2GUqnElClTkJiYaDFjLz4+HllZWRg5cqQ5TavVYv369Xjvvfca3Dc/Px/79u1DUlISFAoF8vPzMX36dDz11FMICAho/YYTERGRS7BrILVo0SIAwIABAyzSly1bhvT0dADABx98AKlUitGjR0Ov12PIkCFYuHChRf6ioiLzjL9aa9euhRACY8eObXBfmUyGtWvX4s0334Rer0d0dDSmT59uMQaKiIiI6FYkQgjuMGkFrVYLlUoFjUYDpVJp7+oQERFRM7T057dDrSNFRERE5EwYSBERERFZySGWP3BGtU9EucI5ERGR86j93G6pkU0MpKx0+fJlAOCinERERE7o8uXLUKlUd1wOB5tbyWg04ty5c1AoFJBIJPauTquoXb29pKTEbQbUu1ub3a29ANvMNrsutrl5bRZC4PLly4iIiIBUeucjnNgjZSWpVGqxCrsrUyqVbvOPspa7tdnd2guwze6CbXYPt9vmluiJqsXB5kRERERWYiBFREREZCUGUtQkmUyGN954w602a3a3NrtbewG22V2wze7BEdrMweZEREREVmKPFBEREZGVGEgRERERWYmBFBEREZGVGEgRERERWYmBlAt58803IZFILI74+Hjz9ePHj2PkyJEIDg6GUqnE448/jvLy8kbL0uv16NmzJyQSCQoLC83pRUVFSEpKQmhoKHx8fBATE4NXX30V1dXVFq9fv3494uPj4ePjg27duuHf//6307a5vmPHjkGhUMDf37/BNVdqc3FxcYN7SCQS7N271+ZtttV7LITA/Pnz0aFDB8hkMtx111343//9X4s8ubm5uOeeeyCTyRAbG4vly5e3dHPNbNHuxu4hkUggl8stXu9K7/O2bdvQt29fKBQKBAcHY/To0SguLrbIY6v32VZt/uqrr9CzZ0/4+fmhXbt2mDdvXoPXO1Ob27dv36CMOXPmWOT56aef8MADD8DHxweRkZF49913G9SlpX6vGUi5mC5duqC0tNR85OXlAQB0Oh0GDx4MiUSCnJwc7NmzB1VVVXj00UdhNBoblDNz5kxEREQ0SPfy8sL48ePx7bffoqioCB9++CE+//xzvPHGG+Y833//PcaOHYuJEyfi4MGDSE1NRWpqKg4fPuyUba5VXV2NsWPH4oEHHmhwzVXb/H//938W90lISDBfs2WbbdHeF198EYsXL8b8+fPx66+/4uuvv8Z9991nvn7y5EkMGzYMSUlJKCwsxLRp0/Dss89i27ZtLd7eWq3d7pdeesmi/NLSUnTu3Bl//OMfzXlc6X0+efIkRowYgYEDB6KwsBDbtm3DhQsXMGrUKIs8tnyfW7vN//nPfzBu3Di88MILOHz4MBYuXIgPPvgAn376qVO3+a233rIoY8qUKeZrWq0WgwcPRrt27VBQUIB58+bhzTffxGeffWbO06K/14JcxhtvvCF69OjR6LVt27YJqVQqNBqNOa2yslJIJBKxfft2i7z//ve/RXx8vPj5558FAHHw4MGb3nf69Omif//+5vPHH39cDBs2zCJPnz59xPPPP397DWoGW7Z55syZ4qmnnhLLli0TKpXK4pqrtfnkyZO3fO9t1WZbtPeXX34Rnp6e4tdff22yHjNnzhRdunSxSBszZowYMmTI7TeqGezx77mwsFAAELt37zanudL7vH79euHp6SlqamrMaV9//bWQSCSiqqpKCGHb99kWbR47dqx47LHHLPJ//PHHom3btsJoNAohnK/N7dq1Ex988EGT91i4cKEICAgQer3enDZr1izRsWNH83lL/l6zR8rFHD16FBEREYiJicG4ceNw+vRpAKZuX4lEYrFomY+PD6RSqfl/AwBQXl6O5557DitXroSfn98t73fs2DFkZ2fjoYceMqfl5+cjOTnZIt+QIUOQn59/p81rlC3anJOTg/Xr12PBggWNXnfFNgPA8OHDERISgv79++Prr7+2uGbLNrd2e7/55hvExMRgy5YtiI6ORvv27fHss8/i999/N+ex9XsM2P7f8+LFi9GhQweLXldXep8TEhIglUqxbNky1NTUQKPRYOXKlUhOToaXl5fN2wu0fpv1ej18fHws0nx9fXHmzBmcOnUKgPO1GQDmzJmDwMBA9OrVC/PmzYPBYDBfy8/Px4MPPghvb2+L9hQVFeHSpUvmPC3VZgZSLqRPnz5Yvnw5srOzsWjRIpw8eRIPPPAALl++jL59+0Iul2PWrFm4evUqdDodXnrpJdTU1KC0tBSAaYxIeno6XnjhBfTu3fum97r//vvh4+ODuLg4PPDAA3jrrbfM18rKyhAaGmqRPzQ0FGVlZU7Z5osXLyI9PR3Lly9vclNMV2tzmzZt8N5772H9+vXYunUr+vfvj9TUVItgylZttkV7T5w4gVOnTmH9+vX44osvsHz5chQUFOCxxx67ZXu1Wi2uXbvWom22Vbvru379Or788ktMnDjRIt2V3ufo6Gh8++23eOWVVyCTyeDv748zZ87gq6++umV7W+N9tkWbhwwZgg0bNmDHjh0wGo347bff8N577wGAuRxnajMATJ06FWvXrsXOnTvx/PPP45133sHMmTPN15tqT+21m+Wx6vf6tvuwyGlcunRJKJVKsXjxYiGEqds0JiZGSCQS4eHhIZ566ilxzz33iBdeeEEIIcRHH30k+vXrJwwGgxDi5o93Tp8+LX7++WexevVqcdddd4m5c+ear3l5eYnVq1db5F+wYIEICQlppZbWaY02jxw5UsyaNct83tijPVdrc2PS0tIsHuHaq82t0d7nnntOABBFRUXmtIKCAgHA/LgvLi5OvPPOOxZ12bp1qwAgrl692ppNFkK0/vu8evVq4enpKcrKyizSXel9Li0tFXFxceLll18WBw4cELt27RIPPfSQGDRokPkxlz3f59Zos9FoFDNnzhQ+Pj7Cw8NDBAQEiDfffFMAEHv37nW6NjdmyZIlwtPTU1y/fl0IIcTDDz8sJk2aZJGn9rHnL7/8IoRo2d9rz9sPvchZ+Pv7o0OHDjh27BgAYPDgwTh+/DguXLgAT09P+Pv7IywsDDExMQBMj6/y8/Mb7FnUu3dvjBs3DitWrDCnRUZGAgA6d+6MmpoaTJo0CX/+85/h4eGBsLCwBrMsysvLERYW1prNBdA6bc7JycHXX3+N+fPnAzD9L9BoNMLT0xOfffYZnnnmGZdrc2P69OmD7du3m8/t1ebWaG94eDg8PT3RoUMH8/VOnToBAE6fPo2OHTs22V6lUglfX9/WbDKA1n+fFy9ejEceeaTB/9Jd6X1esGABVCqVxQyuVatWITIyEvv27UPfvn3t+j63RpslEgnmzp2Ld955B2VlZQgODsaOHTsAwFyOM7W5MX369IHBYEBxcfFN/60CMP/etujv9W2HXuQ0Ll++LAICAsRHH33U6PUdO3YIiURi/h/3qVOnxKFDh8zHtm3bBADxz3/+U5SUlDR5nxUrVghPT0/zYM3HH39cPPLIIxZ5EhMTW2Xg9Y1ao82//PKLRZ63335bKBQKcejQIfH7778LIVyvzY159tlnRa9evczn9mpza7S3Nu3YsWPmcmoHXtf2Us2cOVN07drV4l5jx45ttcHmN2rN9/nEiRNCIpGIb775pkG5rvQ+z5gxQ9x3330W5Zw7d04AEHv27BFC2Pd9ttW/5bS0NJGYmGg+d6Y2N2bVqlVCKpWa/x7XDjav/UwSQojMzMwGg81b6veagZQL+fOf/yxyc3PFyZMnxZ49e0RycrIICgoS58+fF0IIsXTpUpGfny+OHTsmVq5cKdRqtZgxY0aT5TXWTbxq1Sqxbt068csvv4jjx4+LdevWiYiICDFu3Dhznj179ghPT08xf/58ceTIEfHGG28ILy8vcejQIads840ae7Tnam1evny5WL16tThy5Ig4cuSI+N///V8hlUrF0qVLbd5mW7S3pqZG3HPPPeLBBx8UBw4cEPv37xd9+vQRDz/8sDnPiRMnhJ+fn3j55ZfFkSNHxIIFC4SHh4fIzs5u0fbast21Xn31VREREWF+RFSfK73PtR/Ks2fPFr/99psoKCgQQ4YMEe3atTM/wrLl+2yLNldUVIhFixaJI0eOiIMHD4qpU6cKHx8fsW/fPnMeZ2rz999/Lz744ANRWFgojh8/LlatWiWCg4PF+PHjzXkqKytFaGioSEtLE4cPHxZr164Vfn5+4h//+Ic5T0v+XjOQciFjxowR4eHhwtvbW9x1111izJgxFv/DnjVrlggNDRVeXl4iLi5OvPfee+ZxAY1p7B/l2rVrxT333CPatGkj5HK56Ny5s3jnnXfEtWvXLF771VdfiQ4dOghvb2/RpUsXsXXr1hZvrxC2afONGgukhHCtNi9fvlx06tRJ+Pn5CaVSKe677z6xfv36Bq+1RZtt9R6fPXtWjBo1SrRp00aEhoaK9PR0cfHiRYs8O3fuFD179hTe3t4iJiZGLFu2rCWbasFW7a6pqRFt27YVr7zySpOvdaX3ec2aNaJXr15CLpeL4OBgMXz4cHHkyBGLPLZ6n23R5oqKCtG3b18hl8uFn5+fGDRokHlsVH3O0uaCggLRp08foVKphI+Pj+jUqZN45513zOOjav2///f/RP/+/YVMJhN33XWXmDNnToO6tNTvtUQIIW7/gSARERERcfkDIiIiIisxkCIiIiKyEgMpIiIiIisxkCIiIiKyEgMpIiIiIisxkCIiIiKyEgMpIiIiIisxkCIiIiKyEgMpInIL6enpkEgkeOGFFxpcy8jIgEQiQXp6ujlvampqg9dKJBJ4eXkhNDQUDz/8MJYuXQqj0WijFhCRI2IgRURuIzIyEmvXrsW1a9fMadevX8fq1asRFRV109empKSgtLQUxcXF+M9//oOkpCS8+OKLeOSRR2AwGFq76kTkoBhIEZHbuOeeexAZGYkNGzaY0zZs2ICoqCj06tXrpq+VyWQICwvDXXfdhXvuuQevvPIKNm/ejP/85z9Yvnx5K9eciBwVAykicivPPPMMli1bZj5funQpnn76aavKGjhwIHr06GERmBGRe2EgRURu5amnnkJeXh5OnTqFU6dOYc+ePXjqqaesLi8+Ph7FxcUtV0Eiciqe9q4AEZEtBQcHY9iwYVi+fDmEEBg2bBiCgoKsLk8IAYlE0oI1JCJnwkCKiNzOM888g8mTJwMAFixYcEdlHTlyBNHR0S1RLSJyQny0R0RuJyUlBVVVVaiursaQIUOsLicnJweHDh3C6NGjW7B2RORM2CNFRG7Hw8MDR44cMX/fHHq9HmVlZaipqUF5eTmys7ORlZWFRx55BOPHj2/N6hKRA2MgRURuSalUNnnNaDTC09Pyz2N2djbCw8Ph6emJgIAA9OjRAx9//DEmTJgAqZSd+0TuSiKEEPauBBGRI0lJSUFsbCw+/fRTe1eFiBwc/xtFRPRfly5dwpYtW5Cbm4vk5GR7V4eInAAf7RER/dczzzyDH3/8EX/+858xYsQIe1eHiJwAH+0RERERWYmP9oiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIisxECKiIiIyEoMpIiIiIis9P8Bhwpv5Pe0cpcAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZjUlEQVR4nO3deXxTZb4/8E9akjQJSdrQjdKUUlKpIJu4sMhSYGiZihQdZdQpizBeHVCRcRmY34j4utdeZRSvitug4JRBFAfUAaeKlK0sKkhHUEBKWdpCSws0adOaNs35/RGTkrYpXZJmOZ/363Ve9Dw55+Q5p7T59lm+j0QQBAFEREREIhLi6woQERERdTcGQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARERGJDgMgIiIiEh0GQEREXrB27VpIJBKcOXPGpXzFihVISkpCaGgohg0b1unrz5kzBz179uxaJYlEjAEQEbUgkUiuuc2ZM6fdxwHAhAkT3B5z/PhxAMDx48fx1FNPYdiwYVCr1ejduzcyMjJw8ODBVutZWlqKe+65B+Hh4dBoNJg+fTqKioq66zF12JdffomnnnoKY8aMwZo1a/D888/7ukpEotXD1xUgIv+Tk5Pj9rVnn30Wp06dwoABA1yOO336NJ555hk8+OCDGDt2rLO8f//+zq/j4+ORnZ3d4ppxcXEAgNWrV+Pdd9/FXXfdhT/84Q8wGo14++23MXLkSOTm5mLy5MnOc2pqapCamgqj0YilS5dCKpVi5cqVGD9+PAoKCtCrV68uPQNvyMvLQ0hICN59913IZDJfV4dI3AQionb629/+JgAQHnnkkRavffvttwIAYc2aNa2eO378eGHQoEFtXv/gwYNCdXW1S1llZaUQFRUljBkzxqX8hRdeEAAI33zzjbPs2LFjQmhoqLBkyZJ23pH3rFmzRgAgnD592lk2d+5cQaVSeeT6s2fP9ti1iMSIXWBE1C4//PADHn30UQwfPhwrVqzwynuMGDGixbiWXr16YezYsTh27JhL+ccff4ybb74ZN998s7MsJSUFkyZNwkcffeQsq6+vxzPPPIMRI0ZAq9VCpVJh7Nix2LFjR4v3t9ls+L//+z8MHjwYYWFhiIqKQnp6uksXnMViweOPP46oqCio1WrccccdKCkpgUQiwbPPPuv23iQSCdasWQOz2ezs+luzZg0iIyOxePFilzqEh4cjNDQUVVVVzvIXXngBPXr0QE1Njct1i4qKkJaWBpVKhbi4ODz33HMQBMFtPYjIjgEQEV1TbW0t7rnnHoSGhmLDhg2Qy+Wduk5jYyMqKytdtuYf6K0pKytDZGSkc99ms+H777/HTTfd1OLYW265BadOnUJ1dTUAwGQyYfXq1ZgwYQJeeOEFPPvss6ioqEBaWhoKCgpczp03bx4WLVoEvV6PF154AX/6058QFhaGAwcOOI+ZP38+XnnlFUyZMgX/+7//C6lUioyMjGveQ05ODsaOHQu5XI6cnBzk5ORg/PjxGDNmDHbv3u087vvvv4fRaAQA7N2711m+Z88eDB8+3CVAbGxsRHp6OmJiYvDiiy9ixIgRWLZsGZYtW3bN+hCJnq+boIjI/z3wwAMCAOH99993e0x7usAAtNhmz57d5nvv3r1bkEgkwl/+8hdnWUVFhQBAeO6551ocv2rVKgGAcPz4cUEQBMFqtQoWi8XlmCtXrggxMTHCAw884CzLy8sTAAiPPvpoi2vabDZBEAShoKBAACD84Q9/cHn9vvvuEwAIy5Ytc5a11gXWWrfVihUrhNDQUMFkMgmCIAivvvqq0LdvX+GWW24Rnn76aUEQBKGxsVEIDw8XHn/8cZdroVl3pM1mEzIyMgSZTCZUVFS0uA8iasIWICJq0/r16/Hee+8hKysLs2bN6tK1EhMTsW3bNpftqaeecnv8xYsXcd9996Ffv34ux9XV1QFAqy1RYWFhLseEhoY6BxzbbDZcvnwZVqsVN910E7777jvnef/85z8hkUhabT2RSCQAgM8//xwA8Oijj7q8vmjRomveuztjx45FY2Mj9u3bB8De0jN27FiMHTsWe/bsAQAcPXoUVVVVLoPLHRYuXOhSz4ULF6K+vh5fffVVp+tEJAacBUZEbp08eRIPPfQQrrvuOrzxxhtdvp5KpXKZydUWs9mM22+/HdXV1cjPz3fp+lEoFADs43Ga+/nnn12OAYD3338fL730Eo4fP46GhgZneb9+/Zxfnzp1CnFxcdDpdG7rdPbsWYSEhLjMbAOAAQMGtOueWnPjjTdCqVRiz549SEtLw549e7B8+XLExsbitddew88//+wMhG677TaXc0NCQpCUlORSdt111wFAi/xDROSKARARtcpisWDmzJmor6/Hhg0bujXpXn19Pe688058//33+OKLL3DDDTe4vK7T6SCXy3HhwoUW5zrKHFPr161bhzlz5iAzMxNPPvkkoqOjERoaiuzsbJw6dcr7N3MNUqkUt956K3bv3o3CwkKUlZVh7NixiImJQUNDA77++mvs2bMHKSkpiIqK8nV1iYIGu8CIqFVPPPEEDh8+jBdffBHDhw/vtve12WyYNWsWtm/fjvXr12P8+PEtjgkJCcHgwYNbTZD49ddfIykpCWq1GoB9tlhSUhI2bdqErKwspKWlYfLkyc6WIof+/fvj/PnzuHz5stu69e3bFzabrUXgdOLEic7cqtPYsWPxzTff4KuvvkJkZCRSUlKg0+kwaNAg7NmzB3v27MG4ceNanGez2Vokfvzpp58A2Lsbicg9BkBE1MLmzZvx+uuv44477mgx3sXbHnnkEXz44Yd44403cOedd7o97je/+Q2+/fZblyDoxIkTyMvLw9133+0sCw0NBQCXqeFff/019u/f73K9u+66C4IgYPny5S3ey3Hu1KlTAQCvvvqqy+uvvPJKO++udWPHjoXFYsErr7yC2267zTnmaOzYscjJycH58+dbHf8DAK+//rpLPV9//XVIpVJMmjSpS3UiCnbsAiMiFxcuXMC8efMQGhqKSZMmYd26da0e179/f4waNcqj7/3KK6/gjTfewKhRo6BUKlu894wZM6BSqQAAf/jDH/C3v/0NGRkZeOKJJyCVSvHyyy8jJiYGf/zjH53n3H777di0aRNmzJiBjIwMnD59Gm+99RYGDhzoMgU/NTUVWVlZePXVV3Hy5Emkp6fDZrNhz549SE1NxcKFCzFs2DDce++9eOONN2A0GjF69Ghs374dhYWFXbrvUaNGoUePHjhx4gQefPBBZ/m4cePw5ptvAkCrAVBYWBhyc3Mxe/Zs3Hrrrfj3v/+NrVu3YunSpewuI7oW305CIyJ/s2PHjlanqzffmk9f90QmaMfUbnfb1VPKBUEQiouLhd/85jeCRqMRevbsKdx+++3CyZMnXY6x2WzC888/L/Tt21eQy+XC8OHDhS1btgizZ88W+vbt63Ks1WoVVqxYIaSkpAgymUyIiooSpk6dKhw6dMh5TF1dnfDoo48KvXr1ElQqlTBt2jShuLi409PgHW6++WYBgPD11187y0pKSgQAgl6vb/VZqVQq4dSpU8KUKVMEpVIpxMTECMuWLRMaGxvbfM5EJAgSQWDKUCKirnJMoW8rGzQR+Q+OASIiIiLRYQBEREREosMAiIiIiESHs8CIiDyAwymJAgtbgIiIiEh0GAARERGR6LALrBU2mw3nz5+HWq12ZmQlIiIi/yYIAqqrqxEXF4eQkLbbeBgAteL8+fPQ6/W+rgYRERF1QnFxMeLj49s8hgFQKxyLKBYXF0Oj0fi4NkRERNQeJpMJer3e+TneFgZArXB0e2k0GgZAREREAaY9w1c4CJqIiIhEhwEQERERiQ4DICIiIhIdjgEiIiIKIo2NjWhoaPB1NbxCKpUiNDTUI9diAERERBQEBEFAWVkZqqqqfF0VrwoPD0dsbGyX8/QxACIiIgoCjuAnOjoaSqUy6BL5CoKA2tpaXLx4EQDQu3fvLl2PARAREVGAa2xsdAY/vXr18nV1vEahUAAALl68iOjo6C51h3EQNBERUYBzjPlRKpU+ron3Oe6xq+OcGAAREREFiWDr9mqNp+6RXWBERNTtLFYL6hvr3b4uC5VB3kPejTUisWEARERE3com2JB/Lh8VtRVuj4lSRiG1XypCJOyoIO/g/ywiIupWIZIQqOVqGC1GaOSaFpvRYoRarmbwQ17F/11ERNTtDDoDtHItrDYrlFKlc7ParNDKtTDoDL6uIgU5BkBERNTtdAodkiKSUGF27QarMFcgKSIJOoXORzUjX6iursb9998PlUqF3r17Y+XKlZgwYQIWLVrktfdkAERERN3PYoFBGgNtQwjMl8oQWlML86UyaBtCYJDGABaLr2soWpW1lSg2FgMAio3FqKyt9Pp7Ll68GHv37sVnn32Gbdu2Yc+ePfjuu++8+p4cBE1ERN3LZgPy86GrqMCwy6U4ZzyHXj1j0VBThgHaBOhO7weiooDUVCCEf6d3p8raSkx8fyLMDWbkzMhB1uYsqKQq5M3OQ6Qy0ivvWV1djffffx/r16/HpEmTAABr1qxBXFycV97Pgf+ziIioe4WEAGo1YDQiurcBodoIlIXUIlQbgejeBsBotL/O4Kfb1TXUwdxgRtGVIox5bwyKrhTB3GBGXUOd196zqKgIDQ0NuOWWW5xlWq0WAwYM8Np7AgyAiIjIFwwGQKuFJlSJ6KhEmEKtiI5KhCZUCWi19tep2+m1euTMyHEpy5mRA71W76MaeQ8DICIi6n46HZCUBFRUIF4Tj/4R/RGviQcqKuzlOg6C9oViYzGyNme5lGVtznKOCfKGpKQkSKVSfPvtt84yo9GIn376yWvvCTAAIiIiXzEYAJUKaouAwTGDobYIgErF1h8fUkgVUElVSIpIwt4H9iIpIgkqqQoKqcJr76lWqzF79mw8+eST2LFjB3744QfMmzcPISEhXl3ag4OgiYjINxytQEeOABqNvfVn8GC2/vhQpDISebPzUNdQB71Wj52zd0IhVXhtALTDyy+/jIceegi33347NBoNnnrqKRQXFyMsLMxr78kWICIi8p1fWoFQWsrWHz8RqYx0jvnRa/VeD34AeyvQP/7xD5jNZly4cAEPPvggTpw4AYMX/z8wACIiIt9xtAIZjRz7I2KHDx/GBx98gFOnTuG7777D/fffDwCYPn26196TXWBERORbyclAQ4P9XxKtv/71rzhx4gRkMhlGjBiBPXv2IDLSe61PDICIiMi3IiKAMWN8XQvyoeHDh+PQoUPd+p7sAiMiIiLR8WkAtHv3bkybNg1xcXGQSCT45JNPXF6XSCStbitWrHB7zWeffbbF8SkpKV6+EyIiIgokPg2AzGYzhg4dilWrVrX6+oULF1y29957DxKJBHfddVeb1x00aJDLefn5+d6oPhEREQUon44Bmjp1KqZOner29djYWJf9Tz/9FKmpqUhKSmrzuj169GhxLhEREZFDwIwBKi8vx9atWzFv3rxrHnvy5EnExcUhKSkJ999/P86dO9fm8RaLBSaTyWUjIiKi4BUwAdD7778PtVqNO++8s83jbr31Vqxduxa5ubl48803cfr0aYwdOxbV1dVuz8nOzoZWq3Vuen3wLfpGRERETQImAHrvvfdw//33XzMt9tSpU3H33XdjyJAhSEtLw+eff46qqip89NFHbs9ZsmQJjEajcysu9t6ib0REROR7AZEHaM+ePThx4gQ+/PDDDp8bHh6O6667DoWFhW6PkcvlkMvlXakiERERBZCAaAF69913MWLECAwdOrTD59bU1ODUqVPo3bu3F2pGREREnlRfX98t7+PTAKimpgYFBQUoKCgAAJw+fRoFBQUug5ZNJhM2btyI+fPnt3qNSZMm4fXXX3fuP/HEE9i1axfOnDmDffv2YcaMGQgNDcW9997r1XshIiKijpswYQIWLlyIRYsWITIyEmlpad3yvj7tAjt48CBSU1Od+4sXLwYAzJ49G2vXrgUAbNiwAYIguA1gTp06hcrKSud+SUkJ7r33Xly6dAlRUVG47bbbcODAAURFRXnvRoiIiIJFZSVQVwfo9UBxMaBQAF5ckwuwT3R6+OGHsXfvXq++z9UkgiAI3fZuAcJkMkGr1cJoNEKj0fi6OkRERG36+eefcfr0afTr1++ak4XaVFkJTJwImM1ATg6QlQWoVEBenteCoAkTJsBkMuG7775r1/Ft3WtHPr8DYhA0ERERdYO6OnvwU1TUtEBtUpK93ItGjBjh1eu3JiAGQRMREVE30OvtLT9Xy8mxl3uRSqXy6vVbwwCIiIiI7IqL7d1eV8vKspcHGQZAREREZKdQ2Mf8JCUBe/fa/1Wp7OVBhmOAiIiIyC4y0j7g2TELbOfObpkF5gsMgIiIiKjJ1cFON6yNuXPnTq+/R2vYBUZERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREQUIMq1t56h4ZABEREQU4qVQKAKitrfVxTbzPcY+Oe+4sToMnIiIKcKGhoQgPD8fFixcBAEqlEhKJxMe18ixBEFBbW4uLFy8iPDwcoaGhXboeAyAiIqIgEBsbCwDOIChYhYeHO++1KxgAERERBQGJRILevXsjOjoaDQ0Nvq6OV0il0i63/DgwACIiIgoioaGhHgsSghkHQRMREZHosAVIzCwWoL7e/esyGSCXd199iIiIugkDILGy2YD8fKCiwv0xUVFAaioQwoZCIiIKLvxkE6uQEECtBoxGQKNpuRmN9tcZ/BARURDip5uYGQyAVgtYrYBS2bRZrfZyg8HXNSQiIvIKBkBiptMBSUktu8EqKuzlOp1v6kVERORlDIDEzmAAVCrAZLLvm0z2fbb+EBFREGMAJHbNW4HY+kNERCLAAIiaWoFKS9n6Q0REosAAiJpagYxGtv4QEZEoMA8Q2SUnAw0N9n+JiIiCHAMgsouIAMaM8XUtiIiIugW7wIiIiEh0GAARERGR6DAAIiIiItFhAERERESi49MAaPfu3Zg2bRri4uIgkUjwySefuLxeU1ODhQsXIj4+HgqFAgMHDsRbb711zetu3LgRKSkpCAsLw+DBg/H555976Q6IiIgoEPk0ADKbzRg6dChWrVrV6uuLFy9Gbm4u1q1bh2PHjmHRokVYuHAhPvvsM7fX3LdvH+69917MmzcPhw8fRmZmJjIzM3H06FFv3QYREREFGIkgCIKvKwEAEokEmzdvRmZmprPshhtuwMyZM/GXv/zFWTZixAhMnToV//3f/93qdWbOnAmz2YwtW7Y4y0aOHIlhw4a1q/UIAEwmE7RaLYxGIzQaTeduiIiIiLpVRz6//XoM0OjRo/HZZ5+htLQUgiBgx44d+OmnnzBlyhS35+zfvx+TJ092KUtLS8P+/fvdnmOxWGAymVw2IiIiCl5+HQC99tprGDhwIOLj4yGTyZCeno5Vq1Zh3Lhxbs8pKytDTEyMS1lMTAzKysrcnpOdnQ2tVuvc9Hq9x+6BiIiI/I/fB0AHDhzAZ599hkOHDuGll17CggUL8NVXX3n0fZYsWQKj0ejciouLPXp9IiIi8i9+uxRGXV0dli5dis2bNyMjIwMAMGTIEBQUFOCvf/1ri24uh9jYWJSXl7uUlZeXIzY21u17yeVyyOVyz1WeiIiI/JrftgA1NDSgoaEBISGuVQwNDYXNZnN73qhRo7B9+3aXsm3btmHUqFFeqScREREFHp+2ANXU1KCwsNC5f/r0aRQUFECn0yEhIQHjx4/Hk08+CYVCgb59+2LXrl34+9//jpdfftl5zqxZs9CnTx9kZ2cDAB577DGMHz8eL730EjIyMrBhwwYcPHgQ77zzTrffHxEREfknn06D37lzJ1JTU1uUz549G2vXrkVZWRmWLFmCL7/8EpcvX0bfvn3x4IMP4vHHH4dEIgEATJgwAYmJiVi7dq3z/I0bN+L//b//hzNnziA5ORkvvvgifv3rX7e7XpwGT0REFHg68vntN3mA/AkDICIiosATNHmAiIiIiLyBARARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREosMAiIiIiESHARARERGJDgMgIiIiEh0GQERERCQ6DICIiIhIdBgAERERkegwACIiIiLRYQBEREREouPTAGj37t2YNm0a4uLiIJFI8Mknn7i8XlNTg4ULFyI+Ph4KhQIDBw7EW2+91eY1165dC4lE4rKFhYV58S6IiIgo0PTw5ZubzWYMHToUDzzwAO68884Wry9evBh5eXlYt24dEhMT8eWXX+IPf/gD4uLicMcdd7i9rkajwYkTJ5z7EonEK/UnIj9hNgM9e9q/rqkBVCrf1oeI/J5PA6CpU6di6tSpbl/ft28fZs+ejQkTJgAAHnzwQbz99tv45ptv2gyAJBIJYmNjPV1dIiIiChJ+PQZo9OjR+Oyzz1BaWgpBELBjxw789NNPmDJlSpvn1dTUoG/fvtDr9Zg+fTp++OGHNo+3WCwwmUwuGxEREQUvvw6AXnvtNQwcOBDx8fGQyWRIT0/HqlWrMG7cOLfnDBgwAO+99x4+/fRTrFu3DjabDaNHj0ZJSYnbc7Kzs6HVap2bXq/3xu0QERGRn/D7AOjAgQP47LPPcOjQIbz00ktYsGABvvrqK7fnjBo1CrNmzcKwYcMwfvx4bNq0CVFRUXj77bfdnrNkyRIYjUbnVlxc7I3bISIiIj/h0zFAbamrq8PSpUuxefNmZGRkAACGDBmCgoIC/PWvf8XkyZPbdR2pVIrhw4ejsLDQ7TFyuRxyudwj9SYiIiL/57ctQA0NDWhoaEBIiGsVQ0NDYbPZ2n2dxsZGHDlyBL179/Z0FYmIiChA+bQFqKamxqVl5vTp0ygoKIBOp0NCQgLGjx+PJ598EgqFAn379sWuXbvw97//HS+//LLznFmzZqFPnz7Izs4GADz33HMYOXIkDAYDqqqqsGLFCpw9exbz58/v9vsjou5hrjdDdfXX7qbBc7o8Ef3CpwHQwYMHkZqa6txfvHgxAGD27NlYu3YtNmzYgCVLluD+++/H5cuX0bdvX/zP//wPHnroIec5586dc2klunLlCn7/+9+jrKwMERERGDFiBPbt24eBAwd2340RERGRX5MIgiD4uhL+xmQyQavVwmg0QqPR+Lo6RHQN5isXodLF2L++XA5VRLSbA9kCRBTMOvL57bdjgIiIiIi8hQEQERERiQ4DICIKfJcvNX1dWgpUVrZ+3NXlJSXujyOioMcAiIgCW2UlMOOupv0ZmcDEiS2Dm8pK4JecYgCA9PTWjyMiUWAARESBra4OqDM37Z85Zx/sXFfX8jjz1cedaf04IhIFBkBEFNj0emDVKteynBx7efPjVq++9nFEJAoMgIgosBUXAwsWuJZlZdnLmx/XPCFqa8cRkSj47VpgRETtolAAiqvy+SQm2PcVipbHXZ33JzHRvt/8OCISBQZARBTYIiOBzf8EDL9ke9/8CRCrt5c3P27rVnvgAwC5uUCvXi2PIyJRYABERIFP16vp6z59gAg3Qc3VwU58PDNBE4kYxwARERGR6DAAIqKAd6m2KRFiqakUlbXM7UNEbWMAREQBrbK2End91JQIMfPDTEx8fyKDICJqEwMgIgpodQ11MDc0JTg8azwHc4MZdQ2tJDhUqQBBsG8c/0MkagyAiKhrzGZAIrFvV2da7iZ6rR6rfu2aCDFnRg702pYJDs31ZkiWSyBZLoG5vvvrSkT+gwEQEQW0YmMxFnzumggxa3MWio1dSHDo46COAoPFakG1pdrtZrFafF1FagOnwRNRQFNIFVBJm7qz+moT0EOqgkLKBIfkPTbBhvxz+aiorXB7TJQyCqn9UhEiYVuDP+J3hYi65urV1EtKun119UhlJP55zz+d+5/M/AR5s/MQqWSCQ/KeEEkI1HI1jBYjNHJNi81oMUItVzP48WP8zhBR51VWAhkZTfvp6cDEid0eBPVSNiVC7KPpw+CHuoVBZ4BWroXVZoVSqnRuVpsVWrkWBp3B11WkNjAAIqLOq6uD2VLt3DWXnLGPmalrZQYWUZDRKXRIikhChdm1G6zCXIGkiCToFDof1YzagwEQEXWeXg+scp2BhZwce3l3UqkgeRaQPAvPTG/3cbceBQ6DzgCVTAWTxQQAMFlMUMlUbP0JAAyARIwzGKjLiouBBa4zsJCVZS/3Q1cnRywxlbSeLNFPuvUoMDRvBWLrT+DgLDCR4gwG8giFAlBc1eKSmGDfV/jfDKzK2kpkrG8KbNL/kQ61TN1ywHRdnevU9zNngKQkduuRWwadAUVXilBqKmXrTwDhJ5tIcQYDeURkJLC5aQYWNn8C5OW5rrruJ5pnjD5Tdab1jNF6PbB6tWuZL7r1KGA4WoGMFiNbfwIIP91EjDMYyBMuhTV9XaoGKpW+q0tb9Fo9Vk9zDWxazRhdXAzMn+9a1lq3HpMl0lWSdckYGjMUybpkX1eF2okBkIhxBgN1VSAtRFpsLMb8f7kGNq1mjFYoXAdSJyba9/2wW4/8R4QiAmMSxiBCEeHrqlA7MQASOc5gIHfas25WhxYi9bHmGaMTwxOhai1jdGQksHVr035urt926xFR53EQtMg5WoGOlB+BRq5BhbkCg2MGs/WH2kWv1eO137wHSd1kZ5m7hUh9LVIZia33bUXi/yUCAHLvz0UvZa/WkyZeHezEx7c+tb75VPlevRgkEQUQtgCRsxWIMxioo9rdreQnrg524jXxnc8YzanyRAGPARBxBgN1Wru7lYJNa1PlmQGbKKCwC4wA2GcwNDQ2cAYDdUiHupW8SCVTQVgmdN8bOqbKT27q+uNUeaLAwhYgAsAZDNR5HutW8icqFSAI9q218T/tnSpPRH7LpwHQ7t27MW3aNMTFxUEikeCTTz5xeb28vBxz5sxBXFwclEol0tPTcfLkyWted+PGjUhJSUFYWBgGDx6Mzz//3Et3QESixKnyRAHPpwGQ2WzG0KFDsar5YooABEFAZmYmioqK8Omnn+Lw4cPo27cvJk+eDHMbScf27duHe++9F/PmzcPhw4eRmZmJzMxMHD161Ju3Qj7C9cy8p13rZokVp8oTBTyJIAjd2HHunkQiwebNm5GZmQkA+OmnnzBgwAAcPXoUgwYNAgDYbDbExsbi+eefx/zmzc+/mDlzJsxmM7Zs2eIsGzlyJIYNG4a33nqrXXUxmUzQarUwGo3QaDRduzHyGptgw47TO7iemRdU1lZiwtoJ+KHiBwD2wc2trpsFe76gntk9AQA1S2qgknlgNXYv8WhdzWagp/1aqKnxzCr0RNQlHfn89ttPBYvF/pd7WFhTnv2QkBDI5XLk5+e7PW///v2YfPXARABpaWnYv3+/dypKPsP1zLyn3etmoWkAsrBM8OvgBwisuhKRd/ntJ0NKSgoSEhKwZMkSXLlyBfX19XjhhRdQUlKCCxcuuD2vrKwMMTExLmUxMTEoKytze47FYoHJZHLZKDBwPTPvcKybpawHhGft2z/S3vHLBIee1p4M2EQU+Pw2AJJKpdi0aRN++ukn6HQ6KJVK7NixA1OnTkVIiGernZ2dDa1W69z0nMoaMLiemXe0luBw/mfz/TbBoU9ca6YYEfk1vw2AAGDEiBEoKChAVVUVLly4gNzcXFy6dAlJSUluz4mNjUV5eblLWXl5OWJjY92es2TJEhiNRudWzKmsAYXrmXle8wSHAMSR4JCIRMOvAyAHrVaLqKgonDx5EgcPHsT06dPdHjtq1Chs377dpWzbtm0YNWqU23Pkcjk0Go3LRoGjeSsQW3+6zpHg8Gpb798aHDl+iIjg40zQNTU1KCwsdO6fPn0aBQUF0Ol0SEhIwMaNGxEVFYWEhAQcOXIEjz32GDIzMzFlyhTnObNmzUKfPn2QnZ0NAHjssccwfvx4vPTSS8jIyMCGDRtw8OBBvPPOO91+f9R9DDoDiq4UcT0zD2oe7DD4IaJg4tMWoIMHD2L48OEYPnw4AGDx4sUYPnw4nnnmGQDAhQsXkJWVhZSUFDz66KPIysrCBx984HKNc+fOuQyKHj16NNavX4933nkHQ4cOxccff4xPPvkEN9xwQ/fdGHU7rmdGREQd4Td5gPwJ8wAFpit1V/BjxY8YGDWQS3p4gLnejOjlPWF+/pcCkeS6OVt11rm22fEFx32ythkRdU5Q5AEi6iiuZ+ZlJSVAZXBng66srUTG+gznfvo/0jHx/YnMgk0UhBgAEVHrLjX70E9PByZODOogqCMJIIkosDEAIqJWqawhMK9PbCo4c8a+/ENd8AYDjgSQV8uZkSOKBJDBhusE0rX4dBYYEfkxvR5YvRq4emmZnBx7eZBqLQFk1uYs7Jy9k0FQALEJNuSfy+c6gdQmfueJqHXFxUDzRYezsuzlQap5AsjE8ET/SgBpNgMSiX0zc5kOd7hOILVHp1qAZsyYAYlE0qJcIpEgLCwMBoMB9913HwYMGNDlChKRjygUrrO+EhPt+wo/CQa8wJEA0jELLPf+XM4CC1CO3GBWmxUaedNsIJPFxHUCCUAnW4C0Wi3y8vLw3XffQSKRQCKR4PDhw8jLy4PVasWHH36IoUOHYu/evZ6uLwU49ssHkMhIYOtV2aBzc4G8PHt5ELs62InXxDP4CVBcJ5CupVMtQLGxsbjvvvvw+uuvOxcmtdlseOyxx6BWq7FhwwY89NBDePrpp5Gfn+/RClPgYr98ALo62ImPF0UeoKBgNgM9e9q/Fkn+ptY4WoFMFhM0cg3XCSQXnfqUeffdd7Fo0SKXVdlDQkLwyCOP4J133oFEIsHChQtx9OhRj1WUAh/75Yna0J7xPVenIBBBXqau4jqB1JZOfdJYrVYcP368Rfnx48fR2NgIAAgLC2t1nBCJm0FngFauhdVmhVKqdG5Wm5X98kRtqawEMpqSNIohL5MnGHQGqGQqrhNILXQqAMrKysK8efOwcuVK5OfnIz8/HytXrsS8efMwa9YsAMCuXbswaNAgj1aWAh/75Yk6qa7OtWVIBHmZPIHrBJI7nRoDtHLlSsTExODFF19EeXk5ACAmJgaPP/44nn76aQDAlClTkJ6e7rmaUtBgvzz5M5VMBWGZHy6RKMK8TJ6SrEtGQ2MDknXJvq4K+ZEuL4ZqMpkAIKgWDeViqN73Tek3OFJ+BP11/XHq8ikMjhmMW/rc4utqUXMcTNt9rvWsi4uBcePsLT8OSUnAzp0tgyB+30ikunUxVI1GwyCBOoz98kTNXGuAsz/lZWJCRgoCnV4K4+OPP8ZHH32Ec+fOob6+3uW17777rssVoyBlsQD19dBBCoM0BocvHMbw3sOhs0qB6mpAJgPkcl/XkhxUKqBrjcTUHq0NcFarXfMuOfIyJSba93NzgV69gj4vE5G3dKoF6NVXX8XcuXMRExODw4cP45ZbbkGvXr1QVFSEqVOnerqOFCxsNiA/3/5LfOtWpHx9CuOOVCPl61POMuTn248jEpP2DnBunpeJwQ9Rp3UqAHrjjTfwzjvv4LXXXoNMJsNTTz2Fbdu24dFHH4XRaPR0HSlYhITY/6o1GgGNBj0j4zCg/83oGRkHaDT2crXafhyRmDgGOF/N2wOc2Y1FItepT5pz585h9OjRAACFQoHq6moA9unxH3zwgedqR8HHYAC0WsBqBZTKps1qtZcbOBaIREiEC88S+VqnAqDY2FhcvnwZAJCQkIADBw4AAE6fPo0uTiqjYKfT2WeuVDRbDqOiwl6uY44OEiF/GuBMJBKdCoAmTpyIzz77DAAwd+5cPP744/jVr36FmTNnYsaMGR6tIAUhg8H+y/2XFAowmez7bP0hsWrvwrOOQemCwKntRF3UqVlg77zzDmy/DFRdsGABIiMjsXfvXtxxxx146KGHPFpBCkKOVqAjR+xjfyoqgMGD2fpDomWuNyP6nUQ4R+Jw4Vkir+tUC1BISAisViu++eYbbNmyBQqFApMnT0bfvn2Rm5vr6TpSMHK0ApWWsvWHiIi6XadagHJzc5GVlYVLly61eE0ikTgXRCVyy9EKdPAgcNNNbP3xJmYFJiJqoVMtQI888gjuueceXLhwATabzWVj8EPtlpwMDB1q/5dI5GplgORZwGwJkiCV0+zJz3WqBai8vByLFy9GTEyMp+tDYhIRAYwZ4+taEIlT86U3mFWamvslc79bAZ65v1MB0G9+8xvs3LkT/fv393R9iIioq64V3LRn6Y2uXJ8CnyNzf/OUJVeLigJSUwM2eW2nAqDXX38dd999N/bs2YPBgwdDKpW6vP7oo496pHJERNRB7QluWlt6Iymp5dIbnb0+BT5H5v7CwtYzkhcX2//PBGjwA3QyAPrggw/w5ZdfIiwsDDt37oREInG+JpFIGAAREflKe4Ibx9Ibkyc3lbV36Y2uBE8UWAwGoKjInqlfo2kqN5mCInN/p0K3P//5z1i+fDmMRiPOnDmD06dPO7eioiJP15GIuqJ5d8XV++QXKmubviclphKX/Q5rz7piXVl6wxfrlpFvBHnm/k4FQPX19Zg5cyZCArjpi0gUWuuumDiRQZAfqaytRMb6pu9R+j/SMfH9iZ0PgtoT3HRl6Q2uWyYuQZy5v1MRzOzZs/Hhhx96ui5E5GmtdVeYzeyu8CN1DXUwNzR9j85UnYG5wYy6hk5+j9oT3LR36Y3OXp+CR/NWoCBp/QE6OQaosbERL774Ir744gsMGTKkxSDol19+2SOVI6Iu6spYD+oWeq0eq6etxuScpu9Rzowc6LWd/B45gpvERPt+bm7rs7Su3u/I0hvtvT5nigUPx1igIMvc36kWoCNHjmD48OEICQnB0aNHcfjwYedWUFDQ7uvs3r0b06ZNQ1xcHCQSCT755BOX18vLyzFnzhzExcVBqVQiPT0dJ0+ebPOaa9euhUQicdnCwsI6cZdEQYDdFX6v2FiM+f9y/R5lbc5CsbEL36PmwY2nA49rXd8ful4tFqC62v1msXRfXQKdoxXIaAya1h+gky1AO3bs8Mibm81mDB06FA888ADuvPNOl9cEQUBmZiakUik+/fRTaDQavPzyy5g8eTJ+/PFHqNr4a0Wj0eDEiRPO/atnqRGJCrsr/J5CqoBK2vQ9SgxPhEqqgkIawN8jX88UE0EOm26XnAw0NARV5v5OBUCeMnXqVEydOrXV106ePIkDBw7g6NGjGDRoEADgzTffRGxsLD744APMb/5X7VUkEgliY2O9UmeigNLe7grymUhlJLbetxWJ/5cIAMi9Pxe9lL0QqQzg75Gvu15FkMOm2wVh5n6//e5bfmmevLr7KiQkBHK5HPn5+W2eW1NTg759+0Kv12P69On44YcfvFpXIr/m7e4Q6rKrg514TXxgBz+Af3S9Ggz2XDVWK6BUNm1Wa1DksKGu89sAKCUlBQkJCViyZAmuXLmC+vp6vPDCCygpKcGFCxfcnjdgwAC89957+PTTT7Fu3TrYbDaMHj0aJSUlbs+xWCwwmUwuGxERdZI/dL0GeQ4b6jq/DYCkUik2bdqEn376CTqdDkqlEjt27MDUqVPbzD80atQozJo1C8OGDcP48eOxadMmREVF4e2333Z7TnZ2NrRarXPTc4YMEVHndWWavScFcQ4b6jq/DYAAYMSIESgoKEBVVRUuXLiA3NxcXLp0CUlJSe2+hlQqxfDhw1FYWOj2mCVLlsBoNDq3Ys6QISI/ZK43Q7JcAslyCcz15muf0BaVChAE+9beKfAd4Q9dr0Gcw4a6zq8DIAetVouoqCicPHkSBw8exPTp09t9bmNjI44cOYLevXu7PUYul0Oj0bhsREHD2x90RP7M0QoUZDlsqOt8OguspqbGpWXm9OnTKCgogE6nQ0JCAjZu3IioqCgkJCTgyJEjeOyxx5CZmYkpU6Y4z5k1axb69OmD7OxsAMBzzz2HkSNHwmAwoKqqCitWrMDZs2fbnDVGRERBytEKdPAgcNNNbP0hJ58GQAcPHkRqaqpzf/HixQDsS22sXbsWFy5cwOLFi1FeXo7evXtj1qxZ+Mtf/uJyjXPnzrmMCbpy5Qp+//vfo6ysDBERERgxYgT27duHgQMHds9NERGRfwnCHDbUdRJBEARfV8LfmEwmaLVaGI1GdocRkd8w15vRM7snAKBmSQ1UMjddmmYz0NN+HGpqPN/12Z7re7sORK3oyOd3QIwBIiIiIvIkn3aBERFRAHIMrKduZbFaUN9Y7/Z1WagM8h7ybqxRYGMARB7DH04i76qsbVpMtMRU4t9LZjBI8iibYEP+uXxU1Lpf3yxKGYXUfqkIkbBzpz0YAJFH8IeTyLsqayuRsb5phfX0f6RDLVMjb3ae/wZB5DEhkhCo5WoUXimEXtMyWW+xqRhJEUn8/doBfFLkEY4fTqPFCI1c02IzWoxQy9X84STqpLqGOpgbmpIfnqk6A3ODGXUN3bTCOvmcQWeAVq6F1WaFUqp0blabFVq5FgYdcxx1BD+NyGP4w0nkPXqtHqunrXYpy5mRA722laV7mPwyKOkUOiRFJKHC7NrSXmGuQFJEEnQK5jjqCAZA5DH84STynmJjMeb/yzWha9bmLBQbuXSPT1gsQHW1+81i8crbGnQGqGQqmCz29c1MFhNUMhX/wOwEjgEijzLoDCi6UgSTxQSNXMMfTiIPUUgVUEmbWnMSwxOhkqqgkHbjCutkZ7MB+fktV5q/WlQUkJoKtLF4d2c4/tA8Un4EGrkGFeYKDI4ZzD8wO4EtQORRzVuB2PpD5BmRykhsva9phfXc+3M5ANpXQkIAtRowGgGNpuVmNNpf93Dw4+BoBSo1lfIPzC5gAEQexx9OIu+4OtiJ18Qz+PElgwHQagGrFVAqmzar1V7uxUVXHX9oGi1G/oHZBQyAyOP4w0lEQc+xyGrzbrCKCnu5lxddTdYlY2jMUCTruL5ZZ3EMEHlFsi4ZDY0N/OEkouBlMABFRYDJZO/6Mpnss+682PrjEKGIwJiEMV5/n2DGFiDyCscPZ4QiwtdVISLyjuatQN3U+kOewQCIKFCZzYBEYt/M5msfT0SeZzDYW31KS7ut9Yc8gwEQERFRZzlagYxGtv4EGI4BIiIi6orkZKChwf4vBQwGQBT8LBag3v0q9ZDJADlXqSf/p5KpICzjCut+JyICGMMByYGGARB5hr8GGT7M2EpERP6LARB1nT8HGY6MrYWFgL6VRSOLi+399gx+iIhEhb/1qet8nBb+WiyJetQpZKitrUZtDzRttdWoU8hgSWwlMCIioqDGFiDyDEdCMKvVHvQ4mExeTwvfFptgQ37Nj2iUlkL7YzHM+hjna6richiT9Qit+RGpUTEIkfDvASIiseBvfPIMH6eFdydEEgK1XI3zMUrI1OFQWwClVAm1BZCpw3E+Rgm1XB2YwU9lZdPXJSWu+0RE1KYA/K1PfsuREMxksu93Y1r4NqulMyAsOg7V8VFQG39GWI8wqI0/ozo+CmHRcYG5WGtlJZCR0bSfng5MnMggiIionRgAkef4aVp4x+KsZyOlsCnDICurgE0ZhrOR0sBdrLWuzjX785kz9v26Op9ViYgokDAAIs/y07TwBp0B0qgYVMZq0KPajMpYDaRRMYHZ+gPYZ7StXu1alpPT+kw3IjfM9WZIlksgWS6BuZ7LqZC4MAAiz/LTtPDOVqAoGWquN+BslCxwW38A+/T9+fNdy7Ky7OVERHRNnAVGnuenaeENOgOKIotwTNcIaUho4Lb+AIBCYW9hc0hMtO8rFD6rEhFRIGELEHmeIy18RISva+LC0QpktBgDu/UHACIjga1bm/Zzc4G8PHs5ERFdE1uASFSSdcloaGxAss6/Wqc65epgJz7etUWIiIjaxACIRCVCEYExCVy0kIhI7NgFRkRERKLDAIiIiIhEhwEQERERiY5PA6Ds7GzcfPPNUKvViI6ORmZmJk6cOOFyzM8//4wFCxagV69e6NmzJ+666y6Ul5e3eV1BEPDMM8+gd+/eUCgUmDx5Mk6ePOnNWyEiIvI5i9WCaku1281itfi6in7Dp4Ogd+3ahQULFuDmm2+G1WrF0qVLMWXKFPz4449Q/TKj5fHHH8fWrVuxceNGaLVaLFy4EHfeeSf27t3r9rovvvgiXn31Vbz//vvo168f/vKXvyAtLQ0//vgjwsLCuuv2iIiIuo1NsCH/XD4qaivcHhOljEJqv1Q0NDagvrHe7XGyUBnkPeTeqKbfkAiCIPi6Eg4VFRWIjo7Grl27MG7cOBiNRkRFRWH9+vX4zW9+AwA4fvw4rr/+euzfvx8jR45scQ1BEBAXF4c//vGPeOKJJwAARqMRMTExWLt2LX77299esx4mkwlarRZGoxEajcazN0lE5CfM9Wb0zO4JAKhZUgOVjKkUAt03pd/gcNlh6DUtl8UpNhVjeOxw3BR3E3ac3tGuQClEElgjZTry+e1Xd2Y0GgEAul+WTzh06BAaGhowefJk5zEpKSlISEjA/v37W73G6dOnUVZW5nKOVqvFrbfe6vYci8UCk8nkshEREQUag84ArVwLq80KpVTp3Kw2K7RyLQw6A0IkIVDL1TBajNDINS02o8UItVwdcMFPR/nN3dlsNixatAhjxozBDTfcAAAoKyuDTCZDeHi4y7ExMTEoKytr9TqO8piYmHafk52dDa1W69z0XFCSiIgCkCPjfYXZtXWnwlzhkgG/PYFSsPObAGjBggU4evQoNmzY0O3vvWTJEhiNRudWzAUliYg6hYNwfc+gM0AlU8FksfdmmCwmqGQql6CmvYFSMPOLTNALFy7Eli1bsHv3bsTHxzvLY2NjUV9fj6qqKpdWoPLycsTGxrZ6LUd5eXk5evfu7XLOsGHDWj1HLpdDLg/uwV5ERN7WkUG4wd694kuO4OZI+RFo5BpUmCswOGZwi6DGoDOg6EoRTBYTNHJNq4FSMPPp/0BBELBw4UJs3rwZeXl56Nevn8vrI0aMgFQqxfbt251lJ06cwLlz5zBq1KhWr9mvXz/Exsa6nGMymfD111+7PYfIX3T0r2dzvRmS5RJIlktgrjf7qNZEdhxb4j8crUClplK3QU3zViAxtf4APm4BWrBgAdavX49PP/0UarXaOUZHq9VCoVBAq9Vi3rx5WLx4MXQ6HTQaDR555BGMGjXKZQZYSkoKsrOzMWPGDEgkEixatAj//d//jeTkZOc0+Li4OGRmZvroTomujX89UzBwtCpYbVZo5E2zcEwWk2jGlvgDR3Bz8PxB3BR3k9ugxvH9aitQClY+DYDefPNNAMCECRNcytesWYM5c+YAAFauXImQkBDcddddsFgsSEtLwxtvvOFy/IkTJ5wzyADgqaeegtlsxoMPPoiqqircdtttyM3NZQ4g8muOv54LrxS6ncKaFJHE4If8WvPuFwd33TDkPcm6ZDQ0NiBZl9zyRYsFqK+HDlIYpDE4fOEwhvceDp1VClRXAzIZEORDQ/wqD5C/YB4g8pXLdZfx5akvoZQqW/z1XNtQiyn9p7h8gDCPC3XF2aqzSPy/RADA8QXH0UvZC5HKyC5ft/n/Y3f/f8lHbDZgxw6gwt7aXFNfg1JjKfpo+6CnzP77BFFRQGoqEBJYf3AFbB4gIrHjzAzqLpW1lchYn+HcT/9HOia+PxGVtZVdvrbYx5b4vZAQQK0GjEZAo0HPyDgM6H8zekbGARqNvVytDrjgp6OC++6IAlB7prASdVVdQx3MDU0D589UnYG5wYy6hjqPXL89g3BFw2wGJBL7ZvaTyQoGA6DVAlYroFQ2bVarvdwQ/N8vBkBEfoZ/PVN30Gv1WD1ttUtZzowc6LXuE8F2ZJai4/+x0WLk/19/pNMBSUnObjCnigp7uS74v19+kQeIiFyJeWYGdY9iYzHm/2u+S1nW5izsnL2z1SCoM7MU2xyES75nMABFRYDJZO/6MpkAlUoUrT8AW4CI/BL/eiZvU0gVUEmbBs0nhidCJVVBIVW0enxncvxEKCIwJmEMIhQRXr8f6oTmrUAiav0B2AJE5Lf41zN5U6QyElvv2+qcBZZ7f+41Z4Exx08QcrQClZaKqvUHYAsQkd/iX8/kbVcHO/Ga+GtOgecsxSDkaAUyGkXV+gMwACIiog7gLMUglJwMDB1q/1dE2AVGFMCuztlSYirxWCI7Infau9AmBZCICGDMmE6fbrFaUN9Y7/Z1WagM8h7+l1WaARBRgGotkZ1apkbe7DwGQeRVnKVIDoG8hqF/1YaI2s3bieyI3OEsRXIIkYRAAzlqL5cjoqFHi632cjk0kPtd8AOwBYgoYDkS2U3Omewsu1YiOyJP4SxFAgDYbBhwvAINR09BFloMpUzpfKm2vhbqxnoMuCEBSLT53dIaDICIAlRHE9kReZJjliIFt/aM79FE9kFvQYUT0lrE9WwKgCqrjRhgVUET2cfvgh+AARBRwOpoIjsioo5o9/ie/kMRdbw/io0nUB3aCJVMBXO9GUqJDFG9+/ttbiH/C8mIqF0ciewccu/P5QBoIvKYdmf/7hWJnilDEG+Ro+rnKgBA1c9ViLfI0TNliN/mFmIARBTAOprIjoioIww6A7RyLaw2K5RSpXOz2qyu2b8NBkRHJ0JtsSfGVFuA6OhEv239ARgAERERkRvtzv6t0zlbgcwNZr9v/QEYABEREXlXZVPCUpSUuO57i9kMSCT2zWy+9vFtaHf2719aga63aPy+9QdgAEREROQ9lZVARlPCUqSnAxMndk8Q5CHNW4Hcrv32SyvQAGms37f+AAyAiIiIvKeuzrUF5swZ+35dYCUsdbQCXTP7dwCtK8YAiIiIyFv0emD1ateynBx7eQBpd/Zvx7piERHdW8FOYABERETkLcXFwHzXhKXIyrKXB5hkXTKGxgwNmuzfDICIiIi8RaEAVE0JS5GYaN9XtJKw1IMDl73Bkf07QuH/rTvtwUzQREQipZKpICwTfF2N4BYZCWzdag98ACA3F+jVy15OPsUWICJ/5Od/CRJR+1isFlSr5c796igtqtVyVFuqUW2phsVq8WHtxI0tQEQBjH/BE/kvx1palyuLcfcvZbmFuWhUhjmPiVJGIbVfKkIkbI/obnziREREXuBYS8tUb3KWtbqWFoMfn+BTJyIi8hKDzgCNTOPcV0gVra+lJSZ+0sXPAIiIiMhLdAod+kX0a1HuNpsydRsGQERERF6UFJHksu92LS3qVhwE7S8sFqC+3v3rMhkgl7t/nYiI/FLzVp4KcwUGxwxm64+PMQDyBzYbkJ8PVFS4PyYqCkhNBULYaEdEFKjOm85D1ZOtP/7Ap5+m2dnZuPnmm6FWqxEdHY3MzEycOHHC5Ziff/4ZCxYsQK9evdCzZ0/cddddKC8vb/O6c+bMgUQicdnS09O9eStdExICqNWA0QhoNC03o9H+OoMfIqKAZqo3ceyPn/DpJ+quXbuwYMECHDhwANu2bUNDQwOmTJkC81Wjwh9//HH861//wsaNG7Fr1y6cP38ed9555zWvnZ6ejgsXLji3Dz74wJu30nUGA6DVAlYroFQ2bVarvdzAvxaIiALd4OjBQbOWVqDzaRdYbm6uy/7atWsRHR2NQ4cOYdy4cTAajXj33Xexfv16TJw4EQCwZs0aXH/99Thw4ABGjhzp9tpyuRyxsbFerb9H6XRAUhJw5Ii91cehogIYPNj+OhERBbRR+lGAQnXtA8nr/KpPxWg0AgB0v3zYHzp0CA0NDZg8ebLzmJSUFCQkJGD//v1tXmvnzp2Ijo7GgAED8PDDD+PSpUtuj7VYLDCZTC6bR1ksQHW1+83ySyp0g8G+SJ7j/U0m+z5bf4iIiDzKbwZB22w2LFq0CGPGjMENN9wAACgrK4NMJkN4eLjLsTExMSgrK3N7rfT0dNx5553o168fTp06haVLl2Lq1KnYv38/QkNDWxyfnZ2N5cuXe/R+nDoywLl5KxBbf4iIqDmzGejZ0/51TY3ravPUbn4TAC1YsABHjx5Ffn5+l6/129/+1vn14MGDMWTIEPTv3x87d+7EpEmTWhy/ZMkSLF682LlvMpmg1+u7XA8ATQOcCwuB1q5ZXGwPekJCYLFaUK+PQY/jPwCnCwFpKKz6GMBSDQCQhcog78Gp8EREQamysunrkhKuGu9lfhEALVy4EFu2bMHu3bsRHx/vLI+NjUV9fT2qqqpcWoHKy8s7NL4nKSkJkZGRKCwsbDUAksvlkHszx47BABQV2Qc0Xz2+x2RyDnB2LJpXUVsBnbQUuhNFuHxDEi5f2g/80nvHRfOIiIJUZSWQkdG0n55u/+M5L49BkJf49JNUEAQsXLgQmzdvRl5eHvr1c00XPmLECEilUmzfvt1ZduLECZw7dw6jRo1q9/uUlJTg0qVL6N27t8fq3iGOrq3m3WAVFfZync65aJ7RYgSSk1E/ZCCQnMxF84iIAp1KBQiCfXPXXVVX57ou1pkz9v26us69Z/PWpKv3CYCPA6AFCxZg3bp1WL9+PdRqNcrKylBWVoa6X77hWq0W8+bNw+LFi7Fjxw4cOnQIc+fOxahRo1xmgKWkpGDz5s0AgJqaGjz55JM4cOAAzpw5g+3bt2P69OkwGAxIS0vzyX0CaNcAZ4POAK1ci5/VCtTfehNkkTFcNE+s+MuLSFz0emD1ateynJzWh05cS2utSRMn8vdIMz4NgN58800YjUZMmDABvXv3dm4ffvih85iVK1fi9ttvx1133YVx48YhNjYWmzZtcrnOiRMnnDPIQkND8f333+OOO+7Addddh3nz5mHEiBHYs2ePd7u5rqV5K9BVrT/OQxQ6JEUkocLs2lLERfNEhr+8iMSnuBiYP9+1LCvLXt5Rnm5NClI+HQMkCMI1jwkLC8OqVauwatWqdl1HoVDgiy++8Ej9PM4xFqi01O30doPOgKIrRTBZTNDINVw0T4xa++WVlMRfXkTBTKFw7R5LTLTvKxQdv5ajNemqFDKdbk3yBj8Z7M0BJd3J0QpkNLZo/XEe0qwViK0/IuTJpnAiCgyRkcDWrU37ubmdHwDtydYkT/OjFm4GQN0tORkYOtT+rxsGnQEqmQqlplK2/oiRP//yIiLvuTrYiY/vfKuIJ1uTPM2PuucYAHW3iAhgzBj7v244WoGMFiNbf8TIn395EZH/82Rrkqf5UQu3X+QBopaSdcloaGzgonli5PjllZho38/NZUI0IuqY5q1J/pIt2l0L986d3R4EMQDyUxGKCIxJGOPrapCv+OsvLyKirvCjFm4GQIHGYgHq692/LpMBvpzuT0REnWKuN0N19dfB+IePH7VwMwAKJB1ZWDWEw7uIiMgP+UkLNz8lA4ljYVWj0b6mWPPNaLS/zuCHiIioTWwBCjTtWFiVCAAsVgvqG913l8pCZZD3YHcpEYkTA6BA40imeOSIawBUUQEMHtxqckUSH5tgQ/65fFTUuu8ujVJGIbVfKhfYJSJR4m++QNSOhVVJ3EIkIVDL1TBajNDINS02o8UItVzN4IeIRIu//QJROxZWJTLoDNDKtbDarFBKlc7NarNCK9cywzgRiRoDoEDlaAVqY2FVErfm68o5cH05IiIGQIGrHQurkh+xWIDqavebxeKVt3WsK2ey2LtLTRYT15cjIgIHQQe25GSgoaHNhVXJD/gwf5OjFehI+RFo5BpUmCswOGYwW3+ISPQYAAUyx8Kq5N8c+ZsKC1tf66a42N6K56X8TQadAUVXilBqKmXrD5E/U6kgedb+ZU1byQErK5u+LinhWoGdxC4wom5gSdSjTiFDbW01anugaautRp1CBkui9xYBdLQCGS1Gjv0hCnSVlUBGRtN+ejowcaJrUETtwhYgIi+zCTbk1/yIRmkptD8Ww6yPcb6mKi6HMVmP0JofkRoV47Vp6cm6ZDQ0NiBZx+5SooBWVweYzU37Z87YW5Dr6nxWpUDFAChYcdFUv+HIyfNjjBJRZeEIsQCNPZUIralFD3U4zscoMbB5Th6VChAEj9UhQhGBMQnsLiUKeHo9sHo1MHlyU1lOTuvd69QmBkDBiIum+h2DzoCi6CJUx9sQXXQRP4frEGa8jItJ0QiLjuO4HCJqn+JiYP5817KsLGDnTgZBHcRPv2DERVP9jmMcztlIKWzKMMjKKmBThuFspJTjcoio/RQK19XTExPt+wqFz6oUqPgJGKwMBvviqFYroFQ2bVYrF031EYPOAGlUDCpjNehRbUZlrAbSqBi2/hBR+0VGAlu3Nu3n5gJ5eYE1C8zRxS8IrsFcN2MAFKyaL5fhwGUzfMbZChQlQ831BpyNkrH1h4g67upgJz4+sIIfP8IAKJhx0VS/Y9AZII2MxrHrIiCNjGbrDxF5h5+0svgzBkDBjIum+h3m5CEi8g+cBRbsDAagqIiLpvoR5uQhIvI9BkABxmK1oL7RfX4fWagM8h5X5fdxtAIdPAjcdBNbf/wAc/IQUWsqa5uyOZeYStBL2QuRSo7v8RYGQAHEJtiQfy4fFbXu8/tEKaOQ2i/VNakeF00lIvJrlbWVyFjftMRF+j/SoZapkTc7j0GQl3AMUABxZBQ2WozQyDUtNqPFCHXzjMJA06KpERG+qTgREbWprqEO5oamJS7OVJ2BucGMugYuceEtDIACjEFngFauhdVmhVKqdG5WmxVauZazioiIApBeq8fqaatdynJm5ECvZXZnb2EAFGAcs4gqzK7dYBXmCs4qIiIKUMXGYsz/l+sSF1mbs1BsLPZRjYIfA6AAZNAZoJKpYLLY8/uYLCaoZCq2/hARBSiFVAGVtClfT2J4IlRSFRRSLnHhLT4NgLKzs3HzzTdDrVYjOjoamZmZOHHihMsx77zzDiZMmACNRgOJRIKqqqp2XXvVqlVITExEWFgYbr31VnzzzTdeuAPfaN4KxNYfIqLAFqmMxNb7mpa4yL0/lwOgvcynAdCuXbuwYMECHDhwANu2bUNDQwOmTJkCs7lpIFhtbS3S09OxdOnSdl/3ww8/xOLFi7Fs2TJ89913GDp0KNLS0nDx4kVv3IZPOFqBSk2lrbb+WKwWVFuq3W4Wq8VHNSciotZcHezEa+IZ/HiZRBAEwdeVcKioqEB0dDR27dqFcePGuby2c+dOpKam4sqVKwgPD2/zOrfeeituvvlmvP766wAAm80GvV6PRx55BH/605+uWQ+TyQStVguj0QiNRtPp+/G2b0q/wcHzB3FT3E24pc8tznKbYMOO0zs6Pl2eiIh8xlxvRs/sngCAmiU1UMncLGFhNgM97cehpoZLXVylI5/ffpUHyGg0AgB0XUjWV19fj0OHDmHJkiXOspCQEEyePBn79+9v9RyLxQKLpalFxORYO8vPucso7JguX3ilEHpNyxkExaZiJEUkMfghIiLR8ptPQJvNhkWLFmHMmDG44YYbOn2dyspKNDY2IiYmxqU8JiYGZWVlrZ6TnZ0NrVbr3PT6wJh26MgoHKFomd+H0+WJiIjc85sAaMGCBTh69Cg2bNjQ7e+9ZMkSGI1G51ZcHPjTDjldnoiIyD2/6AJbuHAhtmzZgt27dyM+Pr5L14qMjERoaCjKy8tdysvLyxEbG9vqOXK5HHK5vNXXAplBZ0DRlSKYLCZo5BpOlyciIvqFT1uABEHAwoULsXnzZuTl5aFfv35dvqZMJsOIESOwfft2Z5nNZsP27dsxatSoLl8/kHC6PBERUet8GgAtWLAA69atw/r166FWq1FWVoaysjLU1TWtfVJWVoaCggIUFhYCAI4cOYKCggJcvnzZecykSZOcM74AYPHixfjb3/6G999/H8eOHcPDDz8Ms9mMuXPndt/N+YlrTZcnIiISI592gb355psAgAkTJriUr1mzBnPmzAEAvPXWW1i+fLnzNcf0+KuPOXXqFCorK53HzJw5ExUVFXjmmWdQVlaGYcOGITc3t8XAaDFwtAI5psuz9YeIiMjP8gD5i0DJA9ReV+qu4MeKHzEwamCrM8aIiMj3mAeo6wI2DxB5h2O6PBEREdkxACIiIgokKhXAzpsu85s8QERERETdhQEQERERiQ4DICIiIhIdBkBEREQkOgyAiIiISHQYABEREZHoMAAiIiIi0WEARERERKLDAIiIiIhEh5mgiYiI/IBKpoKwjBmeuwtbgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAERERESiwwCIiIiIRIcBEBEREYkOAyAiIiISnR6+roA/EgQBAGAymXxcEyIiImovx+e243O8LQyAWlFdXQ0A0Ov1Pq4JERERdVR1dTW0Wm2bx0iE9oRJImOz2XD+/Hmo1WpIJJJufW+TyQS9Xo/i4mJoNJpufW/i8/c1Pn/f4vP3LT7/rhMEAdXV1YiLi0NISNujfNgC1IqQkBDEx8f7tA4ajYY/AD7E5+9bfP6+xefvW3z+XXOtlh8HDoImIiIi0WEARERERKLDAMjPyOVyLFu2DHK53NdVESU+f9/i8/ctPn/f4vPvXhwETURERKLDFiAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAA6qJnn30WEonEZUtJSXG+furUKcyYMQNRUVHQaDS45557UF5e7nKN//mf/8Ho0aOhVCoRHh7e5vtdunQJ8fHxkEgkqKqqcnlt586duPHGGyGXy2EwGLB27VoP3aX/6s7nv3btWgwZMgRhYWGIjo7GggULXF7//vvvMXbsWISFhUGv1+PFF1/06L36o+56/t9++y0mTZqE8PBwREREIC0tDf/5z39cjuHz7/jzP3PmDObNm4d+/fpBoVCgf//+WLZsGerr613epz3PduPGjUhJSUFYWBgGDx6Mzz//3Hs37ie64/nv3LkT06dPR+/evaFSqTBs2DD84x//aFEXMT7/rmIA5AGDBg3ChQsXnFt+fj4AwGw2Y8qUKZBIJMjLy8PevXtRX1+PadOmwWazOc+vr6/H3XffjYcffvia7zVv3jwMGTKkRfnp06eRkZGB1NRUFBQUYNGiRZg/fz6++OILz92on+qO5//yyy/jz3/+M/70pz/hhx9+wFdffYW0tDTn6yaTCVOmTEHfvn1x6NAhrFixAs8++yzeeecd7924n/D286+pqUF6ejoSEhLw9ddfIz8/H2q1GmlpaWhoaADA59/Z53/8+HHYbDa8/fbb+OGHH7By5Uq89dZbWLp0qfP67Xm2+/btw7333ot58+bh8OHDyMzMRGZmJo4ePdq9D8MHvP389+3bhyFDhuCf//wnvv/+e8ydOxezZs3Cli1bXI4R6/PvEoG6ZNmyZcLQoUNbfe2LL74QQkJCBKPR6CyrqqoSJBKJsG3bthbHr1mzRtBqtW7f64033hDGjx8vbN++XQAgXLlyxfnaU089JQwaNMjl+JkzZwppaWkdup9A0x3P//Lly4JCoRC++uort/V44403hIiICMFisTjLnn76aWHAgAHtv5kA1B3P/9tvvxUACOfOnXOWff/99wIA4eTJk4Ig8Pm3pqPP3+HFF18U+vXr59xvz7O95557hIyMDJfr3HrrrcJ//dd/dfSWAkp3PP/W/PrXvxbmzp3r3Bfr8+8qtgB5wMmTJxEXF4ekpCTcf//9OHfuHADAYrFAIpG4JLUKCwtDSEiI86+E9vrxxx/x3HPP4e9//3urC7zt378fkydPdilLS0vD/v37O3FHgcXbz3/btm2w2WwoLS3F9ddfj/j4eNxzzz0oLi52HrN//36MGzcOMpnMWZaWloYTJ07gypUrHrhL/+Xt5z9gwAD06tUL7777Lurr61FXV4d3330X119/PRITEwHw+Xvy+RuNRuh0Oud+e54tf/947/m35xgxP/+uYADURbfeeivWrl2L3NxcvPnmmzh9+jTGjh2L6upqjBw5EiqVCk8//TRqa2thNpvxxBNPoLGxERcuXGj3e1gsFtx7771YsWIFEhISWj2mrKwMMTExLmUxMTEwmUyoq6vr0j36s+54/kVFRbDZbHj++efxyiuv4OOPP8bly5fxq1/9ytlX7+75O14LVt3x/NVqNXbu3Il169ZBoVCgZ8+eyM3Nxb///W/06GFfz5nP3zPPv7CwEK+99hr+67/+y1nWnmfr7phgfvZA9zz/5j766CN8++23mDt3rrNMrM+/qxgAddHUqVNx9913Y8iQIUhLS8Pnn3+OqqoqfPTRR4iKisLGjRvxr3/9Cz179oRWq0VVVRVuvPHGVltx3FmyZAmuv/56/O53v/PinQSm7nj+NpsNDQ0NePXVV5GWloaRI0figw8+wMmTJ7Fjxw4v3p3/647nX1dXh3nz5mHMmDE4cOAA9u7dixtuuAEZGRlBHdy3hyeff2lpKdLT03H33Xfj97//vQ/uJvB09/PfsWMH5s6di7/97W8YNGiQt28v6PXwdQWCTXh4OK677joUFhYCAKZMmYJTp06hsrISPXr0QHh4OGJjY5GUlNTua+bl5eHIkSP4+OOPAQDCL6uXREZG4s9//jOWL1+O2NjYFrNrysvLodFooFAoPHR3/s8bz793794AgIEDBzrLoqKiEBkZ6Wzudvf8Ha+JhTee//r163HmzBns37/f+cGxfv16RERE4NNPP8Vvf/tbPv9fdPb5nz9/HqmpqRg9enSLgePtebbujhHTswe88/wddu3ahWnTpmHlypWYNWuWy2t8/p3DFiAPq6mpwalTp5wfmg6RkZEIDw9HXl4eLl68iDvuuKPd1/znP/+J//znPygoKEBBQQFWr14NANizZ49zKvaoUaOwfft2l/O2bduGUaNGdfGOAos3nv+YMWMAACdOnHCWXb58GZWVlejbty8A+/PfvXu3c1YSYH/+AwYMQERERFduKaB44/nX1tYiJCQEEonEWebYd8ym4fO368zzLy0txYQJEzBixAisWbOmRetEe54tf//YeeP5A/ap8BkZGXjhhRfw4IMPtnidz7+TfD0KO9D98Y9/FHbu3CmcPn1a2Lt3rzB58mQhMjJSuHjxoiAIgvDee+8J+/fvFwoLC4WcnBxBp9MJixcvdrnG2bNnhcOHDwvLly8XevbsKRw+fFg4fPiwUF1d3ep77tixo8UssKKiIkGpVApPPvmkcOzYMWHVqlVCaGiokJub67V79wfd9fynT58uDBo0SNi7d69w5MgR4fbbbxcGDhwo1NfXC4Jgn90RExMjZGVlCUePHhU2bNggKJVK4e233+6+h+ED3fH8jx07JsjlcuHhhx8WfvzxR+Ho0aPC7373O0Gr1Qrnz58XBIHPv7PPv6SkRDAYDMKkSZOEkpIS4cKFC87NoT3Pdu/evUKPHj2Ev/71r8KxY8eEZcuWCVKpVDhy5Ej3PQwf6I7nn5eXJyiVSmHJkiUur1+6dMl5jFiff1cxAOqimTNnCr179xZkMpnQp08fYebMmUJhYaHz9aefflqIiYkRpFKpkJycLLz00kuCzWZzucbs2bMFAC22HTt2tPqerQVAjvJhw4YJMplMSEpKEtasWePhu/U/3fX8jUaj8MADDwjh4eGCTqcTZsyY4TItWxAE4T//+Y9w2223CXK5XOjTp4/wv//7v169d3/QXc//yy+/FMaMGSNotVohIiJCmDhxorB//36X6/D5d/z5r1mzptVn3/xv4/Y8248++ki47rrrBJlMJgwaNEjYunWr927cT3TH83f38zF+/HiXuojx+XeVRBB+GVBCREREJBIcA0RERESiwwCIiIiIRIcBEBEREYkOAyAiIiISHQZAREREJDoMgIiIiEh0GAARERGR6DAAIiIiItFhAEREAW/OnDmQSCR46KGHWry2YMECSCQSzJkzx3lsZmZmi3MlEgmkUiliYmLwq1/9Cu+9955zrTEiCj4MgIgoKOj1emzYsAF1dXXOsp9//hnr169HQkJCm+emp6fjwoULOHPmDP79738jNTUVjz32GG6//XZYrVZvV52IfIABEBEFhRtvvBF6vR6bNm1ylm3atAkJCQkYPnx4m+fK5XLExsaiT58+uPHGG7F06VJ8+umn+Pe//421a9d6ueZE5AsMgIgoaDzwwANYs2aNc/+9997D3LlzO3WtiRMnYujQoS4BFREFDwZARBQ0fve73yE/Px9nz57F2bNnsXfvXvzud7/r9PVSUlJw5swZz1WQiPxGD19XgIjIU6KiopCRkYG1a9dCEARkZGQgMjKy09cTBAESicSDNSQif8EAiIiCygMPPICFCxcCAFatWtWlax07dgz9+vXzRLWIyM+wC4yIgkp6ejrq6+vR0NCAtLS0Tl8nLy8PR44cwV133eXB2hGRv2ALEBEFldDQUBw7dsz5dXtYLBaUlZWhsbER5eXlyM3NRXZ2Nm6//XbMmjXLm9UlIh9hAEREQUej0bh9zWazoUcP1199ubm56N27N3r06IGIiAgMHToUr776KmbPno2QEDaUEwUjiSAIgq8rQUTUXdLT02EwGPD666/7uipE5EP804aIROHKlSvYsmULdu7cicmTJ/u6OkTkY+wCIyJReOCBB/Dtt9/ij3/8I6ZPn+7r6hCRj7ELjIiIiESHXWBEREQkOgyAiIiISHQYABEREZHoMAAiIiIi0WEARERERKLDAIiIiIhEhwEQERERiQ4DICIiIhIdBkBEREQkOv8fD8Avw20lsTwAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABuD0lEQVR4nO3deXxTdbo/8E/SptmapE1XulFKEWSriAuIyiJCuaiA/JRRLKA4Xp2iIuOGc0fEe2eYcR1GcUUBUUCZETecOsgq2ygoCijIVtpCW1qgSZuWNGnO74+QNGvX7Pm8X6/zsufk5OSbI22efJfnEQmCIICIiIgoioiD3QAiIiKiQGMARERERFGHARARERFFHQZAREREFHUYABEREVHUYQBEREREUYcBEBEREUUdBkBEREQUdRgAERERUdRhAERE5IVIJMKcOXM6dO53332Ha665BkqlEiKRCPv27fNZO0pLSyESibB8+XKfXZMo2jEAIqJ2iUSidrdZs2Z1+DwAGDVqlNdzDh06BAA4dOgQHn/8cVx22WVQqVTo0aMHJk6ciD179ri18eOPP8a0adOQl5cHhUKBvn374ve//z3q6ur8fn9MJhNuu+02nDt3Di+//DJWrlyJnj17+v11iajrYoPdACIKfStXrvT62DPPPINjx46hb9++TuedOHECTz/9NO677z5cd9119uO9e/e2/5yVlYVFixa5XTMjIwMAsHTpUrzzzjuYOnUqfve730Gn0+HNN9/EsGHDUFJSgrFjx9qfc9999yEjIwN33XUXcnJysH//frz66qv48ssv8f3330Mul3frHrTl2LFjOHnyJN5++23ce++9Pr9+z5490dTUBIlE4vNrE0UtgYioi95++20BgPDggw+6Pfbdd98JAIRly5Z5fO7IkSOFAQMGtHn9PXv2CPX19U7HamtrhZSUFGHEiBFOxzdv3uz2/BUrVggAhLfffrvtN+IFAKG4uLjd87Zu3SoAENauXdul1/GVhoaGoL4+UTjhEBgRdcnBgwfx0EMPYciQIXj++ef98hpDhw5FfHy807GkpCRcd911+OWXX5yOjxo1yu35U6ZMAQC3c1944QVcc801SEpKglwux9ChQ/GPf/zDazs++OAD9O3bFzKZDEOHDsW2bdvsj82aNQsjR44EANx2220QiUQYNWoUZs6cieTkZJhMJrfrjRs3Dn379rU/39tQ4DPPPAPA8xygWbNmIT4+HseOHcN//dd/QaVSYfr06V7fAxE54xAYEXVaY2Mjbr/9dsTExGDNmjWQSqVduk5LSwtqa2udjslkMregx1VVVRWSk5PbvX5VVRUAuJ27ePFi3HLLLZg+fTqam5uxZs0a3Hbbbfjiiy8wceJEp3O3bt2KDz/8EA899BCkUilee+01FBYW4ttvv8XAgQPx3//938jMzMSf//xnPPTQQ7jyyiuRlpYGkUiE9957D1999RVuuukmpzZt2rQJCxYsAAD893//t9NQHgCUlJTggw8+QGpqapvvz2w2Y/z48bj22mvxwgsvQKFQtHtPiOiiYHdBEVH4ueeeewQAwooVK7ye05EhMABu28yZM9t87W3btgkikUj44x//2G47Z8+eLcTExAi//vqr0/HGxkan/ebmZmHgwIHCmDFjnI7b2rRnzx77sZMnTwoymUyYMmWK/djmzZvdhsBaWlqErKwsYdq0aU7XfOmllwSRSCQcP37cY5uPHDkiaDQa4cYbbxTMZrMgCIJw4sQJt3s5c+ZMAYDw5JNPtnsfiMgde4CIqFNWrVqFd999F0VFRZgxY0a3rpWbm4u3337b6ZhtArQnZ86cwZ133olevXrh8ccfb7ed77zzDh5//HH06dPH6THHCdHnz59HS0sLrrvuOqxevdrtOsOHD8fQoUPt+zk5OZg0aRI+//xztLS0ICYmxuPri8ViTJ8+HX//+99RX18PlUoFwDqcds0116BXr15uzzEYDJgyZQoSExOxevVqr9d29MADD7R7DhG5YwBERB125MgR3H///bjkkkvw2muvdft6SqXSbfjHG4PBgJtuugn19fXYvn17m8Nk33zzDWbPno3x48fjT3/6k9vjX3zxBf7v//4P+/btg9FotB8XiURu57oGTwBwySWXoLGxETU1NUhPT/fajhkzZuCvf/0r1q1bhxkzZuDw4cPYu3cv3njjDY/n//a3v8WxY8ewc+dOJCUleb2uTWxsLLKysto9j4jccRI0EXWI0WjEtGnT7HNm2pun40vNzc249dZb8dNPP+HTTz/FwIEDvZ77448/4pZbbsHAgQPxj3/8A7Gxzt/zvvnmG9xyyy2QyWR47bXX8OWXX2LDhg248847IQiCT9vdv39/DB06FO+//z4A4P3330dcXBxuv/12t3MXL16M1atX4+2338Zll13WoetLpVKIxfwzTtQV7AEiog559NFH8cMPP2Dx4sUYMmRIwF7XYrFgxowZ2LhxIz766CP7iitPjh07hsLCQqSmpuLLL7/0GKT985//hEwmw1dffeU0eXvZsmUer3nkyBG3Y7/++isUCgVSUlLabf+MGTMwb948VFZWYtWqVZg4cSISExOdzvnmm2/w6KOPYu7cuVzJRRQg/OpARO1at24dXn31Vdxyyy146KGHAvraDz74ID788EO89tpruPXWW72eV1VVhXHjxkEsFuOrr77yGpzExMRAJBKhpaXFfqy0tBSffPKJx/N37dqF77//3r5fXl6OTz/9FOPGjevQHJ077rgDIpEIDz/8MI4fP4677rrL6fHKykrcfvvtuPbaa/2WToCI3LEHiIjaVFlZidmzZyMmJgY33HCDfTjHVe/evTF8+HCfvvbf/vY3vPbaaxg+fDgUCoXba0+ZMgVKpRIAUFhYiOPHj+Pxxx/H9u3bsX37dvt5aWlpuPHGGwEAEydOxEsvvYTCwkLceeedOHPmDJYsWYL8/Hz89NNPbm0YOHAgxo8f77QMHgAWLlzYofeQkpKCwsJCrF27FgkJCW7L7B966CHU1NTg8ccfx5o1a5weGzx4MAYPHtyh1yGizmEARERtOnz4MM6fPw8AePjhh72eN3PmTJ8HQLaCort27cKuXbvcHj9x4oQ9APrxxx8BAM8995zbeSNHjrQHQGPGjME777yDv/zlL5g7dy569eqFv/71rygtLfUYAI0cORLDhw/HwoULUVZWhv79+2P58uWdCkxmzJiBL774ArfffrtbzqSamhq0tLRg3rx5bs9bsGABAyAiPxEJvp71R0RETj799FNMnjwZ27Ztc6qLRkTBwwCIiMjPbrrpJvzyyy84evSox6X2RBR4HAIjIvKTNWvW4KeffsL69euxePFiBj9EIYQ9QEREfiISiRAfH49p06bhjTfecMtJRETBw99GIiI/4fdLotDFPEBEREQUdRgAERERUdThEJgHFosFp0+fhkql4qRFIiKiMCEIAurr65GRkdFunTwGQB6cPn0a2dnZwW4GERERdUF5eTmysrLaPIcBkAcqlQqA9Qaq1eogt4aIiIg6Qq/XIzs72/453hYGQB7Yhr3UajUDICIiojDTkekrQZ0EvW3bNtx8883IyMiASCRyq8YsEok8bm1VTH7mmWfczu/Xr5+f3wkRERGFk6AGQAaDAQUFBViyZInHxysrK522d999FyKRCFOnTm3zugMGDHB6nmNVaCIiIqKgDoFNmDABEyZM8Pp4enq60/6nn36K0aNHIy8vr83rxsbGuj2XiIiIyCZs5gBVV1dj/fr1WLFiRbvnHjlyBBkZGZDJZBg+fDgWLVqEnJwcr+cbjUYYjUb7vl6v90mbiYiIAq2lpQUmkynYzfALiUSCmJgYn1wrbAKgFStWQKVS4dZbb23zvKuvvhrLly9H3759UVlZiYULF+K6667DgQMHvM4KX7RoERYuXOiPZhMREQWEIAioqqpCXV1dsJviVwkJCUhPT+92nr6QKYYqEomwbt06TJ482ePj/fr1w4033ohXXnmlU9etq6tDz5498dJLL2H27Nkez/HUA5SdnQ2dTsdVYEREFBYqKytRV1eH1NRUKBSKiEvkKwgCGhsbcebMGSQkJKBHjx5u5+j1emg0mg59fodFD9A333yDw4cP48MPP+z0cxMSEnDJJZfg6NGjXs+RSqWQSqXdaSIREVHQtLS02IOfpKSkYDfHb+RyOQDgzJkzSE1N7dZwWFjUAnvnnXcwdOhQFBQUdPq5DQ0NOHbsmMdIkYiIKBLY5vwoFIogt8T/bO+xu/OcghoANTQ0YN++fdi3bx8A4MSJE9i3bx/Kysrs5+j1eqxduxb33nuvx2vccMMNePXVV+37jz76KLZu3YrS0lLs3LkTU6ZMQUxMDO644w6/vhciIqJgi7RhL0989R6DOgS2Z88ejB492r4/b948AMDMmTOxfPlyAMCaNWsgCILXAObYsWOora2171dUVOCOO+7A2bNnkZKSgmuvvRa7d+9GSkqK/94IEZGfGc1GNLc0e308LiYO0tjoGMrnvSBfCJlJ0KGkM5OoiIj8zSJYsPnEZtQ01ng9J0WRgtG9RkMsCouZDV3Ge+HZhQsXcOLECfTq1QsymSzYzfGrtt5rZz6/o+dfBxFRmBKLxFBJVdAZdVBL1W6bzqiDSqqKig983gvyFf4LISIKA/nafGikGpgtZigkCvtmtpihkWqQr80PdhMDhveCfIEBEBFRGNDKtchLzEONwXnop8ZQg7zEPGjl2iC1LPB4LyJPfX09pk+fDqVSiR49euDll1/GqFGjMHfuXL+9JgMgIqIwka/NhzJOCb3RWq5Hb9RDGaeMyh4P3gv/qW2sRbmuHABQritHbWNtO8/ovnnz5mHHjh347LPPsGHDBnzzzTf4/vvv/fqaDICIiMKEa89HNPd48F74R21jLcasGINRK0ZhZ/lOjFoxCmNWjPFrEFRfX48VK1bghRdewA033ICBAwdi2bJlaGlp8dtrAgyAiIjCiq3n45T+VNT3ePBe+F6TqQkGkwHHzx/HiHdH4Pj54zCYDGgyNfntNY8fPw6TyYSrrrrKfkyj0aBv375+e02AARARUVix9XzojLqo7/HgvfC9bE02Vk5Z6XRs5ZSVyNZkB6lF/sMAiIgozPTR9kFBWgH6aPsEuylBx3vhW+W6chStK3I6VrSuyD4nyB/y8vIgkUjw3Xff2Y/pdDr8+uuvfntNgAEQEVHYSZQnYkTOCCTKE4PdlKDjvfAtuUQOpUSJvMQ87LhnB/IS86CUKCGXyP32miqVCjNnzsRjjz2GzZs34+DBg5g9ezbEYrFfS3uERTV4IiIi8r9kRTI2zdyEJlMTsjXZ2DJzC+QSOZIVyX593Zdeegn3338/brrpJqjVajz++OMoLy/3a1ZrBkBERERk5xjsBGruj0qlwgcffGDfNxgMWLhwIe677z6/vSYDICIiIgqqH374AYcOHcJVV10FnU6HZ599FgAwadIkv70mAyAiIiIKuhdeeAGHDx9GXFwchg4dim+++QbJyf4bemMAREREREE1ZMgQ7N27N6CvyVVgREREFHUYABEREVHUYQBEREREUYcBEBEREUUdBkBEREQUdRgAERERUdRhAERERERRhwEQEXWdwQCIRNbNYAh2a4iIOowBEBF1XW1t688VFc77RERd0NzcHJDXYSZoIuqa2lpg4sTW/cJCQKUCNm0C/Ji+nogiy6hRozBw4EDExsbi/fffx6BBg7B582a/vy57gIio4xyHvM6edR72Ki217jc1Ba15ROQDtbVAebn15/LygPTsrlixAnFxcdixYwfeeOMNv78ewB4gIrIxGID4eOvPDQ3W/zruK5XO52dlAUuXAmPHth5buRLIzvZ/W4nIP2prgTFjrH8PVq4Eioqsv/t+7tnt06cPnnvuOb9d3xP2ABFFq/YmMLc3v6eiArj3XudjRUWt3xyJKPw0NVn/Hhw/DowYYf1vAHp2hw4d6tfre8IAiIisHAOc/futc3psCgut3wp//bX12PnzgEzWup+ba/2mKJf7valE5CfZ2daeH0cB6NlVuvYwBwADIKJo1VbAc9ttwLFjrfulpYBeD/zmN63H7rgDEITW/ZISToAmCnfl5daeXEcR2rPLAIgoGrgOd7mu4HINeCoqgKQk52u8/DLguDy1tBQwmYCyMmsg1Lcvgx+icCeXW3ty8/KAHTus/43Qnl1OgiaKRrZxfpuKCiA9Haiqsh8yxFqgtP8MKB99FPjzn4E772x9Hic9E0WW5GRrT25Tk/V3e8sWa/ATgV9uGAARRQPXCc1JSe4ruFydO9f6c24OECMBnnzS+ZyiIusfSAZBRJHDMdgJwO/2li1b/P4anjAAIop0nhIWSqXuqzrOnm39OTcXZpkYOHQcAFC18g0kyhKhvetep3MMajni380BADTMb4AyLvATGYmIuoJzgIgiXVMTDMZ6+66hohQGcyOUd5W1npObC0OfXPtuxdp3cev0GPv+zdvux6hd96F89Vut1/n8Y+DL9b5pI2uKEVGABTUA2rZtG26++WZkZGRAJBLhk08+cXq8oaEBc+bMQVZWFuRyOfr379+hDJFr165Fv379IJPJMGjQIHz55Zd+egdEYSA7G1iyxOlQ3et/c9o/t2418Nmn9v3GlAQcV5kgegYQPQP80lQGg8mAJrXDRMjMTNQ67FboK1DbyFpgRBQeghoAGQwGFBQUYInLH2ebefPmoaSkBO+//z5++eUXzJ07F3PmzMFnn33m9Zo7d+7EHXfcgdmzZ+OHH37A5MmTMXnyZBw4cMBfb4MotJWXA8XFTocaZvzGaX/ClntRm6SwBzyZPS7B0puXOp2zcspKyGJb8/4cPHMQhe+3Lp0v/KAQY1aM6VoQxKKqRBRgQZ0DNGHCBEyYMMHr4zt37sTMmTMxatQoAMB9992HN998E99++y1uueUWj89ZvHgxCgsL8dhjjwEA/vd//xcbNmzAq6++GrD6IkQhRS4H5K1zc8w5GTCYatAYZw12ACBP3IQL5gv2cyr0Fbj3c+csz3f+805IY6X49eJzsr6cger6avvjpXWlyEvMQ5OpkxljWVSVyGcEx9xcEcpX7zGk5wBdc801+Oyzz3Dq1CkIgoDNmzfj119/xbhx47w+Z9euXRjrsrJl/Pjx2LVrl9fnGI1G6PV6p40oYiQnA+v+ad+N/fQL1K9b43SKa+/O+abzkMW07ucm5EIWK8MFk3OQlKRMcrtOtqaTq0Zcl+SzqCpRp0kkEgBAY2NjkFvif7b3aHvPXRXSq8BeeeUV3HfffcjKykJsbCzEYjHefvttXH/99V6fU1VVhbS0NKdjaWlpqHLIb+Jq0aJFWLhwoc/aTRR0LoVNz8pgz+mzV1SFGdsecTrd1rtjc8fHd0Aa07pfMr0ESYok/Fj1I8au9L50vmhdEbbM3NK5ICg7m0VVibopJiYGCQkJOHPmDABAoVBAJBIFuVW+JQgCGhsbcebMGSQkJCAmJqb9J7Uh5AOg3bt347PPPkPPnj2xbds2FBcXIyMjw62Xpzvmz5+PefPm2ff1ej2y+ceXwpSh2YDUP8fD1qdy7sh+3P3FDGy8uP/bz3+LalPrHJvchFxIY6ROQ1e24ayyuWX2YKZcV+42LHa28azTdZQSJeSSTmaMLS/3XFSV+YWIOiU9PR0A7EFQpEpISLC/1+4I2QCoqakJTz31FNatW4eJF+cHDB48GPv27cMLL7zgNQBKT09HdXW107Hq6uo2b5ZUKoVUKvX6OFFYOes8gVg96TY8L1Tb5/vAeArZ6myU6621fbz17rgOZ8klciglrXOJbIHT4bOHna6TrOjkvB1b6n37hXOtx3Ks+YXQ0OD8OBF5JBKJ0KNHD6SmpsJkMgW7OX4hkUi63fNjE7IBkMlkgslkgljsPE0pJiYGFovF6/OGDx+OjRs3Yu7cufZjGzZswPDhw/3VVKKQcu58pdN+bFkFeualA2gdBl42aZk92MlSZ+Fc0zm33h3X4axkRTLW37keuYtzAXQj4HGVnAysX28NfABrUVWZrHWfiDolJibGZ0FCJAtqANTQ0ICjR4/a90+cOIF9+/ZBq9UiJycHI0eOxGOPPQa5XI6ePXti69ateO+99/DSSy/ZnzNjxgxkZmZi0aJFAICHH34YI0eOxIsvvoiJEydizZo12LNnD9566y231yeKNLWNtZiw5V634/fc5Pyl4b4v7nMa3moyN7n17ngaznIMdrLUWb7L/Oy42isry/1xlzlN7BEiou4KagC0Z88ejB492r5vm4czc+ZMLF++HGvWrMH8+fMxffp0nDt3Dj179sSf/vQn3H///fbnlJWVOfUSXXPNNVi1ahX+53/+B0899RT69OmDTz75BAMHDgzcGyMKkiZTE1Q1Orfjf/3oHD67+GvjKbjpaO+OMk4JYUH3lqAamg2IX2QNZuzlM5RKa0V5m5MnW3+uqLD2CBER+ZBIiIakAZ2k1+uh0Wig0+mgVquD3RyiTtm692P818dTYfizdf9CVjqM2gQk3HoIAHCo+JDH4MZjYOIDrtcF0Pbr1NYCo0YBBw9a93NzrbXLDlvnGuHQIWsxV+YIIiIXnfn8Duk8QETUOeW6csza/nunYzfNiMWZj5bZ97PUWd2ft+NPnvICHT/eul9YCIwZw2zRRNQtDICIwk0bhUNdV2oBQH2KBnFpPQLZwjY5lsrwWD/MlhfIUZJDwkUmSiQiHwjZVWBE1HmOc3lEz1iHu9YrkiCPbT83jy/m93jiGODsr96Puz+9275f+EEhVHEqbJq5qbVXylNeIFdMlEhE3cQAiCjCeFup5Y/gpj21jbWYuKq1ztdt/7it/fphrnmBsrIAl9xeTJRIRN3FITCicNNO5XRbT46wQPDdMvUuajI1wWBqHabrUP0wW14gm7Vrgd69W/dzc60BksXidSiQiKg9DICIwomnyukhPCE4W5ONpTcvbfOconVFKNeVOx90XOE1aJA1OaJNSQkrxRNRt3EIjCiceFohlZcXshOCO1o/zCJYIFpoLdzYML8BSte8QI6ysqw9QOz1IaJuYABEFE7CrHJ6R+uHtTtJ21NA5DoU6Fg+g9miiagdHAIjCifeKqeXl3s+P8hsq9JsSqaX4Ku7vrLvdzknkaehQMd9IqJ2sAeIKJx4qpyuVFqPhyhPq9JcV6S55gZqt8iqp6FAFk8lok5gDxBROHFdIRUBE4Jdl8oXflCIMSvGuCdIdOQpWaLrPhFRG9gDRBRuXCunh/hcl/YSLLoulfeYG8iVp6HA9pInEhE5YA8QUSjzUPbC0NwaLDj+HK48LZV3yw3kytNQoFTauu8hPxIRkSMGQEThRqmE6BlA9AxCvvenIzwtlfeYG8iR61Dg6tXWINEmxPMjEVHwMQAiCmXtZH2OBJ6Wystj5cj5Ww5EC0Xee7kchwITE4ELF1r3WTCViNrBAIgoVHnL+nw2soIgT0vlHfe9suUGEgSgb1/3SdAhnB+JusFoBOrrvW9GY7BbSGGCk6CJQpWXrM/nzlfaD3VoyXgYcF0q3+ll8d7yI7FgamSxWIDt24GaGu/npKQAo0cDYn6/p7bxXwhRqPKw1Lvu7VcwYUvrB32HloyHmS4tiw/D/EjUBWIxoFIBOh2gVrtvOp31cQY/1AH8V0IUqjz0asTPfgCqGp19v7SuFAaToe0l42HAsYK9WCR2Wxbf7nuMwPxI5EV+PqDRAGYzoFC0bmaz9Xh+frBbSGGCARBRqPLQqxGr0uAvNy12Oq3dJeNhxtuyeK1cC9FCkfeJ0Q7BjvK9fjCo2fsTkbRaawFg12Gwmhrrca02OO2isMMAiChUeejVOPXJSsza/nun09pdMh5mvC2Lr9BXBKlFFHLy861fDvR6675eb91n7w91AidBE4UwQ49kxD9j/bmhVxak5ia3JeNKiRJySeT0dnhaFq+UKCGLlQWxVRRSbL1A+/db5/7U1ACDBrH3hzqFPUBEYcTTkvFNMzeF/SowR97eo6MKfYX7pGilEgZjA0TPAI1xXi7uIbM2hSlbL9CpU+z9oS5hAEQUwlyXg9c21rotGY+k4MfG9T0C6NDKME/3iyKUrRdIp+PcH+oSDoERhShPy8FVcSp8fsfnQWxVYLgWUD3XdK7dgqne7lek9ZCRgz59AJPJ+l+iTmIPEFEocRiiuVB31uNycLFIbF8yrowL/1pgHdGRgqmeqspHQooAakNiIjBihPW/RJ3EAIgoRGVpsjpfJT1CdaRgapeqyhNR1GIARBRKHIqdVv78HR5dfbfTw5G25L2jvK0Mc1z91qGq8lFQXJaIOoYBEFGocCl+mnrbTCx764x9PxKXvHdUR1a/tRskeSsuyyCIKCpxEjRRqHApfhpzsgx5fXIAlAGwfuhHQuHTrnJdGeY6/8kWJOUuzgXg4X55KS6LJs4RIopG7AEiChUeip/GvPOu/edIXfLuS22mCPBwf7FyJavFE0UpBkBEocJD8VO3/SjmWDC1S6vfysthuP8e+64hFkBRkfW+E1HU4RAYUajwUPxUKVVBKK5hVfMOcs0f5EQuB+SO9zfHui+PvjlVRMQAiCh02Iqf5uZa90tKgKQkBj++kpwMrPsnkN/fur/uEyA9m/eXKEoxACIKJY4fxllZzj1C1H3apNafMzOBRAY/RNEqqHOAtm3bhptvvhkZGRkQiUT45JNPnB5vaGjAnDlzkJWVBblcjv79++ONN95o85rLly+HSCRy2mQyVpGmMKFUAoJg3Rj8EBH5TVB7gAwGAwoKCnDPPffg1ltvdXt83rx52LRpE95//33k5ubi3//+N373u98hIyMDt9xyi9frqtVqHD582L4vEon80n4iXzM0GxC/KB4A0DC/IWpKXQTK2cazsN3RU/pT0ErFXFlHFKWCGgBNmDABEyZM8Pr4zp07MXPmTIwaNQoAcN999+HNN9/Et99+22YAJBKJkJ6e7uvmElEYq22sxdSPpuK7i/uTP5yMWJWGxVKJolRIL4O/5ppr8Nlnn+HUqVMQBAGbN2/Gr7/+inHjxrX5vIaGBvTs2RPZ2dmYNGkSDh482Ob5RqMRer3eaSOiyOJaLPWkrozFUomiWEgHQK+88gr69++PrKwsxMXFobCwEEuWLMH111/v9Tl9+/bFu+++i08//RTvv/8+LBYLrrnmGlRUVHh9zqJFi6DRaOxbNhOjEUWcbE02Xvl/70L0DCB6BmiMY7FUomgW8gHQ7t278dlnn2Hv3r148cUXUVxcjK+//trrc4YPH44ZM2bgsssuw8iRI/Hxxx8jJSUFb775ptfnzJ8/Hzqdzr6VMzEaUUQwNBsgWiiCaKEIh2sPt18slYiiRsgug29qasJTTz2FdevWYeLFAoaDBw/Gvn378MILL2Ds2LEduo5EIsGQIUNw9OhRr+dIpVJIpVKftJuoO2obWwtzVugrorr2l6/JYmXtVpTvMIMBiLdOVkdDA1fsEYWhkO0BMplMMJlMEIudmxgTEwOLxdLh67S0tGD//v3o0aOHr5tI5FO1jbWYuKq1WnnhB4UYs2KMU1BEXdeRivJEFD2C2gPU0NDg1DNz4sQJ7Nu3D1qtFjk5ORg5ciQee+wxyOVy9OzZE1u3bsV7772Hl156yf6cGTNmIDMzE4sWLQIAPPvssxg2bBjy8/NRV1eH559/HidPnsS9rKlEIc51km5pXSnyEvM4SdeH2qsoT0TRI6gB0J49ezB69Gj7/rx58wAAM2fOxPLly7FmzRrMnz8f06dPx7lz59CzZ0/86U9/wv33329/TllZmVMv0fnz5/Hb3/4WVVVVSExMxNChQ7Fz5070798/cG+MqAuyNdlYevNSjF3ZOrzLSbpERP4hEgTBS+XA6KXX66HRaKDT6aBWq4PdHIoS5bpyXL/8epTWldqP5SXmYcvMLQyCusg1sSQA3ySaPHmytWbboUOs2UYUIjrz+R2yc4CIooHjKiWLYPHdJF3yn9paYGLrXC0UFgJjxliPB4LBAIhE1s1gaP98IvIoZFeBEUUb2yTd3MW5AKyTdLkKzLeUcUoIC7rZ6d3UBNTXt+6XlgJ5edbjRBQ22ANEFEJcJ+ky+Oke17QCPllRl50NLFnifGzlSutxIgobDICIKCL5La1AeTlQXOx8rKjIerwtnoau2hvO4nAXkd8wACKiiOQprYBPan/J5c6JD3NyrPvyAM3VcpxrVFERuLlHRBGGARBREPlliIYAtKYVcOSTtALJycA//9m6/8knwKZNgVkFFuwJ2EQRhAEQUZB4GqJx3KfuKdeVR17tr6Ym56Gw0lLrhOyUFA6TEXUSAyCiIDnbeBYHaw7a90vrStFkbkLZ3DIICwRmKe4muUTun7QCtbXA1Kmt+5Mnd6wXxtPQVXvDWa6Py+XAUudeLbd9IuoQLoMnCpIsdZbbMWZ+9h2/pRVw7YUpK2t/GbynoSu5HHDMQ1tYaJ1LdPBiUFxa6v4cqdT9dVjmh6hL2ANEFCT7q/e7HQv7IZoQ45e0Al1ZBu9p6MpgsFaSdz1mc+GC+3MuXABkstZjubnWoMiGk6KJOowBEFEQ1DbWYtans5yOSUQSyGJkzPwc6srLgQcfdD7W3jL47Gz3oarVq4Hly52POZ6TleX+nFWrgH//2/kaIlHrPidFE3UYh8CIgqDJ1ARji9HpWJoqDaumrmLyw1Dnugw+N7f9ZfDl5e5DVXfcAVgszsccz6mocH9OURHw5Zet+4mJ1l4hG2alJuow9gARBYGnJdrLJy1HQXpBkFpEHZacDKxf37pfUtL+MnhvQVN8vPsxG5nM83Mch8A89RIxKzVRhzAAIgoCT0u07/38Xs7/CReOwU5WVvs5gDwFTdu2Wf/reGzlytb9Cxec9z0FWt56iVyH45hRmsgNh8CIgsB1iTYAVn6PdK5Bk+uwmUzmvLzetirM9TlA6+qx2trOD8cREQD2ABEFhW2Jts2h4kPYMmsL5/9EM0+rvtrrrenKcBwRAWAARBQ0rPxOTjzN5+lIksPODsd5w2EyijIcAiOiiKWMU0JYILR/YiAolc6JD12PeVopdt991kSL/pjUbDC0TsJ2zEdEFCUYABEFSUh9OFPneApmuqsry+s7yrWkRlIS5wlR1GMAREQUCmzzeXJzrfslJdZApb0hrfaCMU9lOFQq4PPPu91konDGOUBERKHCV/N5HHkrw1FZ2XqMJTQoCjEAIiKKZJ7KcLzyivN8o8JCYPz41n0GRBQFGAARBYih2QDRQhFEC0UwNHOVTTgLq/+XniZXP/AAoNO17peWAsePt+6zphhFAQZAREShwjafRxCcJ0R3h6fJ1RoNsHix83lJSa0/24bJWFOMIhgnQRMRRTJPk6svXAAmT277eawpRhGOPUBERJHOdXJ1ZqZ7mY2zZ52fM306EyNSRGMARBQgjnNFQn7eCEU21xIaa9cCvXu37rtWpo8SRrMR9cZ6r5vRbAx2E8mHOARGRBSNHHuFBg2yDo05DpPJZK37UcAiWLC9bDtqGmu8npOiSMHoXqMhFrHvIBLw/yJRgJxtah1iOFV/CrWNXGFDIcQfOYjCiFgkhkqqgs6og1qqdtt0Rh1UUhWDnwjC/5NEAVDbWIupH02170/+cDLGrBjDIIgCw9PqMn+sOAtz+dp8aKQamC1mKCQK+2a2mKGRapCvzQ92E8mHGAARBUCTqQkGU+u8nzJdGQwmA5pMXGZMFCq0ci3yEvNQY3AeBqsx1CAvMQ9auTZILSN/YABEFADZmmwsmbDE6djKKSuRreEy43Dk2HNXoa+IzJ481wKqUZIUMV+bD2WcEnqjHgCgN+qhjFOy9ycCMQAiCoByXTkeWP+A07Hp/5yOcl15kFpEXVXbWIuJq1qLixZ+UBgZw5mOQ2JNTe4FVKMkM7RrLxB7fyIXAyCiAGg0NeJMwxn7vhhiVDVUodHUGMRWUVe4DmeW1pVG3nCmtwKqUZIZ2tYLdEp/ir0/ESyoAdC2bdtw8803IyMjAyKRCJ988onT49XV1Zg1axYyMjKgUChQWFiII0eOtHvdtWvXol+/fpDJZBg0aBC+/PJLP70Doo5RSBRIiU+x71tgQVp8GhQSRRBbRV2RrcnG0pudi4tG3HCmpwKqUZQZ2tYLpDPq2PsTwYIaABkMBhQUFGDJkiVujwmCgMmTJ+P48eP49NNP8cMPP6Bnz54YO3YsDG1kJd25cyfuuOMOzJ49Gz/88AMmT56MyZMn48CBA/58K0RtytZk442JbzgdWzV1VWR9aEaJcl057v3cubho0bqiyBrO9FRAtajIejxK9NH2QUFaAfpo+wS7KeQnIkEQhGA3AgBEIhHWrVuHyRfr0/z666/o27cvDhw4gAEDBgAALBYL0tPT8ec//xn3uv5yXjRt2jQYDAZ88cUX9mPDhg3DZZddhjfeeMPjc1zp9XpoNBrodDqo1eruvTEiWD80r112Lcp0ZfZjeYl52DJzC4OgMFPbWItRy0fhYM1BAEBuQi5UcSpsmrkJyYoIyZ1TWwuMGgUctL5H5OYCKhXw+eetyREbGrh8nkJOZz6/Q3YOkNFoTTkuk8nsx8RiMaRSKbZv3+71ebt27cLYsWOdjo0fPx67du3yT0OJOkAukUMpaf2wyNHkQClRQi6RB7FV1BXJimSsvW2tff/j2z+OrOAHcC+VUVICbNoUdckRKbKFbADUr18/5OTkYP78+Th//jyam5vx17/+FRUVFaisrPT6vKqqKqSlpTkdS0tLQ1VVldfnGI1G6PV6p43Il5IVyfjn7f+0738y7ZPI+9CMIknyJPvPmarMyPz/GOWZoSnyhWwAJJFI8PHHH+PXX3+FVquFQqHA5s2bMWHCBIjFvm32okWLoNFo7Ft2lEz0o8CKig9NIqIwEbIBEAAMHToU+/btQ11dHSorK1FSUoKzZ88iLy/P63PS09NRXV3tdKy6uhrp6elenzN//nzodDr7Vh5FE/0ocJRxSo8/E4WNKE2OSJEppAMgG41Gg5SUFBw5cgR79uzBpEmTvJ47fPhwbNy40enYhg0bMHz4cK/PkUqlUKvVThsRETmorW0/OaLBAIhE1q2N1bpEoSA2mC/e0NCAo0eP2vdPnDiBffv2QavVIicnB2vXrkVKSgpycnKwf/9+PPzww5g8eTLGjRtnf86MGTOQmZmJRYsWAQAefvhhjBw5Ei+++CImTpyINWvWYM+ePXjrrbcC/v6IiMKWLTO0zblz7skRc3OBlIv5rRoaAtk6om4Lag/Qnj17MGTIEAwZMgQAMG/ePAwZMgRPP/00AKCyshJFRUXo168fHnroIRQVFWH16tVO1ygrK3OaFH3NNddg1apVeOutt1BQUIB//OMf+OSTTzBw4MDAvTEiokjjKTmi6z5RGAmZPEChhHmAyBcMzQbEL4oHADTMb+C8nwhypuEM0l60rjat/n01UuNTg9yiACgvB66/3trzY5Ob27pv6wGKj2/dZ54gCrCIyANEREQhRC53DmhycxngUFgL6hwgIqJwFJUr+mzJEW2ZoEtKAJmsdZ8ozDAAIiKijnFNjkgUxjgERkRERFGHPUBERNQ1rokRGxud95OSWEKDQhZ7gIj8pLax9cOhQl/htE8U9lwTI954I+CYcNZTokSiEMIAiMgPahtrMXFV64dD4QeFGLNiDIMgCm+25IiCAIjFzokRy8sBs7l1v7TU+nhTU8CbSdQRDICI/KDJ1ASDqfXDobSuFAaTAU0mfhhEAvbuwXNixJdect5fudJ6HlEIYgBE5AfZmmwsvdn5w2HllJXI1vDDINyxd++i8nLg3nudj82b57xfVGQ9jygEMQAi8oNyXTnu/dz5w6FoXRHKdfwwCHfs3bvINTFidjYQ67CuxpYo0WJhgVQKSQyAiPxALpFDKWn9cMhNyIVSooRcIg9iq8gX2Lt3kS0xos2GDcCuXa37JSXApk1cBUYhiwEQkR8kK5Kx/s7WD4eS6SXYNHMTkhX8MAh37N1z4JoY8ZJLnPcZ/FAIYx4gIj8wNBuQuzjXvp+lzoqekgkRjr170cNoNqK5pdnr43ExcZDGSgPYIvIlBkBERJ1g692zBbgl00uQpEhi716EsQgWbC/bjprGGq/npChSMLrXaIhFHEwJR/y/RkTUSY7BTpY6i8FPBBKLxFBJVdAZdVBL1W6bzqiDSqpi8BPG+H+OiIj8x7VcRhhlhs7X5kMj1cBsMUMhUdg3s8UMjVSDfG1+sJtI3cAAiMjPGuY3cP4PRSbHzNBKD//GXctlhFl5DK1ci7zEPNQYnIfBagw1yEvMg1auDVLLyBcYABERkX80NTnn/gnD8hj52nwo45TQG/UAAL1RD2Wckr0/EYABEBER+YenchlhVh7DtReIvT+RgwEQERH5huuQmKdyGWFYHsPWC3RKf4q9PxGEARCRH7BYJhHcy2XYymPIu5AzyWAIWkkNWy+Qzqhj708EYR4gIh/zVCxTFadiJmiKPrZyGbm51v2SEiApKSwzRPfR9oGpxYQ+2j7Bbgr5CAMgIh/zVCwzLzEv+oplEgHu5TI8rRYLA4nyRIzIGRHsZpAPcQiMyMdYLJOIKPR1qQdoypQpEIlEbsdFIhFkMhny8/Nx5513om/fvt1uIFG48VYsc8vMLQyCiIhCRJd6gDQaDTZt2oTvv/8eIpEIIpEIP/zwAzZt2gSz2YwPP/wQBQUF2LFjh6/bSxTyWCyTiCj0dakHKD09HXfeeSdeffVViMXWGMpiseDhhx+GSqXCmjVrcP/99+OJJ57A9u3bfdpgolDHYplERKGvSz1A77zzDubOnWsPfgBALBbjwQcfxFtvvQWRSIQ5c+bgwIEDPmsoUThhsUyii9orl0EUJF3qATKbzTh06BAuueQSp+OHDh1CS0sLAEAmk3mcJ0REFO6UcUoICwSfX9fQbED8ongArCFH5G9dCoCKioowe/ZsPPXUU7jyyisBAN999x3+/Oc/Y8aMGQCArVu3YsCAAb5rKRERUSQyGoHmZu+Px8UBUmng2hMluhQAvfzyy0hLS8Nzzz2H6upqAEBaWhoeeeQRPPHEEwCAcePGobCw0HctJSIiigSOAY/FAmzbBtQ6ZIuPibEGPTYpKcDo0YCYmWt8qUsBUExMDP7whz/gD3/4A/R6a4VctVrtdE5OTk73W0dERAQ4BwgVFWGbURoWC7B9O1BT03rs6FGgtNT6ngBArQYKCqwBT3k5kJfH4McPun1H1Wq1W/BDRETkM7W1wMTW8jIoLATGjHEOisKFWAyoVIBOZw101GqgTx9r8COVAiYToNUC8fGA2QxoNEA+i6/6Q5dLYfzjH//ARx99hLKyMjS7jF1+//333W4YERERAKCpybkAammptVekKUzLy+TnA8ePWwMctRpQKIBevYCDB4HERCAz03peTQ0waJA1ICKf61IP0N///nfcfffdSEtLww8//ICrrroKSUlJOH78OCZMmODrNhKFHdsqIWGBwJU8RN2VnQ0sdS4vg5UrgexsGM1G1BvrvW5GszE4bfbCaDaiXimBITsdTafL0djcaN2SE9Hc2ABTvMIaFOn11rQB7P3xmy71AL322mt46623cMcdd2D58uV4/PHHkZeXh6effhrnzp3r8HW2bduG559/Hnv37kVlZSXWrVuHyZMn2x+vrq7GE088gX//+9+oq6vD9ddfj1deeQV9+nivxrt8+XLcfffdTsekUikuXLjQ6fdJROQvXPLeCeXlwL3O5WVQVATL5k3Ybj6KmsYaz88DkKJIweheoyEWBX8OjUWwYHvZdtQ01iAODUjXH4b5cCnM8XLENjRBI2+EtKEclwhXQczeH7/r0r+IsrIyXHPNNQAAuVyO+vp6ANbl8atXr+7wdQwGAwoKCrBkyRK3xwRBwOTJk3H8+HF8+umn+OGHH9CzZ0+MHTsWBseuUA/UajUqKyvt28mTJzvx7oiIKKTI5c5JFHNzAaUSYoUSKqkKOqMOaqnabdMZdVBJVSER/ACAWCS2t1eWmgGhdx4S6puhkCiQUN+Mk5emIza9B8SnK9n7EwBdLoVx7tw59OzZEzk5Odi9ezcKCgpw4sQJCELHk4NNmDDB65DZkSNHsHv3bhw4cMCeT+j1119Heno6Vq9ejXtdvw04EIlESE9P79ybIiKi0JScDKxfbw18AKCkxL4KLL9JjOPnj8NsMUMtbV2QozfqoZFqkK8NQBBhMFgnLQNAQ0ObGa/ztfn29gq98xB7+hwU1efRECugfkAfKFty0HTgKCxXDIVFKQGM9YiLiYM0lnmAfK1LYfGYMWPw2WefAQDuvvtuPPLII7jxxhsxbdo0TJkyxScNMxqt47Yymcx+TCwWQyqVtltfrKGhAT179kR2djYmTZqEgwcPtvtaer3eaSMiohDiuOQ9K8u+r5VrkZeYhxqD8zBYjaEGeYl50MpDawjJsb3mBDUM2emoOX0Um2PKcEKsw05ZDbZrG1CCo1h/ZD3WH1mP7WXbYREswW56xOlSD9Bbb70Fi8X6P6O4uBjJycnYsWMHbrnlFtx///0+aVi/fv2Qk5OD+fPn480334RSqcTLL7+MiooKVFZWen1e37598e6772Lw4MHQ6XR44YUXcM011+DgwYPIysry+JxFixZh4cKFPmk3EVFX1Ta2Luuu0FewiG4H2XpV9EY91FI19EY9lHHKwPT+dIFje2N7ZaO6Kh3Vaj2u0eZDLlXDlJoBOQA5gHJ9OfIS80JmGC+SdOmOisVimM1mfPvtt/jiiy8gl8sxduxY9OzZEyUlJT5pmEQiwccff4xff/0VWq0WCoUCmzdvxoQJE5yKsLoaPnw4ZsyYgcsuuwwjR47Exx9/jJSUFLz55ptenzN//nzodDr7Vl5e7pP3QETUUbWNtZi4qjXXTeEHhRizYoxTUESeufYChWrvj41TL5BGhZrLLkFqVl8oJAqnzWwxB24YLwp1qQeopKQERUVFOHv2rNtjIpHIXhC1u4YOHYp9+/ZBp9OhubkZKSkpuPrqq3HFFVd0+BoSiQRDhgzB0aNHvZ4jlUohZZ0VIgqiJlMTDKbWBR6ldaXIS8xDkylMc90EmK1X5ZT+VEj3/tg4tjctPg0DFANwsu6k0zymGkMNBqUNCtlALtx1qQfowQcfxO23347KykpYLBanzVfBjyONRoOUlBQcOXIEe/bswaRJkzr83JaWFuzfvx89evTwebuIiHwlW5ONpTc757pZOWUlsjXZQWpReLH1quiMOv/3/hgMgEhk3dpZleyNa3sv73E5lHFK6I3WOaihPowXCbrUA1RdXY158+YhLS2tWy/e0NDg1DNz4sQJ7Nu3D1qtFjk5OVi7di1SUlKQk5OD/fv34+GHH8bkyZMxbtw4+3NmzJiBzMxMLFq0CADw7LPPYtiwYcjPz0ddXR2ef/55nDx5ss1VY0REwVauK8e9nzv/nSpaV4QtM7cwCOqgPto+MLWY0EfrPVdcKHFsb6I8EXmJedhfvR9qqZq9PwHQpQDo//2//4ctW7agd+/e3XrxPXv2YPTo0fb9efPmAQBmzpyJ5cuXo7KyEvPmzUN1dTV69OiBGTNm4I9//KPTNcrKypzmBJ0/fx6//e1vUVVVhcTERAwdOhQ7d+5E//79u9VWIiJ/kkvkUEpal0/nJuRCHitHzt+shaWZLLF9ifJEjMgZEexmdJhre8NtGC/ciYTOJO65qLGxEbfddhtSUlIwaNAgSCQSp8cfeughnzUwGPR6PTQaDXQ6HQu9EpFfeMoEfbLuJHIX5wIADhUfgixWZt+P+gCovVw7ncjF4/O2AF5f22g2ormlGd645vj59tS32HN6D67IuAJXZV7l86ZHus58fnepB2j16tX497//DZlMhi1btkAkEtkfE4lEYR8AEREFg+OS9yy157QdFD4cS19441qqI9yG8cJZlwKgP/zhD1i4cCGefPLJNpekExGRZ55y/shj5UFsEfmarfTF0fNHka12n8flKcdPuA3jhbMuRS/Nzc2YNm0agx8ioi5gzp8uUCoBQbBu/hze8rF8bT40Ug3MFjNz/ISYLkUwM2fOxIcffujrthARRQVPOX8MJgMumC8EsVXUHqPZiHpjPeqN9fZjrvuuwq1URzTp0hBYS0sLnnvuOXz11VcYPHiw2yTol156ySeNIyKKRLacP2NXjrUfWzllJef9hDDH+TwxjRdw28XjJUet1Q9uczjPtWch3Ep1RIsuBUD79+/HkCFDAAAHDhxwesxxQjQREbnzlvPnyzu/DFKLqD2O83lypSn24/JYOUwWk33f0GwAjK3Pi4uJs/cCMcdPaOlSALR582Zft4OIKGp4yvmjlCghi5UFsVXd09nl3uHI1pNjNpntx46fP46qhipMubhfcrQELYrW/4+2VV4+y/ETyOX+Ea5LARAREXVdsiIZ6+9cb8/xUzK9JKxXgXVluXc4svXk/FK6x35MIVHgjOGMfV8tVaNFag2AHFd52Z5ry/HD3p/gC99/iUREYcw154/jfrixDQ/pjDqopWq3TWfUQSVVhXXwY5OvzYdCorDvx8fFI0GIs+/L6xqgaDR5XOXVR9sHBWkFzPETIsL/XyMRUYRyzRUUysvko2W5t1auRa/EXvZ9o64WBSs3tJ7w+OPAI4+gpvq42yovW46fRHliIJtMXjAAIiIKQeGWKyialnvnCQn2nxXnGjCi3KGiVFU19C2NUFpigx/0GY1Afb33zWhs/xoRjHOAiIhChDJOCWGB9cO0XFfulisoLzEPTaamYDWvXVGx3Lu2Ftpbp9t3e72wFHmNzpPXa4rvxqA+VwU36LNYgO3bgRrv87KQkgKMHg1EaVLj6HzXREQhzpYryNHKKSuRrXEvqRAqXHuBIrH3B01N1pVYF/U+WAWUl9v3T6sA5RvvIL8pyBPaxWJApQJ0OkCtdt90OuvjURr8AAyAiIhCkrdcQeW6ci/PCA352nwo45TdX+4dqrKzgaWtgWmiEUBOjn1f30OLvBY1tAk9gtA4F/n5gEYDmM2AQtG6mc3W4/kR9v+mkzgERkQUgrzlCpJLnHsWDM0GxC+y5oVpmN8AZVxw88L4crl3SOYWKi8H7nUOTGFuzQs06I+voE/eVUByCKzq02qBvDxg/35rr49NTQ0waJD18SjGAIiIKAR5yxUUDsvl+2j7wNRi6tZy75DNLSSXOycfzM112h8+dJJfkhPag0GjAaqLx+qN9UCsBUAbwWB+PnD8OKDXW4Mgvd7avijv/QEYABERhSzXXEHB7t3pKNty7+5wLD2RrXaf9+SYZBAAUOuwOq6iAkhK8k8vTHIysH69NfABgJISQCZr3feDtuqQ2bJOew0GXXuB2PtjxzlAREQUkjqcW6i2FpjYmjIAhYXAmDHOQZEvOQZWWVl+H+5yTTRp0+FEk/n51l6fU6fY++OAARARURDYlrwLC4Sw6dkJtA7nFnJZmYXSUut+U+imDOgsx2DQRi6RdyzRpK0XSKez/pe9PwAYABERUQizrSrTG/UA4Dm3kMvKLADAypXW4xHCFgy6JsLscKqBPn2AggLrfwkAAyAioqhkaDZAtFAE0UIRDM2G9p8QJB3KLeRpZVZRkVN+nkjgWoes3ljf8VQDiYnAiBHW/xIABkBERBTi2s0t5G1lljzIyQh9zLUOWW1jbeQlmgwgBkBERBTSbL1AOqPO8we+bWWWTUkJsGlTaOTi8bG8xDz7zwqJIvISTQYQl8ETEVHIaze3kOvKLD/k4gkFjsFfr8Re7P3pBgZAREQU8nyRWygiOCzt790ks+576ekKyUzaIYQBEBERUThwyXeUOOk31oKmHob7QjaTdgiJzndNREQUbjqa78hggFgcgxt6j4Wh7ow9YaLj1m7yxCgQve+ciCjEdSRZomNemAp9hVueGIogXch3pI5Tt59JO0oxACIiClO1jbWYuKp1SKTwg0KMWTGGQVCk6kK+o16JvdrPpB2lGAAREYWpJlMTDKbWIZHSulIYTAY0mSKnBERIUioBQbBugVxt1oV8R3mJee1n0o5SDICIiMJUtiYbS292HhJZOWUlsjWRUwKCHHQh31GHMmlHKQZARERhqlxXjns/dx4SKVpXhHJdZJWAIAddqETfbibtKMUAiIgoTMklciglrUMiuQm5UEqUkEsiqwREyAvWkFgHtZtJO0oxDxARUZhKViRj/Z3rkbs4FwBQMr0ESYokJCsirwQEdU+7mbSjUFB7gBYtWoQrr7wSKpUKqampmDx5Mg4fPux0zoULF1BcXIykpCTEx8dj6tSpqK6ubvO6giDg6aefRo8ePSCXyzF27FgcOXLEn2+FiCgoHIOdLHUWgx/yyJZJO1HOavA2QQ2Atm7diuLiYuzevRsbNmyAyWTCuHHjYHBI9PTII4/g888/x9q1a7F161acPn0at956a5vXfe655/D3v/8db7zxBv7zn/9AqVRi/PjxuHDhgr/fEhEREYWBoA6BlZSUOO0vX74cqamp2Lt3L66//nrodDq88847WLVqFcaMGQMAWLZsGS699FLs3r0bw4YNc7umIAj429/+hv/5n//BpEmTAADvvfce0tLS8Mknn+A3v/mN/98YEVEIMTQbEL8oHgDQML/Ba1JFomgSUpOgdTodAECrtU7Q2rt3L0wmE8aOHWs/p1+/fsjJycGuXbs8XuPEiROoqqpyeo5Go8HVV1/t9TlEREQUXUJmErTFYsHcuXMxYsQIDBw4EABQVVWFuLg4JCQkOJ2blpaGqqoqj9exHU9LS+vwc4xGI4xGo31fr9d39W0QERFRGAiZHqDi4mIcOHAAa9asCfhrL1q0CBqNxr5lt1FXhYiIiMJfSARAc+bMwRdffIHNmzcjKyvLfjw9PR3Nzc2oq6tzOr+6uhrp6eker2U77rpSrK3nzJ8/Hzqdzr6Vt1FXhYiIQlCI5OIxmo2oN9Z73YxmY/sX6a5ah1pwFRXO+91hMAAikXVzrEofpoI6BCYIAh588EGsW7cOW7ZsQa9evZweHzp0KCQSCTZu3IipU6cCAA4fPoyysjIMHz7c4zV79eqF9PR0bNy4EZdddhkA65DWf/7zHzzwwAMenyOVSiGVSn33xoiIKOpYBAu2l21HTWON13NSFCkY3Ws0xCI/9T/U1gITWwvkorAQUKncS2YYDEC8dWI8GhpCMoGjvwW1B6i4uBjvv/8+Vq1aBZVKhaqqKlRVVaGpyVrIT6PRYPbs2Zg3bx42b96MvXv34u6778bw4cOdVoD169cP69atAwCIRCLMnTsX//d//4fPPvsM+/fvx4wZM5CRkYHJkycH420CRiNQX+99MwbgGwERkQPHivEV+gpWkPcBsUgMlVQFnVEHtVTttumMOqikKv8FPwDQ1OTcO1Naat1v6mSB3Ajr7fEkqD1Ar7/+OgBg1KhRTseXLVuGWbNmAQBefvlliMViTJ06FUajEePHj8drr73mdP7hw4ftK8gA4PHHH4fBYMB9992Huro6XHvttSgpKYFMJvPr+/HIYgG2bwdqvH8jQEoKMHo0IA6JEUkiinC1jbWYuKq1l6Dwg0Ko4lTYNHMTEyl2U742H8fPH4fZYoZaqrYf1xv10Eg1/q/DlZ0NLF0KOKyExsqV1uPkJOhDYO2RyWRYsmQJlixZ0uHriEQiPPvss3j22We73cZuE4ut3Y9Hj3r+B1heDuTlMfghooBpMjXBYGr9Vl9aV4q8xDw0mTrZS0BubHW39lfvdwqAagw1GJQ2yP91uMrLgXudC+SiqAjYsoVBkAt+6gaAMTcbTfI4NDbWozEWrVtjPZrkcTDm8h8lEQVOtiYbS29e6nRs5ZSVyNbwb5Ev2Kqv643WlCp6oz5wVdjlcuf5PLm51n05C+S6Cpk8QJHKIliwveFntEhOQfNzOQzZrfmJlOXV0PXJRkzDzxidkubfcWEiikjKOCWEBe33pjsq15Xj3s+dewmK1hVhy8wtDIJ8wLUXKGC9P4B1ovP69dbABwBKSoCkJOcJ0MEWIhOw+YnrZ7ZJcafTFIhTJUBlBBQSBVRGIE6VgNNpCv9PiiMiciCXyKGUtH7o5CbkQilRQi5hL4Gv2HqBTulPBa73x8Yx2MnKCq3gJ4TwUzcA8rX5kKVmoD4rBSrdBchiZVDpLqA+KwWy1IzA/mIQUdRLViRj/Z3r7fsl00s4AdrHbL1AOqMOeYl5gen9CbQwXynGIbAAsP0iHE6uRnKVDHFVNbAoZDiZLEHfSP3FIKKQ5hjsZKmzOlQglUVVO6ePtg9MLSb00fbx3UVtCR+p29gDFCD52nxIUtJQm65GbL0BtelqSFLS2PtDRCHJ0GyAaKEIooUiGJrD79t9KEiUJ2JEzggkyhOD3ZTQ4thbFMSeIwZAAWLrBTqZEoeGS/NxMiUucrtFiYgotPmrXEYYYQAUQPnafEiSU/HLJYmQJKey94eIAoJZn8mJp3IZY8ZEXRDEACiAomJSHBGFFE9Zn8esGMMgKJr5qlxGmGMAFGB9tH1QkFbg20lxREReeMr6bDAZcMF8IYitoqCylctwFIXlMhgABRgnxRFRIHnL+pylzgpSiyjovJXLKC8PTnuChAEQEVEE85b1uUJfEaQWUdB1tVxGhE2cZh4gIqII5i3rsyxWFsRWUVB1pVyGp4nTQSph4SsMgIiIIpgt63Pu4lwA1qzPSYokyGNZ9iKquZbLaC+Y8TRx2hZAhSkOgRERRTjXrM8seREBjEagvt775mueJk677nfU2bOtP586FbShNPYAERERhROLBdi+Haip8X7O118Do0cDYh/1c3iaOO263xG1tcDUqa37kycDGg2waVPAi7ayB4iIiCiciMWASgXodIBa7b7pdNbHfRX8AN4nTneW61BaWVnQchAxACIiIgo3+fnWnhOzGVAoWjez2Xo838eVBmwTp21KSpz3Oyo7G1iyxPlYkHIQMQAiIiIKN1otkJfnPgxWU2M9rvVDpQHXidNdGbIqLweKi52PBSkHEQMgIiLqElaMD7L8fOswlF5v3dfrrfu+7v3xJdehtJycjuUg8gMGQERE1CEsqhpiXHuB/Nn74yvJycA//9m6/8knQZkADXAVGBEReeAa7ADA1I9aV+8UflDolGCRgiQ/Hzh+3LqcPNR7f2ySklp/zswMSvADMAAiIiIXnirIS2OkaDK1rtQprStFbkJuEFpHjgzxUozaeAeuPA28+NQWyH3V++Na9iIpyXfDVK55gMTioARBHAIjIiInnirImywm/GXsX5zOcy2y6gnnCfnf0SRgXxpgye/d8ScplYAgWDfX5eyeyl6MGeObhIWe8gD56tqdxAAoGNrL4Gk0BruFRBThlHFKCAsECAsEKOOcPwA9VZB/4cYX8NSmp5yOuRZZpeCokwO7egJITPTNBT2VvTAYgAsXnM/rSnHUEMoDxCGwQOtIBs+UFN9m8CQi6gRPFeQf+eoRSGOl9n1bUVWKQLayF2PHth5budK69N3GUy+RStX+hGZbHqCbb3a+NvMARYFgZPAkIuoETxXk1VI11kxdYz9WMr0E6+/sQiI8Cn2eyl4UFVl7eWwuXPDcS9ReTw7zAEW5QGfwJCLqBFsFeZuS6SXYNHMTLkm6xH6MRVUjmLeyFzJZ67GsLPdiqB3pyWEeoCgXjAyeRESdwAryUcxT2QvXoa2KCs+9RO315DAPENlzN+j11qGvcMjgSURhyTbhmSKb0WyERbB4fTwuJs5pHlebXMteKJXOQ14ymedeoo705DAPUJSz9QLt328NgGpqgEGD2PtDRERdsqtiF+qb670+nqJIweheoyEW+WDwx9ZLlJtr3S8psQY2QQpmuoJDYMFkq+MSThk8iYgoJMXHxUNn1EEtVbttOqMOKqnKN8GPjS+KowYRe4CCydYLtGcPcMUVTr0/RrMRzS3NXp/aqa5MIiKKeHmJeahsqITZYoZaqrYf1xv10Eg1yNfyS7YjBkDB1qcPYDJZ/3uRRbBge9l21DR6zxXk065MIqIucK0XlqRI4mTpINLKtchLzMP+6v1OAVCNoQaD0gZBK+/mFAtb9mgbQ3hn9uanZ7AlJgIjRjhl8BSLxFBJVYHtyiQi6gRP9cLGrBjDCvFBlq/NhzJOCb1RD8Da+6OMU4ZW74/j5GnXMhwBFNRP0EWLFuHKK6+ESqVCamoqJk+ejMOHDzudc+HCBRQXFyMpKQnx8fGYOnUqqqur27zurFmzIBKJnLbCwkJ/vpVOMZqNqDfWe92MZiPyldlIMsdB0OuhMsK+CXo9ksxxyFcGPmsmEZHNBfMFt3phBpPBqWAqBZ6tF6jGYB1BqDHUIC8xr/u9PxEoqENgW7duRXFxMa688kqYzWY89dRTGDduHH7++WcoL0aFjzzyCNavX4+1a9dCo9Fgzpw5uPXWW7Fjx442r11YWIhly5bZ96XS0Jgv06HhLVkSRpeKcNmvp1CmK0NSfLr9MVNDFfpqcqBt+BkYneafjNFGI9Dsff4R4uIAH9xPznMiCl9Z6iwsvXkpxq5sLZewcspKZGv45SzY8rX5OH7+OE7pT4Ve708ICWoAVFJS4rS/fPlypKamYu/evbj++uuh0+nwzjvvYNWqVRgzZgwAYNmyZbj00kuxe/duDBs2zOu1pVIp0tPTvT4eLLbhraPnjyJb7f6HolxfjrzEPIjVQA+LAqc0idDHAIo4BRqbGxGjSUQPi8J/5TICVKuM85yIwluFvsKtXljRuiJsmbmFQVCQ2XqB9pzegysyrmDvjxch9cmi0+kAANqLq6H27t0Lk8mEsQ4F2fr164ecnBzs2rWrzWtt2bIFqamp6Nu3Lx544AGcPXvW67lGoxF6vd5p86d8bT40Ug3MFjMUEoV9M1vMrTP18/OhTM5AujwFZ0VNsMhlOCtqQro8BcrkDP8tmQ9QrTLOcyIKb7JYmVu9MKVECbkk8CUNyF0fbR8UpBWgj7ZP+ydHqZD5dLFYLJg7dy5GjBiBgQMHAgCqqqoQFxeHhIQEp3PT0tJQVVXl9VqFhYV47733sHHjRvz1r3/F1q1bMWHCBLS0tHg8f9GiRdBoNPYt289VaV3HaG2cxmovLpHPNMZBLpGjxlADuUSOTGOc/8tlBKhWWb42H4kihfd5TpI063AcEYUcb/XCuAosNCTKEzEiZwQS5YntnxylQmYZfHFxMQ4cOIDt27d3+1q/+c1v7D8PGjQIgwcPRu/evbFlyxbccMMNbufPnz8f8+bNs+/r9Xq/B0G2MVq9UQ+1VO15pn5+PuKPH0dmUzN+MVXgUmkW4hNS/Z8w0TVLtY1DtmpfzN/RShMw6Igelcd/9DzP6cQunwy3EZF/uNYLU8YFb0UPUWeFRAA0Z84cfPHFF9i2bRuysrLsx9PT09Hc3Iy6ujqnXqDq6upOze/Jy8tDcnIyjh496jEAkkqlAZ8k7ZqvwWOeBlsv0Pc1aE7sjczzAAYEqFhqG7XKfDZ/RyxGRkZf1P/8A/Ra53lOqT3ygTM6ayDG4IeIiHwsqJ8sgiBgzpw5WLduHTZt2oRevXo5PT506FBIJBJs3LjRfuzw4cMoKyvD8OHDO/w6FRUVOHv2LHr06OGztvuCLV9DmzP18/MRn5CCQWYt4hNSAlcuw7VivUOlel/O39EMuBzatFzoG8/Z5zmlpuRCHaPw6XAbEXWfraiqsEBgb08Uc0zlYuOayiUcBDUAKi4uxvvvv49Vq1ZBpVKhqqoKVVVVaGqy5pHQaDSYPXs25s2bh82bN2Pv3r24++67MXz4cKcVYP369cO6desAAA0NDXjsscewe/dulJaWYuPGjZg0aRLy8/Mxfvz4oLxPb2y9QDqjznueBlsgotP5f+6PqzZqlblO5FZaYt3n79TXt27e5vJotUgZNAyaelPrPCd1plPARUQUVYxG57+frlsQ50baRgDWH1mPkqOtK7lLjpZg/ZH1WH9kPbaXbW+zKn2oCOoQ2Ouvvw4AGDVqlNPxZcuWYdasWQCAl19+GWKxGFOnToXRaMT48ePx2muvOZ1/+PBh+wqymJgY/PTTT1ixYgXq6uqQkZGBcePG4X//939DJheQoz7aPjC1mNqeqe+hXEZAtFGrTCtWIl+Shp/P/IxETU9ovvsJkrM6WAxn0E+dBe3hGGu+IJs25vJoBlyOpP27UVtXgbycAqiNYHFYoiCz9fZ0F8tldFKAUpF0lWMql1xpiv24WqpGi1TWmsolDFbwBjUAEoT2f7lkMhmWLFmCJUuWdOg6crkcX331lU/aFwi2mfptn3SxXEYweAq+Lv6C9jt1As1VhxEXcwLxp89DfLIMKSoZMhLVwIVyoKDA+gtaXm4NpEwmzwkWJRKk9h4MYa8O6eosoOKMfbI1EYUvT+UyVHEqrhZriy0VydGjgKfFOLa/p0GcG2lbxGM2me3H5BI56iymjhVdda0pFiQhMQmaQpin4OviL2h8UwuS0nvhRF0p5LmZMNWeQrImFXLEWIOX+Hjr5GmNxvoL28a3GnVDA9SGOOBMHXt/iCJEk6nJrVxGXmIey2W0x7YIxWx2Xolr+3vazb+PhmYD4hfFAwAa5jd0ej6XbfrGL6V7nI77rOhqgDAAChMdWnbegvZLWKAD53RkqPDiL2iP2HicajmP05YWJORkIqlWDKTEA5mZ1vNsS+eTk9v+VqPTWa9ZX+823EZE4Slbk81yGV3RgVQkwZavzcfJUz/b9+uN9WFXdoMBUBjwtuxc3GyC+GIXZLJUi+vLRBA7ZryOcZmHk5QEiERAbRvVmjs6tnzxF1S9fz96qHvgYM1BpOX0QszpY2hSSCHIYoHaaogkYpiz0xBnNkLa3reaq64CKisDP9eJiPyiXFfOchld1UYqklCglWvRK7F15XZtYy0uzQ2vshsMgMKAx/phFgu0e3+C9JwOtU21yEroBfE5AKWl1kAHsP7SuM7DAYBjx9ocWzZaTGg2dSDJ4cVf0ExIcRBAVUMVBHkjzHW/QnfKiPgTp1Gf2wPny4DkmmRcn3s9xOnpwMGDQK9eQGysNUCzfavJy2tt40UsmEoUvuQSOctldJVrL1AI9f7Y5CW2/r1WSBRh1fsDMAAKG/nKbJSZD0LQWzNHA2LExSkQU3sc8iQVUpNzgSSJdQhJKgUaGtzn4di+ObTRC2PpndfxJIcOvUADUgagev8uXLhiMOLO65FYa4D8TB1EMbEwnjqJFE1PGBNqgYYGxBw4COHIYYgzsyDpc4nXbzUsmEoU3mzlMnIX5wKwlsvgKrBOsPUCeUhFEgq0ydn4tuI/F4uu9g+r3h+AAVB4sFig3fszLjt8CmW6MnvZCLGhCeZjx5F3NgNqoRrNgweiJasHxD//AiQkoCU1EWhuhOh0OSyDBiBWrbT2lrQxtixOSobqQgeq1dsCjou/oFkNZpyPT8C5S3ORWlWP+B9/wfGkGDScPYbaJBnESERtwyEAQLyqEYmHDsKYJELfWi3Egwd7/FbjseerrbYQUchhuYxuaCMVSajoUCqXEMUAKBxcXHXVw6LAKU0i9DEXy0bEAZKcLGhPGWFRyLG/5gAMqEKPmqOoV/ZAnV6K2NNNiG0yogpSaMparL0l7Ywt25c4WswXe5us9Ea9+xLHi7+gqj17oB4wBL9ILkCVmwmRyYyzMcnQffNvZMpzkKBtzcItSrOg4WQZ4iVyiOPj2/xW06m2EBFFmnbywAU7z1KHUrmEKH51Dhf5+VAmZyBdnoKzoiZ72Qh1dj5kSWkQqzVQSBQwmAxoycqEVKaEQqJAQn0zhN55qJG1tJanaKPMBdDBavWO+vQBCgqQOWQklHFKnJMJ0F8xEKLeeWjKyUBaoxiyWJl9E124gMZBfZEq07ab7bnTbSGigGFpjACwpSJJdK/q7inP0pgVY5yCIvKOAVC4sBVGNcZBLpHby0b0kCQAQ4YAFy4gU50JbUMLzhXkQ5SWBnVtPWJVGuizUtx7S9oocwG01inTG/UA4Llavc3FX9DEjDynYOWC+QJ6XHYtmqQixDRYc4HENBhwXmyEbPR4xF85okMrvjrVFiKiKOEpz5LBZPBNniVbskJBsP4cgRgAhZP8fMQnpCITahhMBmRCjfiEVOD66wGlEuraeiQlZ+NYrgZNORmIrTegPjUB5Y1VyBBUkBguoL72tHWzXIBBq4LpTJXHXhjXnpeO9ri4FngdNvi/YM7Ngbm6CgBgrq6COTcHOZeP8vqtxlVX20JEFMlseZYcMc9Sx3EOUDix9QJ9X4PmxN5IqzXBcEk6LFmpEFelQ7xnL5QDB8GsOYeTcRZk5Gfi5NE9iPv+HMwJh7E/xrlESEzjBWgsElySN8NjJGybf9NmtXrXJl4MVqyrAq5Ab21v1A26GudL1yK9qgZVYiOSBl3d6eClK20hIopkzLPUPQyAwk1+PuKPH8cAkwkHzYdwBEfRfKQKEjRArW2AXlaDUw1V2K0rxyU9L4H8nBTptUB8cqbbpS7ojsB8zQ0QJ6d4eCH3YKajQYvrqoBevYdiT+5/0HDgKMwD89Gr99COv1+jEWhuhhYS5EvS8EPlDxjSYwi05otL/juauZqIKMIwz1L3MAAKNxd7gcR79kCUn48aWTOypWogVQ1TagbkAPoYVThRdwINzQ1I7X8ZEvQSCKZmSLWtgY7xXA1iNVpkXnZ9my/XlSWOrqsCtHItkgYPQ6nhPHIHD+t4749LVeR+zQ1Q6eqRWXYMiKu2nhPEqshERMHEPEvdwwAoHF1cFpnZqwc05751WyJutpjRK6EX4mLi0Dd3OBSNapz7z1bnAKjqFLRXj0RiZu82X8pXSxzz8obigkqOvJT+HX+SS1XkeKjRNzmj9fEQqIpMRBRMzLPUdQyAwpFt1RWAPKEW+6v3OwVANYYaDMsaBnms3Npzc1kS9Ad/gPFcDcSaBDSdOwOLXAZN/8tRb6x3urS/Skt0OZDyc1VkIiKKTgyAwpxtcrDeaC2RYVsifnmPy1uHmjIToR4wBGf/swXVlvNoOnIA5v6XosrwC3DkF6frhVxpiTCoikxEROEnRD7lqKs6ukQ887LrIYnXILayGhfiYpA46EqopWqnTWfUtSZLDCW2nEV6ax6gUKuKTERE4SfEPumoK1xz73haIp6Y2RvqAUOgarIgNv8SxCanQiFR2DezxRy6pSXayVxNRETUWQyAIoCtF0hn1LWZIDBryCikjhiH/KsnhF9piXYyVxMREXUGA6AI0UfbBwVpBW0uV0/I6IWCqQ9gUL/rw6+0hK0XSKdj7w8REXUbJ0FHiM6ssrL1GNlWj9UYajAobVDo9v7YtFMVmYiIqKPYAxSlOjJvKOS0URWZiIioMxgARamOzhsiIiKKRBwCi2JdKXNBREQUCRgARTFflbkgIvJGGaeEsEAIdjOI3HAIjIiIiKIOAyAiIiKKOgyAiIiIKOowACIiIqKowwCIiIiIog4DICIioihS21hr/7lCX+G0H00YABEREUWJ2sZaTFw10b5f+EEhxqwYE5VBEAMgIiKiKNFkaoLBZLDvl9aVwmAyoMnUFMRWBQcDICIioiiRrcnG0puXOh1bOWUlsjXZQWpR8AQ1AFq0aBGuvPJKqFQqpKamYvLkyTh8+LDTOW+99RZGjRoFtVoNkUiEurq6Dl17yZIlyM3NhUwmw9VXX41vv/3WD++AiIgofJTrynHv5/c6HStaV4RyXXmQWhQ8QQ2Atm7diuLiYuzevRsbNmyAyWTCuHHjYDC0ds81NjaisLAQTz31VIev++GHH2LevHlYsGABvv/+exQUFGD8+PE4c+aMP94GERFRWJBL5FBKlPb93IRcKCVKyCXyILYqOESCIIRMkZaamhqkpqZi69atuP76650e27JlC0aPHo3z588jISGhzetcffXVuPLKK/Hqq68CACwWC7Kzs/Hggw/iySefbLcder0eGo0GOp0OarW6y++HiIjInwzNBsQvigcANMxvgDJO2c4zgJN1J5G7OBcAcKj4EJIUSUhWJPuzmQHTmc/vkJoDpNPpAABarbbL12hubsbevXsxduxY+zGxWIyxY8di165d3W4jERFROHMMdrLUWRET/HRWyFSDt1gsmDt3LkaMGIGBAwd2+Tq1tbVoaWlBWlqa0/G0tDQcOnTI43OMRiOMRqN9X6/Xd/n1iYiIKPSFTA9QcXExDhw4gDVr1gT8tRctWgSNRmPfsrOjbzY8ERFRNAmJAGjOnDn44osvsHnzZmRlZXXrWsnJyYiJiUF1dbXT8erqaqSnp3t8zvz586HT6exbeXn0zYYnIiKKJkENgARBwJw5c7Bu3Tps2rQJvXr16vY14+LiMHToUGzcuNF+zGKxYOPGjRg+fLjH50ilUqjVaqeNiIiIIldQ5wAVFxdj1apV+PTTT6FSqVBVVQUA0Gg0kMutS/KqqqpQVVWFo0ePAgD2798PlUqFnJwc+2TpG264AVOmTMGcOXMAAPPmzcPMmTNxxRVX4KqrrsLf/vY3GAwG3H333UF4l0RERP6hjFNCWBAyi7nDSlADoNdffx0AMGrUKKfjy5Ytw6xZswAAb7zxBhYuXGh/zLY83vGcY8eOoba2tY7JtGnTUFNTg6effhpVVVW47LLLUFJS4jYxmoiIiKJTSOUBChXMA0RERJGqK7mDwkXY5gEiIiIiCgQGQERERBR1GAARERFR1GEARERERFGHARARERFFHQZAREREFHUYABEREVHUYQBEREREUYcBEBEREUUdBkBEREQUdRgAERERUdRhAERERERRhwEQERERRR0GQERERBR1GAARERFR1GEARERERFGHARARERFFHQZAREREFHUYABEREVHUYQBEREREUYcBEBEREUWd2GA3gIiIiAJHGaeEsEAIdjOCjj1AREREFHUYABEREVHUYQBEREREUYcBEBEREUUdBkBEREQUdRgAERERUdRhAERERERRhwEQERERRR0GQERERBR1GAARERFR1GEARERERFGHARARERFFHQZAREREFHUYABEREVHUYQBEREREUSc22A0IRYIgAAD0en2QW0JEREQdZfvctn2Ot4UBkAf19fUAgOzs7CC3hIiIiDqrvr4eGo2mzXNEQkfCpChjsVhw+vRpqFQqiESiYDfH7/R6PbKzs1FeXg61Wh3s5kQk3mP/4z32L95f/+M97j5BEFBfX4+MjAyIxW3P8mEPkAdisRhZWVnBbkbAqdVq/tL5Ge+x//Ee+xfvr//xHndPez0/NpwETURERFGHARARERFFHQZABKlUigULFkAqlQa7KRGL99j/eI/9i/fX/3iPA4uToImIiCjqsAeIiIiIog4DICIiIoo6DICIiIgo6jAAIiIioqjDAChMPfPMMxCJRE5bv3797I8fO3YMU6ZMQUpKCtRqNW6//XZUV1c7XePXX3/FpEmTkJycDLVajWuvvRabN2+2P/7jjz/ijjvuQHZ2NuRyOS699FIsXrzYrS1btmzB5ZdfDqlUivz8fCxfvtxv7ztQAnF/HZ09exZZWVkQiUSoq6tzeiwS7y8Q2Hu8fPlyDB48GDKZDKmpqSguLnZ6/KeffsJ1110HmUyG7OxsPPfcc/550wEUqPv73Xff4YYbbkBCQgISExMxfvx4/Pjjj07nROL9BXxzj7///nvceOONSEhIQFJSEu677z40NDQ4nVNWVoaJEydCoVAgNTUVjz32GMxms9M5kfp3wp8YAIWxAQMGoLKy0r5t374dAGAwGDBu3DiIRCJs2rQJO3bsQHNzM26++WZYLBb782+66SaYzWZs2rQJe/fuRUFBAW666SZUVVUBAPbu3YvU1FS8//77OHjwIP7whz9g/vz5ePXVV+3XOHHiBCZOnIjRo0dj3759mDt3Lu6991589dVXgb0ZfuDv++to9uzZGDx4sNvxSL6/QGDu8UsvvYQ//OEPePLJJ3Hw4EF8/fXXGD9+vP1xvV6PcePGoWfPnti7dy+ef/55PPPMM3jrrbcCdyP8xN/3t6GhAYWFhcjJycF//vMfbN++HSqVCuPHj4fJZAIQ2fcX6N49Pn36NMaOHYv8/Hz85z//QUlJCQ4ePIhZs2bZr9/S0oKJEyeiubkZO3fuxIoVK7B8+XI8/fTT9nMi/e+E3wgUlhYsWCAUFBR4fOyrr74SxGKxoNPp7Mfq6uoEkUgkbNiwQRAEQaipqREACNu2bbOfo9frBQD2czz53e9+J4wePdq+//jjjwsDBgxwOmfatGnC+PHju/K2QkYg7+9rr70mjBw5Uti4caMAQDh//rz9sUi9v4IQmHt87tw5QS6XC19//bXXdrz22mtCYmKiYDQa7ceeeOIJoW/fvt15e0EXiPv73XffCQCEsrIy+zk//fSTAEA4cuSIIAiRe38Fofv3+M033xRSU1OFlpYW+zmu9+/LL78UxGKxUFVVZT/n9ddfF9Rqtf2eRvLfCX9iD1AYO3LkCDIyMpCXl4fp06ejrKwMAGA0GiESiZySaclkMojFYvu3k6SkJPTt2xfvvfceDAYDzGYz3nzzTaSmpmLo0KFeX1On00Gr1dr3d+3ahbFjxzqdM378eOzatcuXbzUoAnF/f/75Zzz77LN47733PBbui+T7C/j/Hm/YsAEWiwWnTp3CpZdeiqysLNx+++0oLy+3X3fXrl24/vrrERcXZz82fvx4HD58GOfPnw/EbfAbf9/fvn37IikpCe+88w6am5vR1NSEd955B5deeilyc3MBRPb9Bbp3j41GI+Li4px+9+VyOQDYz9m1axcGDRqEtLQ0+znjx4+HXq/HwYMH7edE8t8Jf2EAFKauvvpqLF++HCUlJXj99ddx4sQJXHfddaivr8ewYcOgVCrxxBNPoLGxEQaDAY8++ihaWlpQWVkJABCJRPj666/xww8/QKVSQSaT4aWXXkJJSQkSExM9vubOnTvx4Ycf4r777rMfq6qqcvrFBIC0tDTo9Xo0NTX57wb4WSDur9FoxB133IHnn38eOTk5HtsRqfcXCMw9Pn78OCwWC/785z/jb3/7G/7xj3/g3LlzuPHGG9Hc3AzA+z22PRauAnF/VSoVtmzZgvfffx9yuRzx8fEoKSnBv/71L8TGWmttR+r9Bbp/j8eMGYOqqio8//zzaG5uxvnz5/Hkk08CgP2cjty/SP474U8MgMLUhAkTcNttt2Hw4MEYP348vvzyS9TV1eGjjz5CSkoK1q5di88//xzx8fHQaDSoq6vD5Zdfbv+mIQgCiouLkZqaim+++QbffvstJk+ejJtvvtn+i+fowIEDmDRpEhYsWIBx48YF+u0GXCDu7/z583HppZfirrvuCuZbDZpA3GOLxQKTyYS///3vGD9+PIYNG4bVq1fjyJEjXiekR4pA3N+mpibMnj0bI0aMwO7du7Fjxw4MHDgQEydOjIoP3u7e4wEDBmDFihV48cUXoVAokJ6ejl69eiEtLc1jjzD5WHBH4MiXrrjiCuHJJ590OlZTU2OfU5KWliY899xzgiAIwtdff+02Pi0IgpCfny8sWrTI6djBgweF1NRU4amnnnJ7zeuuu054+OGHnY69++67glqt7ua7CT2+vr8FBQWCWCwWYmJihJiYGEEsFgsAhJiYGOHpp58WBCG67q8g+P4ev/vuuwIAoby83Omc1NRU4a233hIEQRCKioqESZMmOT2+adMmAYBw7tw5X721kODr+7t06VK3OSxGo1FQKBTC6tWrBUGIrvsrCJ27x46qqqqE+vp6oaGhQRCLxcJHH30kCIIg/PGPf3SbZ3T8+HEBgPD9998LghB9fyd8hSFmhGhoaMCxY8fQo0cPp+PJyclISEjApk2bcObMGdxyyy0AgMbGRgBw+5YhFoudVoEcPHgQo0ePxsyZM/GnP/3J7XWHDx+OjRs3Oh3bsGEDhg8f7pP3FSr8cX//+c9/4scff8S+ffuwb98+LF26FADwzTff2JdpR8v9Bfxzj0eMGAEAOHz4sP3xc+fOoba2Fj179gRgvcfbtm2zr1oCrPe4b9++XoeDw5E/7m9jYyPEYjFEIpHT4yKRyH5OtNxfoPP32FFaWhri4+Px4YcfQiaT4cYbbwRgvX/79+/HmTNn7Odu2LABarUa/fv3t58TLX8nfCrYERh1ze9//3thy5YtwokTJ4QdO3YIY8eOFZKTk4UzZ84IgmCN/nft2iUcPXpUWLlypaDVaoV58+bZn19TUyMkJSUJt956q7Bv3z7h8OHDwqOPPipIJBJh3759giAIwv79+4WUlBThrrvuEiorK+2b7TUEwfpNRKFQCI899pjwyy+/CEuWLBFiYmKEkpKSwN4QHwvE/XW1efNmt1VgkXp/BSFw93jSpEnCgAEDhB07dgj79+8XbrrpJqF///5Cc3OzIAjWlTlpaWlCUVGRcODAAWHNmjWCQqEQ3nzzzcDeEB8LxP395ZdfBKlUKjzwwAPCzz//LBw4cEC46667BI1GI5w+fVoQhMi9v4LQ/XssCILwyiuvCHv37hUOHz4svPrqq4JcLhcWL15sf9xsNgsDBw4Uxo0bJ+zbt08oKSkRUlJShPnz59vPieS/E/7EAChMTZs2TejRo4cQFxcnZGZmCtOmTROOHj1qf/yJJ54Q0tLSBIlEIvTp00d48cUXBYvF4nSN7777Thg3bpyg1WoFlUolDBs2TPjyyy/tjy9YsEAA4Lb17NnT6TqbN28WLrvsMiEuLk7Iy8sTli1b5s+3HhCBuL+uPAVAtuORdn8FIXD3WKfTCffcc4+QkJAgaLVaYcqUKU7LtgVBEH788Ufh2muvFaRSqZCZmSn85S9/8d8bD5BA3d9///vfwogRIwSNRiMkJiYKY8aMEXbt2uV0TiTeX0HwzT0uKioStFqtEBcXJwwePFh477333F6ntLRUmDBhgiCXy4Xk5GTh97//vWAymZzOidS/E/4kEgRBCGIHFBEREVHAcQ4QERERRR0GQERERBR1GAARERFR1GEARERERFGHARARERFFHQZAREREFHUYABEREVHUYQBEREREUYcBEBGFvVmzZkEkEuH+++93e6y4uBgikQizZs2ynzt58mS354pEIkgkEqSlpeHGG2/Eu+++61QXj4giCwMgIooI2dnZWLNmDZqamuzHLly4gFWrViEnJ6fN5xYWFqKyshKlpaX417/+hdGjR+Phhx/GTTfdBLPZ7O+mE1EQMAAioohw+eWXIzs7Gx9//LH92Mcff4ycnBwMGTKkzedKpVKkp6cjMzMTl19+OZ566il8+umn+Ne//oXly5f7ueVEFAwMgIgoYtxzzz1YtmyZff/dd9/F3Xff3aVrjRkzBgUFBU4BFRFFDgZARBQx7rrrLmzfvh0nT57EyZMnsWPHDtx1111dvl6/fv1QWlrquwYSUciIDXYDiIh8JSUlBRMnTsTy5cshCAImTpyI5OTkLl9PEASIRCIftpCIQgUDICKKKPfccw/mzJkDAFiyZEm3rvXLL7+gV69evmgWEYUYDoERUUQpLCxEc3MzTCYTxo8f3+XrbNq0Cfv378fUqVN92DoiChXsASKiiBITE4NffvnF/nNHGI1GVFVVoaWlBdXV1SgpKcGiRYtw0003YcaMGf5sLhEFCQMgIoo4arXa62MWiwWxsc5/+kpKStCjRw/ExsYiMTERBQUF+Pvf/46ZM2dCLGZHOVEkEgmCIAS7EUREgVJYWIj8/Hy8+uqrwW4KEQURv9oQUVQ4f/48vvjiC2zZsgVjx44NdnOIKMg4BEZEUeGee+7Bd999h9///veYNGlSsJtDREHGITAiIiKKOhwCIyIioqjDAIiIiIiiDgMgIiIiijoMgIiIiCjqMAAiIiKiqMMAiIiIiKIOAyAiIiKKOgyAiIiIKOowACIiIqKo8/8BTY9kXSSHVesAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 12 + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "", + "id": "ce797b850c4c2dd9" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From f364d6a9bc818cd6f35146a0288fac8e0fe4a333 Mon Sep 17 00:00:00 2001 From: Konstantin Malanchev Date: Thu, 31 Oct 2024 14:30:34 -0400 Subject: [PATCH 2/4] FIXS --- .../pre_executed/ztf-alerts-sne.ipynb | 92 +------------------ 1 file changed, 3 insertions(+), 89 deletions(-) diff --git a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb index 4d6b7eac..5e191c1b 100644 --- a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb +++ b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb @@ -12,9 +12,10 @@ "\n", "The dataset is provided by the [ALeRCE](https://alerce.science) broker team.\n", "\n", - "The goal is to find supernova (SN) candidates in this dataset using the goodness of the Bazin ([Bazin+2009](https://doi.org/10.1051/0004-6361/200911847)) function fit – a simple parametric model for SN light curves.\n", + "The goal is to find supernova (SN) candidates in this dataset using the goodness of the Bazin ([Bazin+2009](https://doi.org/10.1051/0004-6361/200911847)) function fit, a simple parametric model for SN light curves.\n", "\n", "The pipeline will be as follows:\n", + "\n", "1. Load the dataset with LSDB\n", "2. Convert it to a nested format with `nested-dask` package\n", "3. Fit Bazin function and extract some other light-curve features with `light-curve` package\n", @@ -28,7 +29,7 @@ "source": [ "### Install and import required packages\n", "\n", - "We need LSDB for data loading and analysis (includes [`dask`](https://dask.org), [`nested-pandas`](https://nested-pandas.readthedocs.org) and [`nested-dask`](https://nested-dask.readthedocs.org)) and [`light-curve`](https://github.com/light-curve/light-curve-python) package for feature extraction." + "We need LSDB for data loading and analysis (includes [dask](https://dask.org), [nested-pandas](https://nested-pandas.readthedocs.org) and [nested-dask](https://nested-dask.readthedocs.org)) and [light-curve](https://github.com/light-curve/light-curve-python) package for feature extraction." ] }, { @@ -45,93 +46,6 @@ "# This --only-binary flag is required to avoid installation errors on some systems\n", "%pip install --only-binary=light-curve light-curve" ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: lsdb in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (0.4.1.dev16+g3203fb91.d20241028)\r\n", - "Requirement already satisfied: dask[complete] in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (2024.7.1)\r\n", - "Requirement already satisfied: deprecated in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (1.2.14)\r\n", - "Requirement already satisfied: hats>=0.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.4.2.dev34+g1710fd7)\r\n", - "Requirement already satisfied: lsst-sphgeom in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (27.2024.2600)\r\n", - "Requirement already satisfied: nested-dask in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.2.1)\r\n", - "Requirement already satisfied: nested-pandas in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (0.2.2)\r\n", - "Requirement already satisfied: pyarrow in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (16.1.0)\r\n", - "Requirement already satisfied: scipy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsdb) (1.14.0)\r\n", - "Requirement already satisfied: aiohttp in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (3.9.5)\r\n", - "Requirement already satisfied: astropy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (6.0.1)\r\n", - "Requirement already satisfied: fsspec>=2023.10.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2024.6.1)\r\n", - "Requirement already satisfied: healpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (1.17.3)\r\n", - "Requirement already satisfied: jproperties in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.1.2)\r\n", - "Requirement already satisfied: matplotlib<3.9,>=3.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (3.8.4)\r\n", - "Requirement already satisfied: mocpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.16.1)\r\n", - "Requirement already satisfied: numba>=0.58 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.60.0)\r\n", - "Requirement already satisfied: numpy<3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (1.26.4)\r\n", - "Requirement already satisfied: pandas in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.2.3)\r\n", - "Requirement already satisfied: pydantic in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (2.9.2)\r\n", - "Requirement already satisfied: typing-extensions>=4.3.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (4.12.2)\r\n", - "Requirement already satisfied: universal-pathlib in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from hats>=0.4->lsdb) (0.2.5)\r\n", - "Requirement already satisfied: click>=8.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (8.1.7)\r\n", - "Requirement already satisfied: cloudpickle>=1.5.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (3.0.0)\r\n", - "Requirement already satisfied: packaging>=20.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (24.1)\r\n", - "Requirement already satisfied: partd>=1.4.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (1.4.2)\r\n", - "Requirement already satisfied: pyyaml>=5.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (6.0.1)\r\n", - "Requirement already satisfied: toolz>=0.10.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (0.12.1)\r\n", - "Requirement already satisfied: pyarrow-hotfix in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (0.6)\r\n", - "Requirement already satisfied: lz4>=4.3.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (4.3.3)\r\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from deprecated->lsdb) (1.16.0)\r\n", - "Requirement already satisfied: hpgeom>=0.8.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from lsst-sphgeom->lsdb) (1.3.2)\r\n", - "Requirement already satisfied: dask-expr in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from nested-dask->lsdb) (1.1.9)\r\n", - "Requirement already satisfied: distributed==2024.7.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (2024.7.1)\r\n", - "Requirement already satisfied: jinja2>=2.10.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.1.4)\r\n", - "Requirement already satisfied: locket>=1.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (1.0.0)\r\n", - "Requirement already satisfied: msgpack>=1.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (1.0.8)\r\n", - "Requirement already satisfied: psutil>=5.7.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (6.0.0)\r\n", - "Requirement already satisfied: sortedcontainers>=2.0.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (2.4.0)\r\n", - "Requirement already satisfied: tblib>=1.6.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.0.0)\r\n", - "Requirement already satisfied: tornado>=6.0.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (6.4.1)\r\n", - "Requirement already satisfied: urllib3>=1.24.3 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (2.2.2)\r\n", - "Requirement already satisfied: zict>=3.0.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from distributed==2024.7.1->dask[complete]->lsdb) (3.0.0)\r\n", - "Requirement already satisfied: contourpy>=1.0.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (1.2.1)\r\n", - "Requirement already satisfied: cycler>=0.10 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (0.12.1)\r\n", - "Requirement already satisfied: fonttools>=4.22.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (4.53.1)\r\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (1.4.5)\r\n", - "Requirement already satisfied: pillow>=8 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (10.4.0)\r\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (3.1.2)\r\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from matplotlib<3.9,>=3.3->hats>=0.4->lsdb) (2.9.0.post0)\r\n", - "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from numba>=0.58->hats>=0.4->lsdb) (0.43.0)\r\n", - "Requirement already satisfied: pytz>=2020.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pandas->hats>=0.4->lsdb) (2024.1)\r\n", - "Requirement already satisfied: tzdata>=2022.7 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pandas->hats>=0.4->lsdb) (2024.1)\r\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.3.1)\r\n", - "Requirement already satisfied: attrs>=17.3.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (23.2.0)\r\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.4.1)\r\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (6.0.5)\r\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from aiohttp->hats>=0.4->lsdb) (1.9.4)\r\n", - "Requirement already satisfied: pyerfa>=2.0.1.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from astropy->hats>=0.4->lsdb) (2.0.1.4)\r\n", - "Requirement already satisfied: astropy-iers-data>=0.2024.2.26.0.28.55 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from astropy->hats>=0.4->lsdb) (0.2024.7.22.0.34.13)\r\n", - "Requirement already satisfied: bokeh>=2.4.2 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from dask[complete]->lsdb) (3.5.0)\r\n", - "Requirement already satisfied: six~=1.13 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from jproperties->hats>=0.4->lsdb) (1.16.0)\r\n", - "Requirement already satisfied: cdshealpix>=0.6.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from mocpy->hats>=0.4->lsdb) (0.6.5)\r\n", - "Requirement already satisfied: networkx>=2.5 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from mocpy->hats>=0.4->lsdb) (3.3)\r\n", - "Requirement already satisfied: annotated-types>=0.6.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pydantic->hats>=0.4->lsdb) (0.7.0)\r\n", - "Requirement already satisfied: pydantic-core==2.23.4 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from pydantic->hats>=0.4->lsdb) (2.23.4)\r\n", - "Requirement already satisfied: xyzservices>=2021.09.1 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from bokeh>=2.4.2->dask[complete]->lsdb) (2024.6.0)\r\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from jinja2>=2.10.3->distributed==2024.7.1->dask[complete]->lsdb) (2.1.5)\r\n", - "Requirement already satisfied: idna>=2.0 in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from yarl<2.0,>=1.0->aiohttp->hats>=0.4->lsdb) (3.7)\r\n", - "\r\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\r\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: light-curve in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (0.9.6)\r\n", - "Requirement already satisfied: numpy in /Users/hombit/.virtualenvs/lsdb/lib/python3.12/site-packages (from light-curve) (1.26.4)\r\n", - "\r\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m24.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.3.1\u001b[0m\r\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], "execution_count": 1 }, { From 95cc745f52969f1c49fe2164b9000e5fbf7d6ee2 Mon Sep 17 00:00:00 2001 From: Konstantin Malanchev Date: Thu, 31 Oct 2024 14:41:35 -0400 Subject: [PATCH 3/4] Fix typo --- docs/tutorials/pre_executed/ztf-alerts-sne.ipynb | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb index 5e191c1b..c8bb5627 100644 --- a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb +++ b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb @@ -46,6 +46,7 @@ "# This --only-binary flag is required to avoid installation errors on some systems\n", "%pip install --only-binary=light-curve light-curve" ], + "outputs": [], "execution_count": 1 }, { From 06e30328c6be2ac8742764ffe56f89eaf1001f6d Mon Sep 17 00:00:00 2001 From: Konstantin Malanchev Date: Fri, 15 Nov 2024 16:13:31 -0500 Subject: [PATCH 4/4] Fixes for the review --- .../pre_executed/ztf-alerts-sne.ipynb | 782 ++++++++++-------- 1 file changed, 427 insertions(+), 355 deletions(-) diff --git a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb index c8bb5627..8991c6dc 100644 --- a/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb +++ b/docs/tutorials/pre_executed/ztf-alerts-sne.ipynb @@ -7,8 +7,8 @@ "source": [ "# Search for SN-like light curves in ZTF alerts\n", "\n", - "We will use lsdb package to load a Hats catalog with [ZTF](https://www.ztf.caltech.edu) alerts.\n", - "The dataset contains all alerts sent from the beginning of the survey until 2023-09-13 corresponding to objects having at least 20 detections.\n", + "We will use lsdb package to load a HATS catalog with [ZTF](https://www.ztf.caltech.edu) alerts.\n", + "The dataset contains all alerts sent from the beginning of the survey from 2018-05-04 to 2023-09-13 corresponding to objects having at least 20 detections.\n", "\n", "The dataset is provided by the [ALeRCE](https://alerce.science) broker team.\n", "\n", @@ -34,39 +34,48 @@ }, { "cell_type": "code", + "execution_count": 1, "id": "0e5c43c5", "metadata": { "ExecuteTime": { - "end_time": "2024-10-31T16:13:45.038972Z", - "start_time": "2024-10-31T16:13:40.538905Z" + "end_time": "2024-11-15T20:37:05.269994Z", + "start_time": "2024-11-15T20:37:04.067689Z" } }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "%pip install lsdb\n", + "%pip install -q lsdb\n", "# This --only-binary flag is required to avoid installation errors on some systems\n", - "%pip install --only-binary=light-curve light-curve" - ], - "outputs": [], - "execution_count": 1 + "%pip install -q --only-binary=light-curve light-curve" + ] }, { "cell_type": "code", + "execution_count": 2, "id": "af5fdfe0", "metadata": { "ExecuteTime": { - "end_time": "2024-10-31T16:14:01.879589Z", - "start_time": "2024-10-31T16:13:59.192844Z" + "end_time": "2024-11-15T20:37:54.468549Z", + "start_time": "2024-11-15T20:37:52.150445Z" } }, + "outputs": [], "source": [ "import light_curve as licu\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from dask.distributed import Client\n", "from lsdb import read_hats" - ], - "outputs": [], - "execution_count": 2 + ] }, { "cell_type": "markdown", @@ -75,18 +84,20 @@ "source": [ "### Helper function for light-curve plotting\n", "\n", - "The function accepts a pandas data frame and plot a light curve." + "The function accepts a pandas data frame and plots a light curve." ] }, { "cell_type": "code", + "execution_count": 3, "id": "bde20aba", "metadata": { "ExecuteTime": { - "end_time": "2024-10-31T16:15:03.695967Z", - "start_time": "2024-10-31T16:15:03.692865Z" + "end_time": "2024-11-15T20:37:57.622181Z", + "start_time": "2024-11-15T20:37:57.619207Z" } }, + "outputs": [], "source": [ "def plot_lc(lc, nondet, title=None):\n", " \"\"\"Plot light curve with non-detections.\"\"\"\n", @@ -103,9 +114,7 @@ " plt.xlabel(\"MJD\")\n", " plt.ylabel(\"mag\")\n", " plt.gca().invert_yaxis()" - ], - "outputs": [], - "execution_count": 3 + ] }, { "cell_type": "markdown", @@ -118,68 +127,28 @@ "These transformed columns are \"nested data frames\", so each item could be represented by a small pandas dataframe.\n", "We are going to have three nested columns:\n", "\n", - "1. \"lc\", for light curves, each point corrersponds to some alert (detection)\n", + "1. \"lc\", for light curves, each point corresponding to some alert (detection)\n", "2. \"nondet\", for non-detections (upper limits)\n", "3. \"ref\", for ZTF reference objects associated with alerts\n", "\n", - "Here we do not download any data yet, all data access and analysis happens only after `.compute()` is called.\n", + "Here we have not downloaded any data yet, all data access and analysis happens only after `.compute()` is called.\n", "\n", "Here we display two versions of the catalog: the first one is the raw catalog with nested lists, and the second one is the catalog with nested columns." ] }, { "cell_type": "code", + "execution_count": 4, "id": "7c7010f6", "metadata": { "ExecuteTime": { - "end_time": "2024-10-31T16:16:09.566339Z", - "start_time": "2024-10-31T16:16:07.219879Z" + "end_time": "2024-11-15T20:38:02.588603Z", + "start_time": "2024-11-15T20:37:58.987682Z" } }, - "source": [ - "ZTF_ALERTS = \"https://data.lsdb.io/hats/alerce/\"\n", - "\n", - "# Load catalog with nested lists\n", - "raw_catalog = read_hats(\n", - " ZTF_ALERTS,\n", - ")\n", - "display(raw_catalog)\n", - "\n", - "# Pack all list-columns into single column\n", - "catalog_with_lc = raw_catalog.nest_lists(\n", - " base_columns=[col for col in raw_catalog.columns if not col.startswith(\"lc_\")],\n", - " name=\"lc\",\n", - ")\n", - "\n", - "# Pack non-detections\n", - "catalog_with_nondet = catalog_with_lc.nest_lists(\n", - " base_columns=[col for col in catalog_with_lc.columns if not col.startswith(\"nondet_\")],\n", - " name=\"nondet\",\n", - ")\n", - "\n", - "# Pack ZTF references\n", - "catalog = catalog_with_nondet.nest_lists(\n", - " base_columns=[col for col in catalog_with_nondet.columns if not col.startswith(\"ref_\")],\n", - " name=\"ref\",\n", - ")\n", - "\n", - "catalog" - ], "outputs": [ { "data": { - "text/plain": [ - "Dask NestedFrame Structure:\n", - " oid mean_ra mean_dec lc_ra lc_dec lc_candid lc_mjd lc_fid lc_pid lc_diffmaglim lc_isdiffpos lc_nid lc_magpsf lc_sigmapsf lc_magap lc_sigmagap lc_distnr lc_rb lc_rbversion lc_drb lc_drbversion lc_magapbig lc_sigmagapbig lc_rfid lc_magpsf_corr lc_sigmapsf_corr lc_sigmapsf_corr_ext lc_corrected lc_dubious lc_parent_candid lc_has_stamp lc_step_id_corr nondet_mjd nondet_fid nondet_diffmaglim ref_rfid ref_candid ref_fid ref_rcid ref_field ref_magnr ref_sigmagnr ref_chinr ref_sharpnr ref_ranr ref_decnr ref_mjdstartref ref_mjdendref ref_nframesref Norder Dir Npix\n", - "npartitions=113 \n", - "0 string[pyarrow] double[pyarrow] double[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] list[pyarrow] int8[pyarrow] int64[pyarrow] int64[pyarrow]\n", - "72057594037927936 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", - "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", - "3170534137668829184 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", - "3458764513820540928 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", - "Dask Name: nestedframe, 3 expressions\n", - "Expr=MapPartitions(NestedFrame)" - ], "text/html": [ "
lsdb Catalog alerce_nested:
\n", "