-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathengine.py
266 lines (225 loc) · 10.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Dict, Iterable, Optional
import torch
import torch.nn
import torch.optim
import util.dist as dist
from datasets.clevrref import ClevrRefEvaluator
from datasets.coco_eval import CocoEvaluator
from datasets.flickr_eval import FlickrEvaluator
from datasets.phrasecut_eval import PhrasecutEvaluator
from datasets.refexp import RefExpEvaluator
from util.metrics import MetricLogger, SmoothedValue
from util.misc import targets_to
from util.optim import adjust_learning_rate, update_ema
def train_one_epoch(
model: torch.nn.Module,
criterion: Optional[torch.nn.Module],
contrastive_criterion: Optional[torch.nn.Module],
qa_criterion: Optional[torch.nn.Module],
weight_dict: Dict[str, float],
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
args,
max_norm: float = 0,
model_ema: Optional[torch.nn.Module] = None,
):
model.train()
if criterion is not None:
criterion.train()
if contrastive_criterion is not None:
contrastive_criterion.train()
if qa_criterion is not None:
qa_criterion.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter("lr_backbone", SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter("lr_text_encoder", SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
print_freq = 10
num_training_steps = int(len(data_loader) * args.epochs)
for i, batch_dict in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
curr_step = epoch * len(data_loader) + i
samples = batch_dict["samples"].to(device)
positive_map = batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None
targets = batch_dict["targets"]
answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} if "answers" in batch_dict else None
captions = [t["caption"] for t in targets]
targets = targets_to(targets, device)
memory_cache = None
if args.masks:
outputs = model(samples, captions)
else:
memory_cache = model(samples, captions, encode_and_save=True)
outputs = model(samples, captions, encode_and_save=False, memory_cache=memory_cache)
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, positive_map))
if contrastive_criterion is not None:
assert memory_cache is not None
contrastive_loss = contrastive_criterion(memory_cache["text_pooled_op"], memory_cache["img_pooled_op"])
loss_dict["contrastive_loss"] = contrastive_loss
if qa_criterion is not None:
answer_losses = qa_criterion(outputs, answers)
loss_dict.update(answer_losses)
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
adjust_learning_rate(
optimizer,
epoch,
curr_step,
num_training_steps=num_training_steps,
args=args,
)
if model_ema is not None:
update_ema(model, model_ema, args.ema_decay)
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(lr_backbone=optimizer.param_groups[1]["lr"])
metric_logger.update(lr_text_encoder=optimizer.param_groups[2]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(
model: torch.nn.Module,
criterion: Optional[torch.nn.Module],
contrastive_criterion: Optional[torch.nn.Module],
qa_criterion: Optional[torch.nn.Module],
postprocessors: Dict[str, torch.nn.Module],
weight_dict: Dict[str, float],
data_loader,
evaluator_list,
device: torch.device,
args,
):
model.eval()
if criterion is not None:
criterion.eval()
if contrastive_criterion is not None:
contrastive_criterion.eval()
if qa_criterion is not None:
qa_criterion.eval()
metric_logger = MetricLogger(delimiter=" ")
header = "Test:"
for batch_dict in metric_logger.log_every(data_loader, 10, header):
samples = batch_dict["samples"].to(device)
positive_map = batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None
targets = batch_dict["targets"]
answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} if "answers" in batch_dict else None
captions = [t["caption"] for t in targets]
targets = targets_to(targets, device)
memory_cache = None
if args.masks:
outputs = model(samples, captions)
else:
memory_cache = model(samples, captions, encode_and_save=True)
outputs = model(samples, captions, encode_and_save=False, memory_cache=memory_cache)
loss_dict = {}
if criterion is not None:
loss_dict.update(criterion(outputs, targets, positive_map))
if contrastive_criterion is not None:
assert memory_cache is not None
contrastive_loss = contrastive_criterion(memory_cache["text_pooled_op"], memory_cache["img_pooled_op"])
loss_dict["contrastive_loss"] = contrastive_loss
if qa_criterion is not None:
answer_losses = qa_criterion(outputs, answers)
loss_dict.update(answer_losses)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = dist.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f"{k}_unscaled": v for k, v in loss_dict_reduced.items()}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
if not args.no_detection:
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
if "segm" in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors["segm"](results, outputs, orig_target_sizes, target_sizes)
flickr_res = [] if "flickr_bbox" in postprocessors.keys() else None
if "flickr_bbox" in postprocessors.keys():
image_ids = [t["original_img_id"] for t in targets]
sentence_ids = [t["sentence_id"] for t in targets]
items_per_batch_element = [t["nb_eval"] for t in targets]
positive_map_eval = batch_dict["positive_map_eval"].to(device)
flickr_results = postprocessors["flickr_bbox"](
outputs, orig_target_sizes, positive_map_eval, items_per_batch_element
)
assert len(flickr_results) == len(image_ids) == len(sentence_ids)
for im_id, sent_id, output in zip(image_ids, sentence_ids, flickr_results):
flickr_res.append({"image_id": im_id, "sentence_id": sent_id, "boxes": output})
phrasecut_res = None
if "phrasecut" in postprocessors.keys():
phrasecut_res = postprocessors["phrasecut"](results)
assert len(targets) == len(phrasecut_res)
for i in range(len(targets)):
phrasecut_res[i]["original_id"] = targets[i]["original_id"]
phrasecut_res[i]["task_id"] = targets[i]["task_id"]
res = {target["image_id"].item(): output for target, output in zip(targets, results)}
for evaluator in evaluator_list:
if isinstance(evaluator, FlickrEvaluator):
evaluator.update(flickr_res)
elif isinstance(evaluator, PhrasecutEvaluator):
evaluator.update(phrasecut_res)
else:
evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
for evaluator in evaluator_list:
evaluator.synchronize_between_processes()
refexp_res = None
flickr_res = None
phrasecut_res = None
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
evaluator.accumulate()
evaluator.summarize()
elif isinstance(evaluator, (RefExpEvaluator, ClevrRefEvaluator)):
refexp_res = evaluator.summarize()
elif isinstance(evaluator, FlickrEvaluator):
flickr_res = evaluator.summarize()
elif isinstance(evaluator, PhrasecutEvaluator):
phrasecut_res = evaluator.summarize()
# accumulate predictions from all images
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = evaluator.coco_eval["segm"].stats.tolist()
if refexp_res is not None:
stats.update(refexp_res)
if flickr_res is not None:
stats["flickr"] = flickr_res
if phrasecut_res is not None:
stats["phrasecut"] = phrasecut_res
return stats