-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
79 lines (69 loc) · 2.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from torch import float32, bfloat16, float16, topk, arange
from collections import namedtuple
import random
from transformers import AutoTokenizer
import csv
# models and weight format
MODELS = [
# "gpt2",
# "gpt2-medium",
# "gpt2-large",
# "gpt2-xl",
"EleutherAI/pythia-14m",
"EleutherAI/pythia-31m",
"EleutherAI/pythia-70m",
"EleutherAI/pythia-160m",
"EleutherAI/pythia-410m",
"EleutherAI/pythia-1b",
"EleutherAI/pythia-1.4b",
"EleutherAI/pythia-2.8b",
"EleutherAI/pythia-6.9b",
"EleutherAI/pythia-12b",
]
WEIGHTS = {
# "gpt2": float32,
# "gpt2-medium": float32,
# "gpt2-large": float32,
# "gpt2-xl": float32,
"EleutherAI/pythia-14m": float32,
"EleutherAI/pythia-31m": float32,
"EleutherAI/pythia-70m": float32,
"EleutherAI/pythia-160m": float32,
"EleutherAI/pythia-410m": float32,
"EleutherAI/pythia-1b": bfloat16,
"EleutherAI/pythia-1.4b": float16,
"EleutherAI/pythia-2.8b": float16,
"EleutherAI/pythia-6.9b": float16,
"EleutherAI/pythia-12b": float16,
}
parameters = {
"pythia-12b": 11846072320,
"pythia-6.9b": 6857302016,
"pythia-2.8b": 2775208960,
"pythia-1.4b": 1414647808,
"pythia-1b": 1011781632,
"pythia-410m": 405334016,
"pythia-160m": 162322944,
"pythia-70m": 70426624,
"pythia-31m": 31000000,
"pythia-14m": 14000000,
}
def format_token(tokenizer, tok):
"""Format the token for some path patching experiment to show decoding diff"""
return tokenizer.decode(tok).replace(" ", "_").replace("\n", "\\n")
def top_vals(tokenizer, res, highlight=[], n=10):
"""Pretty print the top n values of a distribution over the vocabulary"""
_, top_indices = topk(res, n)
top_indices = top_indices.tolist() + highlight
for i in range(len(top_indices)):
val = top_indices[i]
tok = format_token(tokenizer, val)
if val in highlight:
tok = f"\x1b[6;30;42m{tok}\x1b[0m"
print(f"{tok:<34} {val:>5} {res[top_indices[i]].item():>10.4%}")
else:
print(f"{tok:<20} {val:>5} {res[top_indices[i]].item():>10.4%}")
def get_last_token(logits, attention_mask):
last_token_indices = attention_mask.sum(1) - 1
batch_indices = arange(logits.size(0)).unsqueeze(1)
return logits[batch_indices, last_token_indices.unsqueeze(1)].squeeze(1)