forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_BatchToSpace.py
67 lines (55 loc) · 2.98 KB
/
test_tf_BatchToSpace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
class TestBatchToSpace(CommonTFLayerTest):
def create_batch_to_space_net(self, in_shape, crops_value, block_shape_value):
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(tf.float32, in_shape, 'Input')
crops = tf.constant(crops_value, dtype=tf.int32)
block_shape = tf.constant(block_shape_value, dtype=tf.int32)
tf.batch_to_space(input=x, block_shape=block_shape, crops=crops, name='Operation')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(in_shape=[4, 1, 1, 3], block_shape_value=[1], crops_value=[[0, 0]]),
dict(in_shape=[12, 1, 1, 3], block_shape_value=[3, 1, 4], crops_value=[[1, 0], [0, 0], [1, 1]]),
dict(in_shape=[72, 2, 1, 4, 2], block_shape_value=[3, 4, 2],
crops_value=[[1, 2], [0, 0], [3, 0]]),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_batch_to_space_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend):
self._test(*self.create_batch_to_space_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend)
test_data_4D = [
dict(in_shape=[4, 1, 1, 3], block_shape_value=[2, 2], crops_value=[[0, 0], [0, 0]]),
dict(in_shape=[60, 100, 30, 30], block_shape_value=[3, 2], crops_value=[[1, 5], [4, 1]]),
dict(in_shape=[4, 1, 1, 1], block_shape_value=[2, 1, 2], crops_value=[[0, 0], [0, 0], [0, 0]]),
dict(in_shape=[36, 2, 2, 3], block_shape_value=[2, 3, 3], crops_value=[[1, 0], [0, 0], [2, 2]])
]
@pytest.mark.parametrize("params", test_data_4D)
@pytest.mark.nightly
def test_batch_to_space_4D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend):
self._test(*self.create_batch_to_space_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend)
test_data_5D = [
dict(in_shape=[144, 2, 1, 4, 1], block_shape_value=[3, 4, 2, 2],
crops_value=[[1, 2], [0, 0], [3, 0], [0, 0]]),
]
@pytest.mark.parametrize("params", test_data_5D)
@pytest.mark.nightly
def test_batch_to_space_5D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend):
self._test(*self.create_batch_to_space_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend)