- C++ gtest-based tests
- Python frontend tests
- Python operators tests
- Python tests to confirm operator compliance with the ONNX standard
- Python OpenModelZoo tests
- Tests for OpenVINO™ Execution Provider with ONNX Runtime
- Build OpenVINO with the
-DENABLE_TESTS=ON
flag. - Run
<OV_REPO_DIR>/bin/intel64/<OV_BUILD_TYPE>/ov_onnx_frontend_tests
, where <OV_REPO_DIR> is your workspace folder, andOV_BUILD_TYPE
can beDebug
orRelease
, depending on the-DCMAKE_BUILD_TYPE
CMake build option. You can filter tests using the--gtest_filter
flag like any other gtest-based tests.
For example:
<OV_REPO_DIR>/bin/intel64/<OV_BUILD_TYPE>/ov_onnx_frontend_tests --gtest_filter=*add*
- Build OpenVINO with
-DENABLE_PYTHON=ON
, preferably in aPython
virtual environment. To avoid problems with too many Python interpreters installed on the host, you can also set the-DPython3_EXECUTABLE=<PYTHON_INTERPRETER_PATH>
build option (requires cmake 3.16 and higher).
NOTE: If you want to run the tests from the installation directory (like in the CI), add the
-P cmake_install.cmake
and-DCOMPONENT=tests
CMake build options, and install OpenVINO viacmake --build . --target install
as additional steps.
- Set up Python paths via
source <OV_INSTALL_DIR>/setupvars.sh
for Linux,. <path-to-setupvars-folder>/setupvars.ps1
for Windows PowerShell, orsh <INSTALL_DIR>\setupvars.bat
for Windows Command Prompt. - Install Python dependencies:
pip install -r <OV_REPO_DIR>/src/bindings/python/requirements.txt
pip install -r <OV_REPO_DIR>/src/bindings/python/requirements_test.txt
You can run ONNX Frontend Python tests using the following commands:
- For the build layout:
pytest <OV_REPO_DIR>/src/bindings/python/tests/test_frontend/test_frontend_onnx*
- For the installation layout:
pytest <OV_INSTALL_DIR>/tests/pyopenvino/tests/test_frontend/test_frontend_onnx*
You can run ONNX operators Python tests using the following commands:
- For the build layout:
pytest <OV_REPO_DIR>/src/bindings/python/tests/test_onnx \
--ignore=<OV_REPO_DIR>/src/bindings/python/tests/test_onnx/test_zoo_models.py \
--ignore=<OV_REPO_DIR>/src/bindings/python/tests/test_onnx/test_backend.py
- For the installation layout:
pytest <OV_INSTALL_DIR>/tests/pyopenvino/tests/test_onnx \
--ignore=<OV_INSTALL_DIR>/tests/pyopenvino/tests/test_onnx/test_zoo_models.py \
--ignore=<OV_INSTALL_DIR>/tests/pyopenvino/tests/test_onnx/test_backend.py
- For the build layout:
pytest <OV_REPO_DIR>/src/bindings/python/tests/test_onnx/test_backend.py -sv -k 'not cuda'
- For the installation layout:
pytest <OV_INSTALL_DIR>/tests/pyopenvino/tests/test_onnx/test_backend.py -sv -k 'not cuda'
Preparation: Download models. The current OpenVINO ONNX Frontend uses this version or the model_zoo_preprocess.sh script. The second approach is preferable, because some test data requires preprocessing.
model_zoo_preprocess.sh -d <ONNX_MODELS_DIR> -o
Note that the current CI also tests models from the MSFT package (the -m
flag of the model_zoo_preprocess.sh
script can enable the processing of it), but it is a deprecated pipeline. If you encounter problems with this package, contact openvino-onnx-frontend-maintainers.
Commands to run OpenModelZoo tests:
- For the build layout:
pytest --backend=CPU <OV_REPO_DIR>/src/bindings/python/tests/test_onnx/test_zoo_models.py -v -n 4 --forked -k 'not _cuda' --model_zoo_dir=<ONNX_MODELS_DIR>
Note that you can also run tests for a single model only, for example:
pytest --backend=CPU <OV_REPO_DIR>/src/bindings/python/tests/test_onnx/test_zoo_models.py -v -n 4 --forked -k 'not _cuda' --model_zoo_dir=<ONNX_MODELS_DIR> -k test_onnx_model_zoo_vision_classification_alexnet_model_bvlcalexnet_9_bvlc_alexnet_model_cpu
- For the installation layout:
pytest --backend=CPU <OV_INSTALL_DIR>/tests/pyopenvino/tests/test_onnx/test_zoo_models.py -v -n 4 --forked -k 'not _cuda' --model_zoo_dir=<ONNX_MODELS_DIR>
Be aware that each model is tested in two stages: importing (OnnxBackendModelImportTest
) and inference (OnnxBackendModelExecutionTest
).
TIP: A useful
pytest
flag during working with OpenModelZoo tests is--collect-only
. It enables you to list all the possible tests (based on available models) without running them. An example output:
<TestCaseFunction test_onnx_model_zoo_vision_style_transfer_fast_neural_style_model_rain_princess_8_rain_princess_model_cpu>
<TestCaseFunction test_onnx_model_zoo_vision_style_transfer_fast_neural_style_model_rain_princess_9_rain_princess_rain_princess_cpu>
...
- Clone the ONNX Runtime repository (the
rel-1.8.1
version is used in the current CI configuration):
git clone --branch rel-1.8.1 --single-branch --recursive https://github.com/microsoft/onnxruntime.git
- (Optional) To build ONNX Runtime with a non-release OpenVINO version, an additional step is required for the
rel-1.8.1
version:
cd <OV_INSTALL_DIR>/deployment_tools/inference_engine && touch version.txt && echo "2021.4" > version.txt
- Set up the OpenVINO environment:
source <OV_INSTALL_DIR>/setupvars.sh
- Build ONNX Runtime with OpenVINO enabled:
<ONNX_RUNTIME_REPO_DIR>/build.sh --config RelWithDebInfo --use_openvino CPU_FP32 --build_shared_lib --parallel
After the building is finished, the tests will run automatically if the --skip_tests
flag is not set.
Note that ONNX Runtime version from the master branch requires CMake version being greater than 3.25
. You can parametrize the build.sh
script with your custom CMake version by passing the path via the --cmake_path
argument.