-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathann.py
143 lines (104 loc) · 3.97 KB
/
ann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import shuffle
#from sklearn.modek_selection import train_test_split
from sklearn.model_selection import train_test_split
def read_dataset():
df = pd.read_csv('HR_comma_sep.csv')
X = df.drop(['left','sales'],axis=1)
y = df['left']
encoder = LabelEncoder()
encoder.fit(y)
y = encoder.transform(y)
Y = one_hot_encode(y)
print(X.shape)
return (X,Y)
def one_hot_encode(labels):
n_labels = len(labels)
n_unique_labels = len(np.unique(labels))
one_hot_encode = np.zeros((n_labels,n_unique_labels))
one_hot_encode[np.arange(n_labels),labels] = 1
return one_hot_encode
X,Y = read_dataset()
X,Y = shuffle(X,Y,random_state = 1)
train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size = 0.20)
print(train_x.shape)
print(train_y.shape)
print(test_x.shape)
learning_rate = 0.3
training_epochs = 100
cost_history = np.empty(shape=[1],dtype = float)
n_dim = X.shape[1]
print("n_dim",n_dim)
n_class = 2
model_path = "HR_comma_sep"
n_hidden_1 = 10
n_hidden_2 = 10
n_hidden_3 = 10
n_hidden_4 = 10
x = tf.placeholder(tf.float32,[None,n_dim])
W = tf.Variable(tf.zeros([n_dim,n_class]))
b = tf.Variable(tf.zeros([n_class]))
y_ = tf.placeholder(tf.float32,[None,n_class])
def multilayer_perceptron(x,weights,biases):
layer_1 = tf.add(tf.matmul(x,weights['h1']),biases['b2'])
layer_1 = tf.nn.sigmoid(layer_1)
layer_2 = tf.add(tf.matmul(layer_1,weights['h2']),biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
layer_3 = tf.add(tf.matmul(layer_2,weights['h3']),biases['b3'])
layer_3 = tf.nn.sigmoid(layer_3)
layer_4 = tf.add(tf.matmul(layer_3,weights['h4']),biases['b4'])
layer_4 = tf.nn.sigmoid(layer_4)
out_layer = tf.matmul(layer_4,weights['out']) + biases['out']
return out_layer
weights = {
'h1' : tf.Variable(tf.truncated_normal([n_dim,n_hidden_1])),
'h2' : tf.Variable(tf.truncated_normal([n_hidden_1,n_hidden_2])),
'h3' : tf.Variable(tf.truncated_normal([n_hidden_2,n_hidden_3])),
'h4' : tf.Variable(tf.truncated_normal([n_hidden_3,n_hidden_4])),
'out' : tf.Variable(tf.truncated_normal([n_hidden_4,n_class]))
}
biases = {
'b1' : tf.Variable(tf.truncated_normal([n_hidden_1])),
'b2' : tf.Variable(tf.truncated_normal([n_hidden_2])),
'b3' : tf.Variable(tf.truncated_normal([n_hidden_3])),
'b4' : tf.Variable(tf.truncated_normal([n_hidden_4])),
'out' : tf.Variable(tf.truncated_normal([n_class]))
}
init = tf.global_variables_initializer()
saver = tf.train.Saver()
y = multilayer_perceptron(x,weights,biases)
cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
sess = tf.Session()
sess.run(init)
mse_history = []
accuracy_history = []
for epoch in range(training_epochs):
#sess.run(training_step,feed_dict = {x: train_x, y_ : train_y})
cost = sess.run(cost_function,feed_dict = {x : train_x,y_ : train_y})
cost_history = np.append(cost_history,cost)
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
pred_y = sess.run(y,feed_dict = {x: test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
mse_ = sess.run(mse)
mse_history.append(mse_)
accuracy = (sess.run(accuracy,feed_dict = {x: train_x, y_: train_y}))
accuracy_history.append(accuracy)
print('epoch : ',epoch,' - ','cost: ',cost," -mse: ",mse_history)
#save_path = saver.save(sess,model_path)
#print("Model saved in file : %s" % save_path)
plt.plot(accuracy_history)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print("Test Accuracy: ",(sess.run(accuracy,feed_dict= {x : test_x, y_: train_y})))
pred_y = sess.run(y,feed_dict = {x : test_x})
mse = tf.reduce_mean(tf.square(pred_y - test_y))
print("MSE : %.4f" % sess.run(mse))