-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredictor.py
55 lines (46 loc) · 1.5 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import PIL
from tensorflow.keras.models import load_model
from image_helper import grayscale_resized_image
from board_detector import detect_chessboard, get_chess_tiles
# load pre-trained model
model = load_model('models/softmax_v1')
model.summary()
label = ' KQRBNPkqrbnp'
# reads tiles object and returns FEN string
def predict(tiles):
fen = ''
c = 0
print(tiles.shape)
for i in range(8):
if i != 0 and i != 7:
fen += '/'
for j in range(8):
img_arr = tiles[:, :, i * 8 + j]
img = PIL.Image.fromarray(img_arr).resize([32, 32], PIL.Image.ADAPTIVE)
img_arr = grayscale_resized_image(img)[:, :] / 255.0
img_arr = img_arr.reshape(1, 32, 32)
cls = np.argmax(model.predict(img_arr), axis=-1)[0]
if cls == 0:
c += 1
else:
if c != 0:
fen += str(c)
c = 0
fen += label[cls]
if c != 0:
fen += str(c)
c = 0
return fen
def test_predictor():
image_from_file = PIL.Image.open("example_screens/lichess_screen.png")
img = grayscale_resized_image(image_from_file)
is_match, lines_x, lines_y = detect_chessboard(img)
if is_match:
tiles = get_chess_tiles(img, lines_x, lines_y)
print("found Chessboard!!")
print(predict(tiles))
else:
print("Chessboard not detected on screen!")
if __name__ == "__main__":
test_predictor()