-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathboard_detector.py
232 lines (189 loc) · 7.68 KB
/
board_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import PIL.Image
import tensorflow as tf
import scipy.signal
from image_helper import grayscale_resized_image
# convert kernel matrix to tensor-compatible filter
def make_tf_kernel(k):
k = np.asarray(k)
# reshape it to tensorflow 4-D filter
k = k.reshape(list(k.shape) + [1, 1])
return tf.constant(k, dtype=tf.float32)
# Simple 2D convolution
def simple_conv2d(x, k):
x = tf.expand_dims(tf.expand_dims(x, 0), -1)
y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
return y[0, :, :, 0]
def gradient_x(x):
k = make_tf_kernel([[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]])
return simple_conv2d(x, k)
def gradient_y(x):
k = make_tf_kernel([[-1, -1, -1],
[0, 0, 0],
[1, 1, 1]])
return simple_conv2d(x, k)
# checks whether there exists 7 lines of consistent increasing order in set of lines
def check_match(lineset):
linediff = np.diff(lineset)
x = 0
cnt = 0
for line in linediff:
# Within 5 px of the other (allowing for minor image errors)
if np.abs(line - x) < 5:
cnt += 1
else:
cnt = 0
x = line
return cnt == 5
# prunes a set of lines to 7 in consistent increasing order (chessboard)
def prune_lines(lineset):
linediff = np.diff(lineset)
x = 0
cnt = 0
start_pos = 0
for i, line in enumerate(linediff):
# Within 5 px of the other (allowing for minor image errors)
if np.abs(line - x) < 5:
cnt += 1
if cnt == 5:
end_pos = i + 2
return lineset[start_pos:end_pos]
else:
cnt = 0
x = line
start_pos = i
return lineset
# return skeletonized 1d array (thin to single value, favor to the right)
def skeletonize_1d(arr):
_arr = arr.copy() # create a copy of array to modify without destroying original
# Go forwards
for i in range(_arr.size - 1):
# Will right-shift if they are the same
if arr[i] <= _arr[i + 1]:
_arr[i] = 0
# Go reverse
for i in np.arange(_arr.size - 1, 0, -1):
if _arr[i - 1] > _arr[i]:
_arr[i] = 0
return _arr
# returns pixel indices for the 7 internal chess lines in x and y axes
def get_chess_lines(hdx, hdy, hdx_thresh, hdy_thresh):
# Blur
gausswin = scipy.signal.gaussian(21, 4)
gausswin /= np.sum(gausswin)
# Blur where there is a strong horizontal or vertical line (binarize)
blur_x = np.convolve(hdx > hdx_thresh, gausswin, mode='same')
blur_y = np.convolve(hdy > hdy_thresh, gausswin, mode='same')
skel_x = skeletonize_1d(blur_x)
skel_y = skeletonize_1d(blur_y)
# Find points on skeletonized arrays (where returns 1-length tuple)
lines_x = np.where(skel_x)[0] # vertical lines
lines_y = np.where(skel_y)[0] # horizontal lines
# Prune inconsistent lines
lines_x = prune_lines(lines_x)
lines_y = prune_lines(lines_y)
is_match = len(lines_x) == 7 and len(lines_y) == 7 and check_match(lines_x) and check_match(lines_y)
return lines_x, lines_y, is_match
# Gets a numpy grayscale image and returns lines_x and lines_y
def detect_chessboard(img):
grey = img
dX = gradient_x(grey)
dY = gradient_y(grey)
dX_pos = tf.clip_by_value(dX, 0., 255., name="dx_positive")
dX_neg = tf.clip_by_value(dX, -255., 0., name="dx_negative")
dY_pos = tf.clip_by_value(dY, 0., 255., name="dy_positive")
dY_neg = tf.clip_by_value(dY, -255., 0., name="dy_negative")
dX_hough = tf.reduce_sum(dX_pos, 0) * tf.reduce_sum(-dX_neg, 0) / (grey.shape[0] * grey.shape[0])
dY_hough = tf.reduce_sum(dY_pos, 1) * tf.reduce_sum(-dY_neg, 1) / (grey.shape[1] * grey.shape[1])
# Arbitrarily choose half of max value as threshold, since they're such strong responses
dX_hough_thresh = tf.reduce_max(dX_hough) * 0.5
dY_hough_thresh = tf.reduce_max(dY_hough) * 0.5
lines_x, lines_y, is_match = get_chess_lines(tf.keras.backend.flatten(dX_hough),
tf.keras.backend.flatten(dY_hough),
dX_hough_thresh * .9,
dY_hough_thresh * .9)
if is_match:
print("Chessboard found")
else:
print("Couldn't find Chessboard")
return is_match, lines_x, lines_y
# Split up input grayscale array into 64 tiles stacked in a 3D matrix using the chess linesets
def get_chess_tiles(img, lines_x, lines_y):
# Find average square size, round to a whole pixel for determining edge pieces sizes
stepx = np.int32(np.round(np.mean(np.diff(lines_x))))
stepy = np.int32(np.round(np.mean(np.diff(lines_y))))
# Pad edges as needed to fill out chessboard (for images that are partially over-cropped)
# print stepx, stepy
# print "x",lines_x[0] - stepx, "->", lines_x[-1] + stepx, a.shape[1]
# print "y", lines_y[0] - stepy, "->", lines_y[-1] + stepy, a.shape[0]
padr_x = 0
padl_x = 0
padr_y = 0
padl_y = 0
if lines_x[0] - stepx < 0:
padl_x = np.abs(lines_x[0] - stepx)
if lines_x[-1] + stepx > img.shape[1] - 1:
padr_x = np.abs(lines_x[-1] + stepx - img.shape[1])
if lines_y[0] - stepy < 0:
padl_y = np.abs(lines_y[0] - stepy)
if lines_y[-1] + stepx > img.shape[0] - 1:
padr_y = np.abs(lines_y[-1] + stepy - img.shape[0])
# New padded array
# print "Padded image to", ((padl_y,padr_y),(padl_x,padr_x))
a2 = np.pad(img, ((padl_y, padr_y), (padl_x, padr_x)), mode='edge')
setsx = np.hstack([lines_x[0] - stepx, lines_x, lines_x[-1] + stepx]) + padl_x
setsy = np.hstack([lines_y[0] - stepy, lines_y, lines_y[-1] + stepy]) + padl_y
a2 = a2[setsy[0]:setsy[-1], setsx[0]:setsx[-1]]
setsx -= setsx[0]
setsy -= setsy[0]
# display_array(a2, rng=[0,255])
# print "X:",setsx
# print "Y:",setsy
# Matrix to hold images of individual squares (in grayscale)
# print "Square size: [%g, %g]" % (stepy, stepx)
squares = np.zeros([np.round(stepy), np.round(stepx), 64], dtype=np.uint8)
# For each row
for i in range(0, 8):
# For each column
for j in range(0, 8):
# Vertical lines
x1 = setsx[i]
x2 = setsx[i + 1]
padr_x = 0
padl_x = 0
padr_y = 0
padl_y = 0
if (x2 - x1) > stepx:
if i == 7:
x1 = x2 - stepx
else:
x2 = x1 + stepx
elif (x2 - x1) < stepx:
if i == 7:
# right side, pad right
padr_x = stepx - (x2 - x1)
else:
# left side, pad left
padl_x = stepx - (x2 - x1)
# Horizontal lines
y1 = setsy[j]
y2 = setsy[j + 1]
if (y2 - y1) > stepy:
if j == 7:
y1 = y2 - stepy
else:
y2 = y1 + stepy
elif (y2 - y1) < stepy:
if j == 7:
# right side, pad right
padr_y = stepy - (y2 - y1)
else:
# left side, pad left
padl_y = stepy - (y2 - y1)
# slicing a, rows sliced with horizontal lines, cols by vertical lines so reversed
# Also, change order so its A1,B1...H8 for a white-aligned board
# Apply padding as defined previously to fit minor pixel offsets
squares[:, :, (7 - j) * 8 + i] = np.pad(a2[y1:y2, x1:x2], ((padl_y, padr_y), (padl_x, padr_x)), mode='edge')
return squares