-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcc_comparison.tex
90 lines (79 loc) · 2.38 KB
/
mcc_comparison.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
\begin{table}[h!]
\caption{Comparison of HCBR with several methods (Scikit-Learn implementation) w.r.t. MCC. }
\fontsize{10pt}{12pt}\selectfont
\begin{tabular}{|c|l|l|c|}
\hline
Dataset & Method & MCC & \# \\ \hline
\multirow{}{}{\texttt{adult}} & \bfHCBR & 0.5146 & 3 \\
& AdaBoost & 0.5455 & 1 \\
& k-NN & 0.4785 & 7 \\
& Linear SVM & 0.4918 & 5\\
& RBF SVM & 0.5065 & 4\\
& Decision Tree & 0.4821 & 6\\
& Rand. Forest & 0.3776 & 8 \\
& Neural Net & 0.5349 & 2 \\
& Naive Bayes & 0.2493 & 9\\
& QDA & 0.4785 & 7 \\ \hline
\multirow{}{}{\texttt{breast}} & \bfHCBR & 0.9222 & 3 \\
& AdaBoost & 0.9023 & 6\\
& k-NN & 0.9163 & 4\\
& Linear SVM & 0.9126 & 5\\
& RBF SVM & 0.8829 & 8\\
& Decision Tree & 0.8760 & 9\\
& Rand. Forest & 0.9296 & 1\\
& Neural Net & 0.9280 & 2\\
& Naive Bayes & 0.8991 & 7\\
& QDA & 0.8616 & 10\\ \hline
\multirow{}{}{\texttt{heart}} & \bfHCBR & 0.7082 & 1 \\
& AdaBoost & 0.5972 & 6\\
& k-NN & 0.5879 & 7\\
& Linear SVM & 0.6849 & 4\\
& RBF SVM & 0.6287 & 5 \\
& Decision Tree & 0.5763 & 8\\
& Rand. Forest &0.5703 & 9\\
& Neural Net & 0.6995 & 2\\
& Naive Bayes & 0.6932 & 3\\
& QDA & 0.4500 & 10 \\ \hline
\multirow{}{}{\texttt{mushrooms}} & \bfHCBR & 0.9995 & 2 \\
& AdaBoost & 1.0000 & 1\\
& k-NN & 0.9993 & 3\\
& Linear SVM & 1.0000 & 1\\
& RBF SVM & 0.9990 & 5\\
& Decision Tree & 0.9991& 4\\
& Rand. Forest & 0.8840 & 7\\
& Neural Net &1.0000 & 1\\
& Naive Bayes & 0.9767 & 6\\
& QDA & 1.0000 & 1\\ \hline
\multirow{}{}{\texttt{phishing}} & \bfHCBR & 0.9191 & 1\\
& AdaBoost & 0.8637 & 6\\
& k-NN & 0.9138 & 4\\
& Linear SVM & 0.8740 & 5\\
& RBF SVM & 0.9286 & 2\\
& Decision Tree & 0.8585 & 7\\
& Rand. Forest & 0.7582 & 8\\
& Neural Net & 0.9448 & 1\\
& Naive Bayes & 0.5292 & 10\\
& QDA & 0.5872 & 9\\ \hline
\multirow{}{}{\texttt{skin}} & \bfHCBR & 0.9551 & 4 \\
& AdaBoost & 0.8552 & 8\\
& k-NN & 0.9982 & 1 \\
& Linear SVM & 0.8090 & 9\\
& RBF SVM & 0.9950 & 3 \\
& Decision Tree & 0.9544 & 5\\
& Rand. Forest & 0.9539 & 6\\
& Neural Net & 0.9967 & 2\\
& Naive Bayes & 0.7600 & 10\\
& QDA & 0.9483 & 7\\ \hline
\multirow{}{}{\texttt{splice}} & \bfHCBR & 0.8857 & 2 \\
& AdaBoost & 0.8801 & 3\\
& k-NN & 0.6072 & 9\\
& Linear SVM & 0.7282 & 8\\
& RBF SVM & 0.8461 & 4 \\
& Decision Tree & 0.8998 & 1\\
& Rand. Forest & 0.5925 & 10\\
& Neural Net & 0.8390 & 5\\
& Naive Bayes & 0.7595 & 7\\
& QDA & 0.8251 & 6\\ \hline
\end{tabular}
\label{table:scikit_all_mcc}
\end{table}