diff --git a/datafusion/physical-expr/src/expressions/case.rs b/datafusion/physical-expr/src/expressions/case.rs index ee19a8c9ddb1..16b97c203c30 100644 --- a/datafusion/physical-expr/src/expressions/case.rs +++ b/datafusion/physical-expr/src/expressions/case.rs @@ -27,7 +27,9 @@ use arrow::compute::kernels::zip::zip; use arrow::compute::{and, and_not, is_null, not, nullif, or, prep_null_mask_filter}; use arrow::datatypes::{DataType, Schema}; use datafusion_common::cast::as_boolean_array; -use datafusion_common::{exec_err, internal_err, DataFusionError, Result, ScalarValue}; +use datafusion_common::{ + exec_err, internal_datafusion_err, internal_err, DataFusionError, Result, ScalarValue, +}; use datafusion_expr::ColumnarValue; use super::{Column, Literal}; @@ -249,10 +251,9 @@ impl CaseExpr { remainder = and_not(&remainder, &when_match)?; } - if let Some(e) = &self.else_expr { + if let Some(e) = self.else_expr() { // keep `else_expr`'s data type and return type consistent - let expr = try_cast(Arc::clone(e), &batch.schema(), return_type.clone()) - .unwrap_or_else(|_| Arc::clone(e)); + let expr = try_cast(Arc::clone(e), &batch.schema(), return_type.clone())?; // null and unmatched tuples should be assigned else value remainder = or(&base_nulls, &remainder)?; let else_ = expr @@ -282,11 +283,8 @@ impl CaseExpr { .0 .evaluate_selection(batch, &remainder)?; let when_value = when_value.into_array(batch.num_rows())?; - let when_value = as_boolean_array(&when_value).map_err(|e| { - DataFusionError::Context( - "WHEN expression did not return a BooleanArray".to_string(), - Box::new(e), - ) + let when_value = as_boolean_array(&when_value).map_err(|_| { + internal_datafusion_err!("WHEN expression did not return a BooleanArray") })?; // Treat 'NULL' as false value let when_value = match when_value.null_count() { @@ -322,10 +320,9 @@ impl CaseExpr { remainder = and_not(&remainder, &when_value)?; } - if let Some(e) = &self.else_expr { + if let Some(e) = self.else_expr() { // keep `else_expr`'s data type and return type consistent - let expr = try_cast(Arc::clone(e), &batch.schema(), return_type.clone()) - .unwrap_or_else(|_| Arc::clone(e)); + let expr = try_cast(Arc::clone(e), &batch.schema(), return_type.clone())?; let else_ = expr .evaluate_selection(batch, &remainder)? .into_array(batch.num_rows())?; @@ -376,11 +373,8 @@ impl CaseExpr { // evaluate when expression let when_value = self.when_then_expr[0].0.evaluate(batch)?; let when_value = when_value.into_array(batch.num_rows())?; - let when_value = as_boolean_array(&when_value).map_err(|e| { - DataFusionError::Context( - "WHEN expression did not return a BooleanArray".to_string(), - Box::new(e), - ) + let when_value = as_boolean_array(&when_value).map_err(|_| { + internal_datafusion_err!("WHEN expression did not return a BooleanArray") })?; // Treat 'NULL' as false value @@ -393,12 +387,12 @@ impl CaseExpr { let then_value = self.when_then_expr[0].1.evaluate(batch)?; let then_value = Scalar::new(then_value.into_array(1)?); + let Some(e) = self.else_expr() else { + return internal_err!("expression did not evaluate to an array"); + }; // keep `else_expr`'s data type and return type consistent - let e = self.else_expr.as_ref().unwrap(); - let expr = try_cast(Arc::clone(e), &batch.schema(), return_type) - .unwrap_or_else(|_| Arc::clone(e)); + let expr = try_cast(Arc::clone(e), &batch.schema(), return_type)?; let else_ = Scalar::new(expr.evaluate(batch)?.into_array(1)?); - Ok(ColumnarValue::Array(zip(&when_value, &then_value, &else_)?)) }