-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdenoise.py
114 lines (85 loc) · 3.47 KB
/
denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
This class has two main functions
- De-noising the file (pywt does it)
- Creating a Noise Profile (parses the signal and creates a profile very memory heavy)
"""
import numpy as np
import pywt
import soundfile
from tqdm import tqdm
from lib.noiseProfiler import NoiseProfiler
def mad(arr):
""" Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation
"""
arr = np.ma.array(arr).compressed()
med = np.median(arr)
return np.median(np.abs(arr - med))
class AudioDeNoise:
"""
Class to de-noise the audio signal. The audio file is read in chunks and processed,
cleaned and appended to the output file..
It can de-noise multiple channels, any sized file, formats supported by soundfile
Wavelets used ::
Daubechies 4 : db4
Level : decided by pyWavelets
Attributes
----------
__inputFile : str
name of the input audio file
Examples
--------
To de noise an audio file
>>> audioDenoiser = AudioDeNoise("input.wav")
>>> audioDenoiser.deNoise("input_denoised.wav")
To generate the noise profile
>>> audioDenoiser = AudioDeNoise("input.wav")
>>> audioDenoiser.generateNoiseProfile("input_noise_profile.wav")
"""
def __init__(self, inputFile):
self.__inputFile = inputFile
self.__noiseProfile = None
def deNoise(self, outputFile):
"""
De-noising function that reads the audio signal in chunks and processes
and writes to the output file efficiently.
VISU Shrink is used to generate the noise threshold
Parameters
----------
outputFile : str
de-noised file name
"""
info = soundfile.info(self.__inputFile) # getting info of the audio
rate = info.samplerate
with soundfile.SoundFile(outputFile, "w", samplerate=rate, channels=info.channels) as of:
for block in tqdm(soundfile.blocks(self.__inputFile, int(rate * info.duration * 0.10))):
coefficients = pywt.wavedec(block, 'db4', mode='per', level=2)
# getting variance of the input signal
sigma = mad(coefficients[- 1])
# VISU Shrink thresholding by applying the universal threshold proposed by Donoho and Johnstone
thresh = sigma * np.sqrt(2 * np.log(len(block)))
# thresholding using the noise threshold generated
coefficients[1:] = (pywt.threshold(i, value=thresh, mode='soft') for i in coefficients[1:])
# getting the clean signal as in original form and writing to the file
clean = pywt.waverec(coefficients, 'db4', mode='per')
of.write(clean)
def generateNoiseProfile(self, noiseFile):
"""
Parses the input signal and generate the noise profile using wavelet helper
Look into lib modules to see how the parsing is done
NOTE: Heavy on the memory, suitable for small files.
Parameters
----------
noiseFile : str
name for the noise signal extracted
"""
data, rate = soundfile.read(noiseFile)
self.__noiseProfile = NoiseProfiler(data)
noiseSignal = self.__noiseProfile.getNoiseDataPredicted()
soundfile.write(noiseFile, noiseSignal, rate)
def __del__(self):
"""
clean up
"""
del self.__noiseProfile