-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathseminar03.v
75 lines (50 loc) · 1.77 KB
/
seminar03.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Axiom replace_with_your_solution_here : forall {A : Type}, A.
(** * Exercise: show that [ex] is a more general case of [and].
This is because terms of type [ex] are dependent pairs, while terms of type [and]
are non-dependent pairs, i.e. the type of the second component in independent of the
value of the first one. *)
Definition and_via_ex (A B : Prop) :
(exists (_ : A), B) <-> A /\ B
:= replace_with_your_solution_here.
(** * Exercise *)
Definition pair_inj A B (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) -> (a1 = a2) /\ (b1 = b2)
:= replace_with_your_solution_here.
(** * Exercise (optional) *)
Definition J :
forall (A : Type) (P : forall (x y : A), x = y -> Prop),
(forall x : A, P x x erefl) ->
forall x y (p : x = y), P x y p
:= replace_with_your_solution_here.
(** * Exercise *)
Definition false_eq_true_implies_False :
forall n, n.+1 = 0 -> False
:= replace_with_your_solution_here.
(** * Exercise *)
Definition addnS :
forall m n, m + n.+1 = (m + n).+1
:= replace_with_your_solution_here.
(** * Exercise *)
Definition addA : associative addn
:= replace_with_your_solution_here.
(** * Exercise: *)
Definition addnCA : left_commutative addn
:= replace_with_your_solution_here.
(** * Exercise (optional): *)
Definition addnC : commutative addn
:= replace_with_your_solution_here.
(** * Exercise (optional):
Formalize and prove
- bool ≡ unit + unit,
- A + B ≡ {b : bool & if b then A else B},
- A * B ≡ forall b : bool, if b then A else B,
where ≡ means "is isomorphic to".
*)
(** * Exercise (optional): *)
Definition unit_neq_bool:
unit <> bool
:= replace_with_your_solution_here.