-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlecture08_demo.v
76 lines (55 loc) · 1.93 KB
/
lecture08_demo.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
(* Demo accompanying slides *)
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat seq bigop.
Import Monoid.
Print Monoid.Law.
Print Canonical Projections operator.
About mulmA.
Lemma foo m n p q r :
m + (n + p * (q * r)) = m + n + p * q * r.
Proof.
by rewrite !mulmA /=.
Qed.
(*
Here is some information which should
help you understand how exactly `rewrite mulmA` works
when it rewrites in the goal for the first time.
mulmA : forall [T : Type] [idm : T] (mul : law idm), associative mul
Or, unfolding `associative`:
mulmA : forall [T : Type] [idm : T] (mul : law idm) (x y z : T),
mul x (mul y z) = mul (mul x y) z
Let's define a short-hand:
O := @operator
The goal (we focus on its left-hand side, LHS):
m + (n + p * (q * r)) = ...
Unfold notations in the goal:
addn m (addn n (muln p (muln q r))) = ...
LHS of `mulmA` lemma:
mul ?x (mul ?y ?z )
LHS of `mulmA` lemma with inserted coercions:
(O ?T ?idm ?mul) ?x ((O ?T ?idm ?mul) ?y ?z )
Let's unify the goal with the LHS of `mulmA` equation:
addn m (addn n (muln p (muln q r))) = ...
(O ?T ?idm ?mul) ?x ((O ?T ?idm ?mul) ?y ?z )
The head symbol get us
addn ≡ @operator ?T ?idm ?mul
We have the canonical instance!
addn <- operator ( addn_monoid )
Hence,
addn ≡ @operator ?T ?idm addn_monoid
And `?T` and `?idm` can be deduced from the type of `addn_monoid`:
addn ≡ @operator ?T ?idm addn_monoid
..
@law ?T ?idm ≡ @law nat 0
So, these unify:
addn ≡ operator nat 0 addn_monoid
End of inference.
This is why after the first rewrite we get the following goal:
Lemma foo m n p q r :
m + (n + p * (q * r)) = m + n + p * q * r.
Proof.
rewrite mulmA.
Set Printing Coercions.
Set Printing Implicit.
@operator nat 0 addn_monoid (@operator nat 0 addn_monoid m n) (p * (q * r)) =
m + n + p * q * r
*)