-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
252 lines (210 loc) · 9.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from nltk.corpus import stopwords
import re
import numpy as np
import math
import os
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import defaultdict
import nltk
import codecs
import gensim
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
import regex
def remove_stop_words_from_sentence_list(texts):
english_stopwords = stopwords.words("english")
pattern = r'\b(' + r'|'.join(english_stopwords) + r')\b\s*'
return [re.sub(pattern,'', text, flags=re.IGNORECASE) for text in texts]
'''Pattern explained:
\( citation markers start with parentheses
then the author group starts
[A-Z] author names start with a capital letter
[a-z]+ followed by at least one lowercase letter
then there is a whitespace except if there are no other authors
if there are other authors we habe (and) or (et al.)
there can be more than one author
before the year, there is a comma and a whitespace
(18|19|20)\d\d then a reasonable date
optionally a second citation follows, if yes, we need a semicolon and a soace (; )?
# )+ for multiple citations
#\) closing parantheses
'''
def remove_citation_marker(s):
#pattern = r'\(((([A-Z][a-z]+)( )*(and)*( )*)+(et al.)*, (18|19|20)\d\d(; )?)+\)'
pattern = regex.compile(r'\(?((([A-Z][a-z]+)( )*(and)*( )*)+(et al.)*,? \(?(18|19|20)\d\d\)?(;*,* )?)+\)?')
s = regex.sub(pattern, '', s)
return s
def remove_stop_words_from_single_sentence(text):
english_stopwords = stopwords.words("english")
pattern = r'\b(' + r'|'.join(english_stopwords) + r')\b\s*'
return re.sub(pattern,'', text, flags=re.IGNORECASE)
def compute_standard_error(prediction):
prediction = list(map(int, prediction))
return float(np.std(prediction)) / math.sqrt(len(prediction))
def get_write_mode(path):
if os.path.exists(path):
return 'a' # append if already exists
else:
return 'w' # make a new file if not
def shuffle_data(x, y):
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
return x[shuffle_indices], y[shuffle_indices]
class LemmaTokenizer(object):
def __init__(self):
self.wnl = WordNetLemmatizer()
def __call__(self, doc):
return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
# returns a dictionary of embeddings
def load_embeddings(path, word2vec=False, rdf2vec=False):
embbedding_dict = {}
if word2vec == False and rdf2vec == False:
with codecs.open(path, "rb", "utf8", "ignore") as infile:
for line in infile:
parts = line.split()
word = parts[0]
nums = [float(p) for p in parts[1:]]
embbedding_dict[word] = nums
return embbedding_dict
elif word2vec == True:
#Load Google's pre-trained Word2Vec model.
if os.name != 'nt':
model = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True)
else:
model = gensim.models.Word2Vec.load_word2vec_format(path, binary=True)
return model
elif rdf2vec == True:
#Load Petars model.
model = gensim.models.Word2Vec.load(path)
return model
class MeanEmbeddingVectorizer(object):
def __init__(self, embds):
self.embds = embds
#self.dim = next(iter(embds))
def fit(self, X, y=None):
return self
def transform(self, X):
#return np.array([np.mean([self.embds[w] for w in words if w in self.embds]
# or [np.zeros(self.dim)], axis=0) for words in X])
sentence_vectors = [np.mean([self.embds[word] for word in nltk.word_tokenize(sentence) if word in self.embds], axis=0) for sentence in X]
for i, sentence_vector in enumerate(sentence_vectors):
if type(sentence_vector) is not np.ndarray:
print("type not np.ndarray")
sentence_vectors[i] = np.array([0.0 for j in range(0, len(sentence_vectors[0]))], dtype=float)
return sentence_vectors
class MeanEmbeddingVectorizerSingleSentence(object):
def __init__(self, embds):
self.embds = embds
#self.dim = next(iter(embds))
def fit(self, X, y=None):
return self
def transform(self, X):
#return np.array([np.mean([self.embds[w] for w in words if w in self.embds]
# or [np.zeros(self.dim)], axis=0) for words in X])
sentence_vector = np.mean([self.embds[word] for word in nltk.word_tokenize(X) if word in self.embds], axis=0)
return sentence_vector
class MeanDBpediaEmbeddingVectorizerSingleSentence(object):
def __init__(self, embds):
self.embds = embds
#self.dim = next(iter(embds))
def fit(self, X, y=None):
return self
def transform(self, X):
#return np.array([np.mean([self.embds[w] for w in words if w in self.embds]
# or [np.zeros(self.dim)], axis=0) for words in X])
dbr_tokens = ["dbr:" + str(word) for word in nltk.word_tokenize(X)]
sentence_vector = np.mean([self.embds[word] for word in dbr_tokens if word in self.embds], axis=0)
if not isinstance(sentence_vector, np.float64):
sentence_vector = np.array([number if not math.isnan(number) else 0 for number in sentence_vector])
else:
np.array(sentence_vector)
return sentence_vector
class TfidfEmbeddingVectorizer(object):
def __init__(self, embds, tfidf_vectorizer):
self.embds = embds
self.tfidf_vectorizer = tfidf_vectorizer
max_idf = max(self.tfidf_vectorizer.idf_)
self.word2weight = defaultdict(
lambda: max_idf,
[(w, self.tfidf_vectorizer.idf_[i]) for w, i in self.tfidf_vectorizer.vocabulary_.items()])
def transform(self, X):
sentence_vectors = []
for x in X:
tokens = nltk.word_tokenize(x)
sentence_vector = np.mean([[value * self.word2weight[word] * tokens.count(word) for value in self.embds[word]] for word in tokens if word in self.embds], axis=0)
sentence_vectors.append(sentence_vector)
return sentence_vectors
class TfidfEmbeddingVectorizerSingleSentence(object):
def __init__(self, embds, tfidf_vectorizer):
self.embds = embds
self.word2weight = None
self.tfidf_vectorizer = tfidf_vectorizer
max_idf = max(self.tfidf_vectorizer.idf_)
self.word2weight = defaultdict(
lambda: max_idf,
[(w, self.tfidf_vectorizer.idf_[i]) for w, i in self.tfidf_vectorizer.vocabulary_.items()])
def transform(self, X):
tokens = nltk.word_tokenize(X)
sentence_vector = np.mean([[value * self.word2weight[word] * tokens.count(word) for value in self.embds[word]] for word in tokens if word in self.embds], axis=0)
return sentence_vector
'''
performs removal of citation markers, removal of punctuation, lemmatization and stopword removal for a given string s
'''
def preprocess_string_tfidf(s):
#s = remove_citation_marker(s)
#s = re.sub(r'[^\w\s]', ' ', s).strip()
try:
tokenized_string = [token for token in word_tokenize(s.lower())]
except Exception as e:
print(e)
print(word_tokenize(s.lower))
return ' '.join(tokenized_string)
'''
performs removal of citation markers, removal of punctuation, lemmatization and stopword removal for a given string s
'''
def preprocess_string(s):
#s = remove_citation_marker(s)
s = re.sub(r'[^\w\s]', ' ', s).strip()
wordnet_lemmatizer = WordNetLemmatizer()
#stemmer = PortStemmer()
english_stopwords = stopwords.words("english")
tokenized_string = [wordnet_lemmatizer.lemmatize(token) for token in word_tokenize(s.lower()) if token not in english_stopwords]
return ' '.join(tokenized_string)
'''
performs removal of citation markers, removal of punctuation, lemmatization and stopword removal for a given list of strings
'''
def preprocess_string_list(s_list):
return [preprocess_string(s) for s in s_list]
def preprocess_string_list_tfidf(s_list):
return [preprocess_string_tfidf(s) for s in s_list]
def batch_iter(data, batch_size, num_epochs, shuffle=False):
"""
Generates a batch iterator for a dataset.
"""
data_size = len(data)
num_batches_per_epoch = int((len(data)-1)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
def align_vocab_and_embd(embd_dict, vocab):
embd_list = []
empty_list = []
for i,token in enumerate(vocab):
if token in embd_dict:
float_embd = np.array([float(x) for x in embd_dict[token]])
embd_list.append(float_embd)
else:
empty_embd = np.random.uniform(-1.0, 1.0, len(embd_dict["word"]))
embd_list.append(empty_embd)
empty_list.append(i)
return np.array(embd_list), np.array(empty_list)