-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathpreprocess.py
68 lines (52 loc) · 1.86 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import matplotlib.pyplot as plt
from util import count_parameters as count
from util import convert2cpu as cpu
from PIL import Image, ImageDraw
def letterbox_image(img, inp_dim):
'''resize image with unchanged aspect ratio using padding'''
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w/img_w, h/img_h))
new_h = int(img_h * min(w/img_w, h/img_h))
resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC)
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)
canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image
return canvas
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable
"""
orig_im = cv2.imread(img)
dim = orig_im.shape[1], orig_im.shape[0]
img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
img_ = img[:,:,::-1].transpose((2,0,1)).copy()
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def prep_image_pil(img, network_dim):
orig_im = Image.open(img)
img = orig_im.convert('RGB')
dim = img.size
img = img.resize(network_dim)
img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
img = img.view(*network_dim, 3).transpose(0,1).transpose(0,2).contiguous()
img = img.view(1, 3,*network_dim)
img = img.float().div(255.0)
return (img, orig_im, dim)
def inp_to_image(inp):
inp = inp.cpu().squeeze()
inp = inp*255
try:
inp = inp.data.numpy()
except RuntimeError:
inp = inp.numpy()
inp = inp.transpose(1,2,0)
inp = inp[:,:,::-1]
return inp