forked from DEV-SPD/code-catalyst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheart disease.py
66 lines (49 loc) · 2.13 KB
/
heart disease.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import GridSearchCV
# Load the dataset
data = pd.read_csv("D:\\diagnosis_model\\heart.csv")
# Split the data into features (X) and target labels (y)
X = data.drop("target", axis=1)
y = data["target"]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# Define hyperparameters for tuning
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
# Use GridSearchCV to find best hyperparameters
grid_search = GridSearchCV(clf, param_grid, cv=5)
grid_search.fit(X_train, y_train)
# Get the best model from GridSearchCV
best_clf = grid_search.best_estimator_
# Perform cross-validation to evaluate the model
cv_scores = cross_val_score(best_clf, X_train, y_train, cv=5)
print("Cross-Validation Scores:", cv_scores)
print("Mean CV Score:", cv_scores.mean())
# Train the best model on the entire training data
best_clf.fit(X_train, y_train)
# Predict the target labels on the test data
y_pred = best_clf.predict(X_test)
# Calculate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print("Test Accuracy:", accuracy)
# Generate a classification report for detailed metrics
classification_rep = classification_report(y_test, y_pred)
print("Classification Report:\n", classification_rep)
# Create a DataFrame to hold the predictions
predictions_df = pd.DataFrame({"Actual": y_test, "Predicted": y_pred})
# Save the predictions to a CSV file
predictions_df.to_csv("D:\\diagnosis_model\\predictions.csv", index=False)
import pickle
# Save the model using pickle
model_filename = "heart_disease_model.pkl"
with open(model_filename, 'wb') as model_file:
pickle.dump(best_clf, model_file)