-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathstylize.py
311 lines (258 loc) · 11.4 KB
/
stylize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (c) Anish Athalye. Released under GPLv3.
import os
import time
from collections import OrderedDict
from PIL import Image
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import vgg
CONTENT_LAYERS = ("relu4_2", "relu5_2")
STYLE_LAYERS = ("relu1_1", "relu2_1", "relu3_1", "relu4_1", "relu5_1")
try:
reduce
except NameError:
from functools import reduce
def get_loss_vals(loss_store):
return OrderedDict((key, val.eval()) for key, val in loss_store.items())
def print_progress(loss_vals):
for key, val in loss_vals.items():
print("{:>13s} {:g}".format(key + " loss:", val))
def stylize(
network,
initial,
initial_noiseblend,
content,
styles,
preserve_colors,
iterations,
content_weight,
content_weight_blend,
style_weight,
style_layer_weight_exp,
style_blend_weights,
tv_weight,
learning_rate,
beta1,
beta2,
epsilon,
pooling,
print_iterations=None,
checkpoint_iterations=None,
):
"""
Stylize images.
This function yields tuples (iteration, image, loss_vals) at every
iteration. However `image` and `loss_vals` are None by default. Each
`checkpoint_iterations`, `image` is not None. Each `print_iterations`,
`loss_vals` is not None.
`loss_vals` is a dict with loss values for the current iteration, e.g.
``{'content': 1.23, 'style': 4.56, 'tv': 7.89, 'total': 13.68}``.
:rtype: iterator[tuple[int,image]]
"""
shape = (1,) + content.shape
style_shapes = [(1,) + style.shape for style in styles]
content_features = {}
style_features = [{} for _ in styles]
vgg_weights, vgg_mean_pixel = vgg.load_net(network)
layer_weight = 1.0
style_layers_weights = {}
for style_layer in STYLE_LAYERS:
style_layers_weights[style_layer] = layer_weight
layer_weight *= style_layer_weight_exp
# normalize style layer weights
layer_weights_sum = 0
for style_layer in STYLE_LAYERS:
layer_weights_sum += style_layers_weights[style_layer]
for style_layer in STYLE_LAYERS:
style_layers_weights[style_layer] /= layer_weights_sum
# compute content features in feedforward mode
g = tf.Graph()
with g.as_default(), g.device("/cpu:0"), tf.Session() as sess:
image = tf.placeholder("float", shape=shape)
net = vgg.net_preloaded(vgg_weights, image, pooling)
content_pre = np.array([vgg.preprocess(content, vgg_mean_pixel)])
for layer in CONTENT_LAYERS:
content_features[layer] = net[layer].eval(feed_dict={image: content_pre})
# compute style features in feedforward mode
for i in range(len(styles)):
g = tf.Graph()
with g.as_default(), g.device("/cpu:0"), tf.Session() as sess:
image = tf.placeholder("float", shape=style_shapes[i])
net = vgg.net_preloaded(vgg_weights, image, pooling)
style_pre = np.array([vgg.preprocess(styles[i], vgg_mean_pixel)])
for layer in STYLE_LAYERS:
features = net[layer].eval(feed_dict={image: style_pre})
features = np.reshape(features, (-1, features.shape[3]))
gram = np.matmul(features.T, features) / features.size
style_features[i][layer] = gram
initial_content_noise_coeff = 1.0 - initial_noiseblend
# make stylized image using backpropogation
with tf.Graph().as_default():
if initial is None:
noise = np.random.normal(size=shape, scale=np.std(content) * 0.1)
initial = tf.random_normal(shape) * 0.256
else:
initial = np.array([vgg.preprocess(initial, vgg_mean_pixel)])
initial = initial.astype("float32")
noise = np.random.normal(size=shape, scale=np.std(content) * 0.1)
initial = (initial) * initial_content_noise_coeff + (
tf.random_normal(shape) * 0.256
) * (1.0 - initial_content_noise_coeff)
image = tf.Variable(initial)
net = vgg.net_preloaded(vgg_weights, image, pooling)
# content loss
content_layers_weights = {}
content_layers_weights["relu4_2"] = content_weight_blend
content_layers_weights["relu5_2"] = 1.0 - content_weight_blend
content_loss = 0
content_losses = []
for content_layer in CONTENT_LAYERS:
content_losses.append(
content_layers_weights[content_layer]
* content_weight
* (
2
* tf.nn.l2_loss(net[content_layer] - content_features[content_layer])
/ content_features[content_layer].size
)
)
content_loss += reduce(tf.add, content_losses)
# style loss
style_loss = 0
for i in range(len(styles)):
style_losses = []
for style_layer in STYLE_LAYERS:
layer = net[style_layer]
_, height, width, number = map(lambda i: i.value, layer.get_shape())
size = height * width * number
feats = tf.reshape(layer, (-1, number))
gram = tf.matmul(tf.transpose(feats), feats) / size
style_gram = style_features[i][style_layer]
style_losses.append(
style_layers_weights[style_layer]
* 2
* tf.nn.l2_loss(gram - style_gram)
/ style_gram.size
)
style_loss += style_weight * style_blend_weights[i] * reduce(tf.add, style_losses)
# total variation denoising
tv_y_size = _tensor_size(image[:, 1:, :, :])
tv_x_size = _tensor_size(image[:, :, 1:, :])
tv_loss = (
tv_weight
* 2
* (
(tf.nn.l2_loss(image[:, 1:, :, :] - image[:, : shape[1] - 1, :, :]) / tv_y_size)
+ (tf.nn.l2_loss(image[:, :, 1:, :] - image[:, :, : shape[2] - 1, :]) / tv_x_size)
)
)
# total loss
loss = content_loss + style_loss + tv_loss
# We use OrderedDict to make sure we have the same order of loss types
# (content, tv, style, total) as defined by the initial costruction of
# the loss_store dict. This is important for print_progress() and
# saving loss_arrs (column order) in the main script.
#
# Subtle Gotcha (tested with Python 3.5): The syntax
# OrderedDict(key1=val1, key2=val2, ...) does /not/ create the same
# order since, apparently, it first creates a normal dict with random
# order (< Python 3.7) and then wraps that in an OrderedDict. We have
# to pass in a data structure which is already ordered. I'd call this a
# bug, since both constructor syntax variants result in different
# objects. In 3.6, the order is preserved in dict() in CPython, in 3.7
# they finally made it part of the language spec. Thank you!
loss_store = OrderedDict(
[("content", content_loss), ("style", style_loss), ("tv", tv_loss), ("total", loss)]
)
# optimizer setup
train_step = tf.train.AdamOptimizer(learning_rate, beta1, beta2, epsilon).minimize(loss)
# optimization
best_loss = float("inf")
best = None
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print("Optimization started...")
if print_iterations and print_iterations != 0:
print_progress(get_loss_vals(loss_store))
iteration_times = []
start = time.time()
for i in range(iterations):
iteration_start = time.time()
if i > 0:
elapsed = time.time() - start
# take average of last couple steps to get time per iteration
remaining = np.mean(iteration_times[-10:]) * (iterations - i)
print(
"Iteration %4d/%4d (%s elapsed, %s remaining)"
% (i + 1, iterations, hms(elapsed), hms(remaining))
)
else:
print("Iteration %4d/%4d" % (i + 1, iterations))
train_step.run()
last_step = i == iterations - 1
if last_step or (print_iterations and i % print_iterations == 0):
loss_vals = get_loss_vals(loss_store)
print_progress(loss_vals)
else:
loss_vals = None
if (checkpoint_iterations and i % checkpoint_iterations == 0) or last_step:
this_loss = loss.eval()
if this_loss < best_loss:
best_loss = this_loss
best = image.eval()
img_out = vgg.unprocess(best.reshape(shape[1:]), vgg_mean_pixel)
if preserve_colors:
original_image = np.clip(content, 0, 255)
styled_image = np.clip(img_out, 0, 255)
# Luminosity transfer steps:
# 1. Convert stylized RGB->grayscale accoriding to Rec.601 luma (0.299, 0.587, 0.114)
# 2. Convert stylized grayscale into YUV (YCbCr)
# 3. Convert original image into YUV (YCbCr)
# 4. Recombine (stylizedYUV.Y, originalYUV.U, originalYUV.V)
# 5. Convert recombined image from YUV back to RGB
# 1
styled_grayscale = rgb2gray(styled_image)
styled_grayscale_rgb = gray2rgb(styled_grayscale)
# 2
styled_grayscale_yuv = np.array(
Image.fromarray(styled_grayscale_rgb.astype(np.uint8)).convert("YCbCr")
)
# 3
original_yuv = np.array(
Image.fromarray(original_image.astype(np.uint8)).convert("YCbCr")
)
# 4
w, h, _ = original_image.shape
combined_yuv = np.empty((w, h, 3), dtype=np.uint8)
combined_yuv[..., 0] = styled_grayscale_yuv[..., 0]
combined_yuv[..., 1] = original_yuv[..., 1]
combined_yuv[..., 2] = original_yuv[..., 2]
# 5
img_out = np.array(Image.fromarray(combined_yuv, "YCbCr").convert("RGB"))
else:
img_out = None
yield i + 1 if last_step else i, img_out, loss_vals
iteration_end = time.time()
iteration_times.append(iteration_end - iteration_start)
def _tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()), 1)
def rgb2gray(rgb):
return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
def gray2rgb(gray):
w, h = gray.shape
rgb = np.empty((w, h, 3), dtype=np.float32)
rgb[:, :, 2] = rgb[:, :, 1] = rgb[:, :, 0] = gray
return rgb
def hms(seconds):
seconds = int(seconds)
hours = seconds // (60 * 60)
minutes = (seconds // 60) % 60
seconds = seconds % 60
if hours > 0:
return "%d hr %d min" % (hours, minutes)
elif minutes > 0:
return "%d min %d sec" % (minutes, seconds)
else:
return "%d sec" % seconds