-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathversion_control_app.R
398 lines (347 loc) · 17 KB
/
version_control_app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Beer data from the LDB in BC and US economic data
library(shiny)
library(ggplot2)
library(dplyr)
library(data.table)
library(shinythemes)
library(DT)
library(usmap)
############################
# beer data stored locally # ## make SQL database for these data??
############################
state <- read.csv("beer_by_state.csv", stringsAsFactors = FALSE)
state_growth <- read.csv("state_growth.csv")
ldb_clean <- read.csv("bcl-data-beer-clean-subset.csv", stringsAsFactors = FALSE)
heatmap_subset <- read.csv("ldb_heatmap_subset.csv", stringsAsFactors = FALSE)
ldb_clean_all <- read.csv("bcl-data-beer-clean.csv", stringsAsFactors = FALSE)
brew_growth <- read.csv("breweries_yr.csv")
brewers_actual <- read.csv("brewers_actual.csv")
brewers_percent <- read.csv("brewers_percent.csv")
###########
# UI code #
###########
ui <- fluidPage(theme = shinytheme("flatly"),
titlePanel(tags$em(tags$mark(style="background-color: #64FFDA", "BeerApp!!")), windowTitle = "Beer Picker"),
br(),
h4("The beer industry has exploded in recent years."),
br(),
h4("With so many new beers on the market, it can be hard to decide",
strong("what to drink"),
"and who is making",
strong("the best value beers.")),
br(),
h4("This app will help!"),
br(), br(),
sidebarLayout(
sidebarPanel(strong("What kind of beer are you looking for?"),
br(), br(),
sliderInput("priceInput", "Price", min = 0, max = 56,
value = c(3, 20), pre = "$"),
sliderInput("ratingInput", "Rating", min = 0, max = 5,
value = c(0, 5)),
checkboxGroupInput("regionInput", label = "Choose Region(s)", choices = c("ASIA", "CANADA", "EUROPE", "OTHER AMERICAS", "USA"), selected = c("CANADA", "USA")), #"AFRICA", "OCEANIA",
uiOutput("styleSelectOutput")),
mainPanel(
h3(textOutput("beerSummary")), # br(),
h3(textOutput("statSummary")), br(),
tabsetPanel(
tabPanel("Ratings for selected beers", plotOutput("beerRating")),
tabPanel("Results table", dataTableOutput("results"))
))),
br(), br(),
fluidRow(column(width = 12,
h3("Get the most bang for your buck!"),
"Let's take a look at the largest markets: Canada, Europe, and the USA", br(),
"This heat map uses your ", strong("Price,"), strong("Region,"), " and ", strong("Style "), "selections to show areas of the market with the best value:",
br(),
tags$mark(style="background-color: #9932CC; color: white", "Violet = Good Value"), " ",
tags$mark(style="background-color: #FFFF00", "Yellow = Poor Value"),
plotOutput("heatmap"))),
br(), br(),
h3("Beer prices per liter in Canada by producing region"),
h4("It turns out American beer is more expensive than European beer, even though they are neighbors...and trade partners (for now)!"),
fluidRow(column(width = 12,
tabsetPanel(
tabPanel("All Regions", plotOutput("allRegion")),
tabPanel("Major Markets", plotOutput("majorMarkets")),
tabPanel("Major Markets - Price Distribution", plotOutput("marketHist")),
tabPanel("Quality vs $$", plotOutput("marketLM"))
))),
h3("What do these highly rated beers have in common?"),
h4("We'll take a closer look at Lagers and IPAs"),
fluidRow(column(width = 6,
tabsetPanel(
tabPanel("Major Styles", plotOutput("majorStyles")),
tabPanel("Lagers & IPAs", plotOutput("selectStyles"))
)
),
column(width = 6,
tabsetPanel(
tabPanel("ABV vs Price", plotOutput("abvPrice")),
tabPanel("Rating vs Price", plotOutput("ratingPrice"))
)
)),
br(),
h3("The United States' craft brewing market is rapidly growing"),
br(),
sidebarLayout(
sidebarPanel(
checkboxGroupInput("brewInput", label = "Choose Market Share:", choices = c("Brewpubs", "Microbreweries", "Regional_Breweries"), selected = "Microbreweries")),
mainPanel(
h4("Craft Beer Market Changes"),
plotOutput("numActual"),
br(),
h4("Percent Change in Growth of the Craft Beer Market"),
plotOutput("numPercent")
)),
br(),
br(),
fluidRow(column(width = 8, offset = 4,
h4("Direct & Indirect Economic Impact of Craft Brewers in 2017 (USD)"),
plotOutput("beerUS")))
)
###############
# Server code #
###############
server <- function(input, output) {
filter_results <- reactive({
if (is.null(input$regionInput)) {
return(NULL)
}
ldb_clean %>%
filter(Price >= input$priceInput[1],
Price <= input$priceInput[2],
Rating >= input$ratingInput[1],
Rating <= input$ratingInput[2],
Style %in% input$styleInput,
Region %in% input$regionInput
)
})
heatmap_results <- reactive({
if (is.null(input$regionInput)) {
return(NULL)
}
heatmap_subset %>%
filter(Price >= input$priceInput[1],
Price <= input$priceInput[2],
Style %in% input$styleInput,
Region %in% input$regionInput
)
})
# output$regionOutput <- renderUI({
# selectInput("regionInput", "Region of Origin",
# sort(unique(ldb_clean_subset$Region)),
# selected = "CANADA")
# })
output$styleSelectOutput <- renderUI({
selectInput("styleInput", "Beer Style",
sort(unique(ldb_clean$Style)),
multiple = TRUE,
selected = c("IPA", "PORTER", "LAGER"))
})
output$beerRating <- renderPlot({
if (is.null(filter_results())){
return()
}
ggplot(filter_results(), aes(Rating, fill = Region)) +
geom_histogram(color = "gray") + scale_fill_manual(values = c("AFRIA" = "#FF4081", "ASIA" = "#5E35B1", "CANADA" = "#2962FF", "EUROPE" = "#1DE9B6", "OCEANIA" = "#AEEA00", "OTHER AMERICAS" = "#F57C00", "USA" = "#E040FB"))
})
output$results <- renderDataTable({
filter_results()
})
output$heatmap <- renderPlot({
if (is.null(heatmap_results())){
return()
}
ggplot(heatmap_results(), aes(x = Region, y = Style)) +
geom_tile(aes(fill = Value_metric_norm), color = "white") +
scale_fill_gradient2(low = "yellow", mid = "orange", high = "blue", midpoint = 0.5) +
#scale_fill_gradient2(low = "white", mid = "orange", high = "blue", midpoint = 0.5) +
labs(fill = "Value") +
theme(legend.title = element_text(face = "bold", size = 14)) +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
theme(panel.background = element_rect(fill = "white"),
axis.text.x = element_text(size = 14, face = "bold"),
axis.text.y = element_text(size = 14, face = "bold"),
axis.title = element_blank())
})
output$allRegion <- renderPlot({
ggplot(ldb_clean_all, aes(x = Region, y = Price_L, fill = Region, color = Region, alpha = 0.2)) +
geom_boxplot(show.legend = FALSE) +
scale_y_log10() +
ylab("Price per Liter (CAD)") +
scale_fill_manual(values = c("#FF4081", "#5E35B1", "#2979FF", "#B9F6CA", "#AEEA00", "#F57C00", "#EA80FC")) +
scale_color_manual(values = c("#FF4081", "#5E35B1", "#2962FF", "#1DE9B6", "#AEEA00", "#F57C00", "#E040FB")) +
geom_jitter(position = position_jitter(width = 0.2, height = 0), alpha = 1/2, show.legend = FALSE) +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("Beer prices in Canada by producing region")
})
output$majorMarkets <- renderPlot({
majorMarket_subset <- ldb_clean_all %>%
filter(Region == "CANADA" | Region == "USA" | Region == "EUROPE")
ggplot(majorMarket_subset, aes(x = Region, y = Price_L, fill = Region, color = Region, alpha = 0.2)) +
scale_y_log10() +
ylab("Price per Liter (CAD)") +
geom_boxplot(outlier.colour = "dark gray", show.legend = FALSE) +
scale_fill_manual(values = c("#2979FF", "#B9F6CA", "#EA80FC")) +
scale_color_manual(values = c("#2962FF", "#1DE9B6", "#E040FB")) +
geom_jitter(position = position_jitter(width = 0.3, height = 0), alpha = 1/2, show.legend = FALSE) +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("A closer look at beer prices from major markets in Canada")
})
output$marketHist <- renderPlot({
majorMarket_subset <- ldb_clean_all %>%
filter(Region == "CANADA" | Region == "USA" | Region == "EUROPE") %>%
filter(Price_L < 16)
ggplot(majorMarket_subset, aes(x = Price_L)) +
geom_histogram(data = subset(majorMarket_subset, Region == "CANADA"), fill = "#2962FF", alpha = 1/3, binwidth = 0.5) +
geom_histogram(data = subset(majorMarket_subset, Region == "EUROPE"), fill = "#1DE9B6", alpha = 1/3, binwidth = 0.5) +
geom_histogram(data = subset(majorMarket_subset, Region == "USA"), fill = "#E040FB", alpha = 1/2, binwidth = 0.5) +
xlab("Beer price per liter ($/L)") +
ylab("Number of beers") +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("Number of beers sold at each price point in each market: Blue = Canada, Green = Europe, Pink = USA")
})
output$marketLM <- renderPlot({
majorMarket_subset <- ldb_clean_all %>%
filter(Region == "CANADA" | Region == "USA" | Region == "EUROPE") %>%
filter(Price_L < 16)
ggplot(majorMarket_subset, aes(x = Price_L, y = Rating, color = Region, show.legend = FALSE)) +
scale_x_continuous(limits = c(2,15)) +
scale_y_continuous(limits = c(1.5,5)) +
geom_smooth(show.legend = FALSE) +
geom_point(alpha = 1/2, show.legend = FALSE) +
scale_color_manual(values = c("#2962FF", "#1DE9B6", "#E040FB")) +
facet_wrap(~Region) +
xlab("Beer price per liter (CAD/L)") +
ylab("Rating out of 5") +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("Rating increases with price up to $6/Liter in Canada and the US -- you get what you pay for, unless you pay more than $6")
})
output$majorStyles <- renderPlot({
ldb_IBU <- ldb_clean_all %>%
filter(!is.na(IBU)) %>%
filter(Style == "LAGER" | Style == "IPA" | Style == "DARK ALE" | Style == "PALE ALE" | Style == "WHEAT")
ldb_IBU$IBU <- as.numeric(ldb_IBU$IBU)
ggplot(ldb_IBU, aes(x = IBU, y = Rating, color = Style)) +
geom_point() +
scale_x_log10() +
scale_color_manual(values = c("#FF4081", "#6200EA", "#00C853", "#F57C00", "#E040FB")) +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
geom_smooth(method = lm, se = FALSE)
})
output$selectStyles <- renderPlot({
ldb_IBU <- ldb_clean_all %>%
filter(!is.na(IBU)) %>%
filter(Style == "LAGER" | Style == "IPA" | Style == "DARK ALE" | Style == "PALE ALE" | Style == "WHEAT")
ldb_IBU$IBU <- as.numeric(ldb_IBU$IBU)
lager_IPA_IBU <- ldb_IBU %>%
filter(Style == "LAGER" | Style == "IPA")
ggplot(lager_IPA_IBU, aes(x = IBU, y = Rating, color = Style)) +
geom_point() +
scale_x_log10() +
scale_color_manual(values = c("#6200EA", "#00C853")) +
geom_smooth(method = lm, se = FALSE) +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
xlab("International Bittering Unit (IBU)")
})
output$abvPrice <- renderPlot({
majorMarket_subset <- ldb_clean_all %>%
filter(Region == "CANADA" | Region == "USA" | Region == "EUROPE")
ggplot(majorMarket_subset, aes(x = Price_L, y = ABV)) +
geom_point(aes(size = Rating), pch = 21) +
scale_fill_gradient2(low = "yellow", high = "blue", mid = "orange", midpoint = 3) +
scale_size_continuous(range = c(0.1,8)) +
scale_x_continuous(limits = c(0, 15)) +
facet_grid(~Region) +
aes(alpha = 1/3, fill = Rating) +
guides(size = FALSE) +
guides(alpha = FALSE) +
xlab("Beer price per liter (CAD/L)") +
ylab("Alcohol content (%)") +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("High alcohol beers have higher prices")
})
output$ratingPrice <- renderPlot({
majorMarket_subset <- ldb_clean_all %>%
filter(Region == "CANADA" | Region == "USA" | Region == "EUROPE")
ggplot(majorMarket_subset, aes(x = Price_L, y = Rating)) +
scale_x_continuous(limits = c(0, 15)) +
geom_point(aes(size = ABV), pch = 21) +
scale_size_continuous(range = c(0.1,10)) +
facet_grid(~Region) + aes(alpha = 1/3, fill = ABV) +
guides(size = FALSE) +
guides(alpha = FALSE) +
scale_fill_gradient2(low = "yellow", high = "blue", mid = "orange", midpoint = 4.5) +
xlab("Beer price per liter (CAD/L)") +
ylab("Rating out of 5") +
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
ggtitle("Highly rated beers have higher prices")
})
output$beerSummary <- renderText({
numBeers <- nrow(filter_results())
if (is.null(numBeers)) {
numBeers <- 0
}
paste0(numBeers, " beers meet your criteria!")
})
output$statSummary <- renderText({
statSummary <- round(mean(filter_results()$Rating), 2)
if (is.na(statSummary)) {
statSummary <- 0
}
paste0("The average rating for your selection is ", statSummary, " out of 5")
})
output$beerUS <- renderPlot({
plot_usmap(data = state_growth, values = "Economic_impact", lines = "#FFA726") +
scale_fill_continuous(low = "#FFF3E0", high = "#EF6C00", name = "Economic Impact (USD)", label = scales::comma) +
theme(legend.position = "right", legend.text = element_text(size = 12), legend.title = element_text(size = 14))
})
filter_brewers_percent <- reactive({
if (is.null(input$brewInput)) {
return(NULL)
}
brewers_percent %>%
filter(variable %in% input$brewInput
)
})
filter_brewers_actual <- reactive({
if (is.null(input$brewInput)) {
return(NULL)
}
brewers_actual %>%
filter(variable %in% input$brewInput
)
})
output$numActual <- renderPlot({
if (is.null(filter_brewers_actual())){
return()
}
ggplot(filter_brewers_actual(), aes(x = Year, y = value, color = variable, fill = variable)) +
geom_line() +
geom_area(position = "identity", alpha = 1/2) +
scale_colour_manual(values=c("Brewpubs" = "#2962FF", "Microbreweries" = "#D500F9", "Regional_Breweries" = "#1DE9B6")) +
scale_fill_manual(values=c("Brewpubs" = "#2962FF", "Microbreweries" = "#D500F9", "Regional_Breweries" = "#1DE9B6")) +
ylab("Number of craft brewers") +
theme(legend.position="top") +
theme(legend.text = element_text(size = 14), axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
theme(legend.title=element_blank())
})
output$numPercent <- renderPlot({
if (is.null(filter_brewers_percent())){
return()
}
ggplot(filter_brewers_percent(), aes(x = Year, y = value, color = variable, fill = variable)) +
geom_line() +
geom_area(position = "identity", alpha = 1/2) +
scale_colour_manual(values=c("Brewpubs" = "#2962FF", "Microbreweries" = "#D500F9", "Regional_Breweries" = "#1DE9B6")) +
scale_fill_manual(values=c("Brewpubs" = "#2962FF", "Microbreweries" = "#D500F9", "Regional_Breweries" = "#1DE9B6")) +
ylab("% growth in number of craft brewers") +
theme(legend.position="top") +
theme(legend.text = element_text(size = 14), axis.text = element_text(size = 14), axis.title = element_text(size = 16)) +
theme(legend.title=element_blank())
})
}
# Run the app
shinyApp(ui = ui, server = server)
# color = c("#FF4081", "#5E35B1", "#2962FF", "#1DE9B6", "#AEEA00", "#F57C00", "#E040FB")