-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path61_map_soil_properties.R
651 lines (555 loc) · 30.7 KB
/
61_map_soil_properties.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#------------------------------------------------------------------------------
# Name: 61_map_soil_properties.R
#
# Content: - Load stack of predicted target soil property rasters and visualize
# results as plots using "rasterVis" pkg:
# - 5th, 50th (median) and 95th quantile of QRF
# - 90% prediction interval (PI90)
# - GSM accuracy thresholds
#
# Inputs: - out/maps/target/[TARGET]/GeoTIFFs/
#
# Output: - out/maps/target/[TARGET]/pdf/
#
# Project: BIS+
# Author: Anatol Helfenstein
# Updated: June 2020
#------------------------------------------------------------------------------
### empty memory and workspace; load required packages -------------------------
gc()
rm(list=ls())
pkgs <- c("raster", "rasterVis", "viridisLite", "grid", "gridExtra", "foreach",
"RColorBrewer", "tidyverse")
lapply(pkgs, library, character.only = TRUE)
### Designate script parameters and load data ----------------------------------
# Specify DSM target soil property:
TARGET = "pH_KCl"
# GlobalSoilMap (GSM) depth layers
# (see out/data/covariates/target_GSM_depths):
D_MID = c("d_0_5_mid", "d_5_15_mid", "d_15_30_mid",
"d_30_60_mid", "d_60_100_mid", "d_100_200_mid")
# locate, read in and stack rasters of response soil properties
# prediction mean and quantiles
v_response_names_pred <- dir(paste0("out/maps/target/", TARGET, "/GeoTIFFs"),
pattern = "pred[059_mean]{,5}.tif$", recursive = FALSE)
ls_r_response_pred <- foreach(r = 1:length(v_response_names_pred)) %do%
raster(paste0("out/maps/target/", TARGET, "/GeoTIFFs/", v_response_names_pred[[r]]))
r_stack_response_pred <- stack(ls_r_response_pred)
# PI90
v_response_names_PI90 <- dir(paste0("out/maps/target/", TARGET, "/GeoTIFFs"),
pattern = "\\PI90.tif$", recursive = FALSE)
ls_r_response_PI90 <- foreach(r = 1:length(v_response_names_PI90)) %do%
raster(paste0("out/maps/target/", TARGET, "/GeoTIFFs/", v_response_names_PI90[[r]]))
r_stack_response_PI90 <- stack(ls_r_response_PI90)
# thresholds
v_response_names_thresh <- dir(paste0("out/maps/target/", TARGET, "/GeoTIFFs"),
pattern = "\\holds.tif$", recursive = FALSE)
ls_r_response_thresh <- foreach(r = 1:length(v_response_names_thresh)) %do%
raster(paste0("out/maps/target/", TARGET, "/GeoTIFFs/", v_response_names_thresh[[r]]))
r_stack_response_thresh <- stack(ls_r_response_thresh)
# extract min and max values so we can use same color legend for all maps
response_min = round(min(minValue(r_stack_response_pred)))
response_max = round(max(maxValue(r_stack_response_pred)))
# extract min and max values so we can use same color legend for all maps
PI90_min = round(min(minValue(r_stack_response_PI90)))
PI90_max = round(max(maxValue(r_stack_response_PI90)))
# define interval (smallest step cm to visualize on map and in color scheme)
interval = 0.1
# vector that will define global color scheme for prediction quantiles and PI90
v_col_pred <- seq(response_min, response_max, interval)
v_col_PI90 <- seq(PI90_min, PI90_max, interval)
### Maps of mean & median (50th quantile) predictions over all depth layers ----
# mean predictions over all GSM depth layers
m_pred_mean <- levelplot(stack(r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred_mean,
r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred_mean,
r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred_mean,
r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred_mean,
r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred_mean,
r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred_mean),
margin = FALSE,
# main = expression(paste("Soil pH [KCl] (mean)")),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression("0 cm to 5 cm"),
expression("5 cm to 15 cm"),
expression("15 cm to 30 cm"),
expression("30 cm to 60 cm"),
expression("60 cm to 100 cm"),
expression("100 cm to 200 cm"))
# colorkey = list(title = expression("pH [KCl] 100-200cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_pred_mean_all_depths.pdf"),
# height = 10, width = 10)
# m_pred_mean
# dev.off()
# median predictions (50th quantile) over all GSM depth layers
m_pred50 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred50),
margin = FALSE,
# main = expression(paste("Soil pH [KCl] (median)")),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression("0 cm to 5 cm"),
expression("5 cm to 15 cm"),
expression("15 cm to 30 cm"),
expression("30 cm to 60 cm"),
expression("60 cm to 100 cm"),
expression("100 cm to 200 cm"))
# colorkey = list(title = expression("pH [KCl] 100-200cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_pred50_all_depths.pdf"),
# height = 10, width = 10)
# m_pred50
# dev.off()
# out of curiosity, map of mean - median values (subtract the two maps)
# 0-5cm
r_mean_minus_median_0_5 <- r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred50
names(r_mean_minus_median_0_5) <- "r_mean_minus_median_0_5"
# 5-15cm
r_mean_minus_median_5_15 <- r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred50
names(r_mean_minus_median_5_15) <- "r_mean_minus_median_5_15"
# 15-30cm
r_mean_minus_median_15_30 <- r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred50
names(r_mean_minus_median_15_30) <- "r_mean_minus_median_15_30"
# 30-60cm
r_mean_minus_median_30_60 <- r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred50
names(r_mean_minus_median_30_60) <- "r_mean_minus_median_30_60"
# 60-100cm
r_mean_minus_median_60_100 <- r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred50
names(r_mean_minus_median_60_100) <- "r_mean_minus_median_60_100"
# 100-200cm
r_mean_minus_median_100_200 <- r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred_mean -
r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred50
names(r_mean_minus_median_100_200) <- "r_mean_minus_median_100_200"
# mean - median over all depth layers
r_stack_mean_minus_median <- stack(r_mean_minus_median_0_5,
r_mean_minus_median_5_15,
r_mean_minus_median_15_30,
r_mean_minus_median_30_60,
r_mean_minus_median_60_100,
r_mean_minus_median_100_200)
# subtracted maps (mean - median) over all GSM depth layers
m_mean_minus_median <- levelplot(
r_stack_mean_minus_median,
margin = FALSE,
main = expression(paste("Subtracted Maps of Mean - Median for Soil pH [KCl]")),
scales = list(draw = FALSE),
col.regions = colorRampPalette(colors = c("#a50026", "#ffffbf", "#313695")),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression("0 cm to 5 cm"),
expression("5 cm to 15 cm"),
expression("15 cm to 30 cm"),
expression("30 cm to 60 cm"),
expression("60 cm to 100 cm"),
expression("100 cm to 200 cm"))
# colorkey = list(title = expression("pH [KCl] 100-200cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET,
# "_mean_minus_median_all_depths.pdf"),
# height = 10, width = 10)
# m_mean_minus_median
# dev.off()
# save prediction maps as GeoTIFFs to disk
system.time(
foreach(n = 1:nlayers(r_stack_mean_minus_median)) %do%
writeRaster(r_stack_mean_minus_median[[n]],
paste0("out/maps/target/", TARGET, "/GeoTIFFs/", TARGET, "_",
D_MID[n], "_QRF_mean_minus_median.tif"),
overwrite = TRUE)
) # time elapse sequential: 2.5 min
### Maps of 5th, 50th & 95th prediction quantiles at each GSM depth layer ------
# 0-5 cm
m_pred_0_5 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_0_5_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 0 cm to 5 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_0_5_pred.pdf"),
# height = 6, width = 12)
# m_pred_0_5
# dev.off()
# 5-15 cm
m_pred_5_15 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_5_15_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 5 cm to 15 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_5_15_pred.pdf"),
# height = 6, width = 12)
# m_pred_5_15
# dev.off()
# 15-30 cm
m_pred_15_30 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_15_30_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 15 cm to 30 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_15_30_pred.pdf"),
# height = 6, width = 12)
# m_pred_15_30
# dev.off()
# 30-60 cm
m_pred_30_60 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_30_60_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 30 cm to 60 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_30_60_pred.pdf"),
# height = 6, width = 12)
# m_pred_30_60
# dev.off()
# 60-100 cm
m_pred_60_100 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_60_100_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 60 cm to 100 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_60_100_pred.pdf"),
# height = 6, width = 12)
# m_pred_60_100
# dev.off()
# 100-200 cm
m_pred_100_200 <- levelplot(stack(r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred5,
r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred50,
r_stack_response_pred$pH_KCl_d_100_200_mid_QRF_pred95),
margin = FALSE,
# main = expression("Soil pH [KCl]: 100 cm to 200 cm depth"),
scales = list(draw = FALSE),
at = v_col_pred,
col.regions = viridis(n = length(v_col_pred),
option = "magma"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression(paste("q"[0.05], " (0.05 quantile)")),
expression(paste("q"[0.50], " (median)")),
expression(paste("q"[0.95], " (0.95 quantile)")))
#colorkey = list(title = expression("pH [KCl] 0-5cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_100_200_pred.pdf"),
# height = 6, width = 12)
# m_pred_100_200
# dev.off()
### Maps of PI90 over all GSM depth layers -----------------------------------
# PI90 over all depths
m_PI90 <- levelplot(stack(r_stack_response_PI90$pH_KCl_d_0_5_mid_QRF_PI90,
r_stack_response_PI90$pH_KCl_d_5_15_mid_QRF_PI90,
r_stack_response_PI90$pH_KCl_d_15_30_mid_QRF_PI90,
r_stack_response_PI90$pH_KCl_d_30_60_mid_QRF_PI90,
r_stack_response_PI90$pH_KCl_d_60_100_mid_QRF_PI90,
r_stack_response_PI90$pH_KCl_d_100_200_mid_QRF_PI90),
margin = FALSE,
# main = expression("PI90 of pH [KCl]"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression("0 cm to 5 cm"),
expression("5 cm to 15 cm"),
expression("15 cm to 30 cm"),
expression("30 cm to 60 cm"),
expression("60 cm to 100 cm"),
expression("100 cm to 200 cm"))
#colorkey = list(title = expression("pH [KCl] 100-200cm"),
# row = 1, column = 1, vjust = 2))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_PI90_all_depths.pdf"),
# height = 10, width = 10)
# m_PI90
# dev.off()
### Maps of GSM accuracy thresholds over all GSM depth layers ------------------
# Accuracy thresholds over all depths
m_thresholds <- levelplot(stack(r_stack_response_thresh$pH_KCl_d_0_5_mid_QRF_PI90_thresholds,
r_stack_response_thresh$pH_KCl_d_5_15_mid_QRF_PI90_thresholds,
r_stack_response_thresh$pH_KCl_d_15_30_mid_QRF_PI90_thresholds,
r_stack_response_thresh$pH_KCl_d_30_60_mid_QRF_PI90_thresholds,
r_stack_response_thresh$pH_KCl_d_60_100_mid_QRF_PI90_thresholds,
r_stack_response_thresh$pH_KCl_d_100_200_mid_QRF_PI90_thresholds),
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds of PI90"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white")),
names.attr = c(expression("0 cm to 5 cm"),
expression("5 cm to 15 cm"),
expression("15 cm to 30 cm"),
expression("30 cm to 60 cm"),
expression("60 cm to 100 cm"),
expression("100 cm to 200 cm"))
)
# save to disk
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_thresh_all_depths.pdf"),
# height = 10, width = 10)
# m_thresholds
# dev.off()
### Maps of PI90 and GSM accuracy thresholds -----------------------------------
# 0-5 cm PI90
m_PI90_0_5 <- levelplot(r_stack_response_PI90$pH_KCl_d_0_5_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 0-5 cm thresholds
m_thresh_0_5 <- levelplot(r_stack_response_thresh$pH_KCl_d_0_5_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_0_5_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_0_5, m_thresh_0_5, ncol = 2)
# # top = textGrob("pH [KCl]: 0 cm to 5 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
# 5-15 cm PI90
m_PI90_5_15 <- levelplot(r_stack_response_PI90$pH_KCl_d_5_15_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 5-15 cm thresholds
m_thresh_5_15 <- levelplot(r_stack_response_thresh$pH_KCl_d_5_15_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_5_15_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_5_15, m_thresh_5_15, ncol = 2)
# # top = textGrob("pH [KCl]: 5 cm to 15 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
# 15-30 cm PI90
m_PI90_15_30 <- levelplot(r_stack_response_PI90$pH_KCl_d_15_30_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 15-30 cm thresholds
m_thresh_15_30 <- levelplot(r_stack_response_thresh$pH_KCl_d_15_30_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_15_30_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_15_30, m_thresh_15_30, ncol = 2)
# # top = textGrob("pH [KCl]: 15 cm to 30 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
# 30-60 cm PI90
m_PI90_30_60 <- levelplot(r_stack_response_PI90$pH_KCl_d_30_60_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 30-60 cm thresholds
m_thresh_30_60 <- levelplot(r_stack_response_thresh$pH_KCl_d_30_60_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_30_60_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_30_60, m_thresh_30_60, ncol = 2)
# # top = textGrob("pH [KCl]: 30 cm to 60 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
# 60-100 cm PI90
m_PI90_60_100 <- levelplot(r_stack_response_PI90$pH_KCl_d_60_100_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 60-100 cm thresholds
m_thresh_60_100 <- levelplot(r_stack_response_thresh$pH_KCl_d_60_100_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_60_100_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_60_100, m_thresh_60_100, ncol = 2)
# # top = textGrob("pH [KCl]: 60 cm to 100 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
# 100-200 cm PI90
m_PI90_100_200 <- levelplot(r_stack_response_PI90$pH_KCl_d_100_200_mid_QRF_PI90,
margin = FALSE,
# main = expression("PI90"),
scales = list(draw = FALSE),
at = v_col_PI90,
col.regions = viridis(n = length(v_col_PI90),
option = "viridis"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# 100-200 cm thresholds
m_thresh_100_200 <- levelplot(r_stack_response_thresh$pH_KCl_d_100_200_mid_QRF_PI90_thresholds,
att = "category",
margin = FALSE,
# main = expression("Accuracy thresholds"),
scales = list(draw = FALSE),
col.regions = c("#db4325", "#eda247", "#e6e1bc", "#006164"),
par.settings = list(axis.line = list(col = 0),
strip.background = list(col = "white"))
)
# save to disk; combine using gridExtra pkg
# pdf(paste0("out/maps/target/", TARGET, "/pdf/m_", TARGET, "_d_100_200_PI90_thresh.pdf"),
# height = 6, width = 12)
# grid.arrange(m_PI90_100_200, m_thresh_100_200, ncol = 2)
# # top = textGrob("pH [KCl]: 100 cm to 200 cm depth",
# # gp = gpar(fontsize = 16)))
# dev.off()
### Retrieve % of pixels for each accuracy thresholds per depth layer ----------
# list of percentages of each accuracy threshold for each depth layer
system.time(
ls_thresh_per <- map(ls_r_response_thresh,
~prop.table(table(as.vector(.x)))) %>%
map(., ~as_tibble(as.data.frame(.x)))
) # time elapse: min