-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path22_cov_cat_recl_gdal_par.R
365 lines (300 loc) · 13.4 KB
/
22_cov_cat_recl_gdal_par.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#------------------------------------------------------------------------------
# Name: 22_cov_cat_recl_gdal_par.R
# (cov = covariate, cat = categorical, recl = reclassify, gdal = GDAL,
# par = parallel)
#
# Content: - define categorical variables in covariate stack as such
# - reclassify: combine levels of each categorical covariate into new
# levels that are more broad
# - designate NA values and mask categorical covariates
# - write all covariates to disk (final stack for modelling)
#
# Inputs: - covariate stack including DEM derivatives (21_cov_dem_deriv_saga.R):
# out/data/covariates/02_r_stack_cov.grd
#
# Temporary storage: out/data/covariates/reclassify/ (GDAL in- and outputs)
# out/data/covariates/mask_categorical/
#
# Output: - rasters written to disk as .grd and .gri files (including attribute tables):
# out/data/covariates/final_stack/
#
# Runtime: - approx. 40-50 min (entire script)
#
# Project: BIS+
# Author: Anatol Helfenstein
# Updated: November 2020
#-------------------------------------------------------------------------------
### empty memory and workspace; load required packages -------------------------
gc()
rm(list=ls())
pkgs <- c("tidyverse", "raster", "rgdal", "foreach", "doParallel")
# terra package
lapply(pkgs, library, character.only = TRUE)
### Specify covariates to be reclassified; read in reclassification tables -----
# read from raster stack and including DEM derivatives
r_stack_cov <- stackOpen("out/data/covariates/01_r_stack_cov.grd")
r_stack_DEMderiv <- stackOpen("out/data/covariates/r_stack_DEMderiv.grd")
r_stack_cov <- stack(r_stack_cov, r_stack_DEMderiv)
# Remove phrase "resampled" and "masked" from raster stack covariate names
names(r_stack_cov) <- names(r_stack_cov) %>%
stringr::str_replace(., "_resampled", "") %>%
stringr::str_replace(., "_masked", "")
# read in covariate metadata
tbl_cov_meta <- read_csv("data/covariates/covariates_metadata.csv") %>%
# only interested in covariates we use in model
filter(name %in% names(r_stack_cov))
# make sure all covariates up to date have metadata info
names(r_stack_cov)[!names(r_stack_cov) %in% tbl_cov_meta$name] # should be 0
# make sure there are only continuous or categorical "values_type" (binary)
tbl_cov_meta$values_type %>%
unique()
# get names of all categorical covariates
v_cov_cat_names <- tbl_cov_meta %>%
filter(values_type %in% "categorical") %>%
dplyr::select(name) %>%
as.list() %>%
unlist(., use.names = FALSE)
# retrieve CLORPT factor that each categorical covariate belongs to
v_cov_cat_clorpt <- tbl_cov_meta %>%
filter(values_type %in% "categorical") %>%
dplyr::select(category) %>%
as.list() %>%
unlist(., use.names = FALSE)
# read in tables with reclassified values
ls_tbl_recl <- foreach(tbl = 1:length(v_cov_cat_names)) %do% {
readr::read_csv(paste0("data/covariates/", v_cov_cat_clorpt[tbl], "/",
v_cov_cat_names[tbl], "_reclassify.csv"))
}
# arrange tables by increasing reclassified values
ls_tbl_recl <- map(ls_tbl_recl, ~arrange(.x, value_rcl))
# remove categorical covariates with only 1 class
v_1class <- map(ls_tbl_recl, ~(nrow(.x) > 1)) %>%
unlist()
# remove categorical covariates with only 1 class
v_cov_cat_names <- v_cov_cat_names[v_1class]
v_cov_cat_clorpt <- v_cov_cat_clorpt[v_1class]
ls_tbl_recl <- ls_tbl_recl[v_1class]
# stack with categorical covariates to reclassify
r_stack_cov_cat <- r_stack_cov[[v_cov_cat_names]]
### Reclassify categorical covariates using GDAL -------------------------------
# Reclassify using GDAL and run it externally on system
if(.Platform$OS.type == "windows"){
gdal.dir <- shortPathName("C:/Program Files/GDAL")
gdal_translate <- paste0(gdal.dir, "/gdal_translate.exe")
gdalwarp <- paste0(gdal.dir, "/gdalwarp.exe")
gdal_calc.py <- paste0(gdal.dir, "/gdalcalc.py.exe")
} else {
gdal_translate = "gdal_translate"
gdalwarp = "gdalwarp"
gdal_calc.py = "gdal_calc.py"
}
system(paste(gdal_calc.py, "--help"))
system(paste(gdal_translate, "--help"))
# Also tried unofficial gdal approach of a reclassify function (better syntax):
# https://github.com/chiatt/gdal_reclassify
# was unable to get it to work
# set up parallel backend to use multiple cores
cores <- detectCores()
cl <- makeCluster(cores - 2) # to not overload memory
registerDoParallel(cl)
# save to disk for reclassifying in GDAL without using precious Rsession memory space
system.time(
foreach(cat = 1:length(v_cov_cat_names)) %dopar%
raster::writeRaster(r_stack_cov_cat[[cat]],
paste0("out/data/covariates/reclassify/",
names(r_stack_cov_cat[[cat]]), ".tif"),
overwrite = TRUE)
)
# time elapsed: 5.5 min
# reclassify categorical covariates using GDAL in 2 steps:
# A) Reclassify using gdal_calc.py based on values in reclassify .csv tables;
# in this step we set all NA values to 0 because fnc doesn't except multiple NA values
# B) Designate NA values (=0) as such using gdal_translate
# first check that there are no 0 values that contain information
v_0_values <- map(ls_tbl_recl, ~filter(.x, value_rcl %in% 0)) %>%
map(., ~(nrow(.x) > 0)) %>%
unlist()
v_cov_cat_names[v_0_values] # should be 0
# prepare strings for --calc argument in gdal_calc.py as function requires them
# 1) main part of string with all non-NA values except last row
ls_recl_gdal_main <- foreach(tbl = 1:length(v_cov_cat_names)) %do% {
ls_tbl_recl[[tbl]] %>%
filter(!value_rcl %in% NA) %>%
slice(1:nrow(.)-1) %>%
mutate(gdal_rcl = paste0(value_rcl, '*(A==', value, ')+')) %>%
.$gdal_rcl %>%
str_c(., collapse = "")
}
# 2) last (or only row) without "+" at end of string
ls_recl_gdal_tail <- foreach(tbl = 1:length(v_cov_cat_names)) %do% {
ls_tbl_recl[[tbl]] %>%
filter(!value_rcl %in% NA) %>%
tail(1) %>%
mutate(gdal_rcl = paste0(value_rcl, '*(A==', value, ')')) %>%
.$gdal_rcl %>%
str_c(., collapse = "")
}
# 3) NA values to reclassify to 0
ls_recl_gdal_na <- foreach(tbl = 1:length(v_cov_cat_names)) %do% {
ls_tbl_recl[[tbl]] %>%
filter(value_rcl %in% NA) %>%
mutate(gdal_rcl = paste0('+0*(A==', value, ')')) %>%
.$gdal_rcl %>%
str_c(., collapse = "")
}
# combine 1-3 into one long string for every categorical covariate
ls_recl_gdal <- foreach(tbl = 1:length(v_cov_cat_names)) %do% {
str_c(ls_recl_gdal_main[[tbl]],
ls_recl_gdal_tail[[tbl]],
ls_recl_gdal_na[[tbl]],
collapse = "")
}
# for still unknown reason get following error when calculating all rasters in parallel:
# Error in system(paste0("gdal_calc.py -A out/data/covariates/reclassify/", :
# task 1 failed - "this S4 class is not subsettable"
# seems to be known issue for processing rasters in foreach loop parallel (but unsolved)
# Therefore split calculations into n chunks
n = 4
v_cat <- 1:length(v_cov_cat_names)
ls_chunks <- split(v_cat, sort(v_cat %% n))
# parallel
system.time(
foreach(n = 1:length(ls_chunks)) %do% {
foreach(cat = ls_chunks[[n]]) %dopar%
system(paste0('gdal_calc.py -A out/data/covariates/reclassify/',
names(r_stack_cov_cat[[cat]]), '.tif',
' --outfile=out/data/covariates/reclassify/',
names(r_stack_cov_cat[[cat]]), '_reclassified.tif',
' --calc="', ls_recl_gdal[[cat]], '"',
' --overwrite'))
}
)
# time elapse parallel: 13 min
# time elapse sequential: ca. 1.5 hours
### Mask covariates using GDAL -------------------------------------------------
# force format/datatype specific for each covariate to save disk space using "ot" argument
# For R raster pkg datatypes see ?dataType
# For gdal datatypes see https://grass.osgeo.org/grass78/manuals/r.out.gdal.html
tbl_datatype_cov <- map(as.list(r_stack_cov_cat), ~dataType(.x)) %>%
unlist() %>%
as_tibble() %>%
add_column(cov = names(r_stack_cov_cat), .before = "value") %>%
rename(R_datatype = value) %>%
# datatypes may have changed due to reclassification (uses less space on disk)
add_column(R_datatype_rcl = map(ls_tbl_recl, ~filter(.x, !value_rcl %in% NA)) %>%
map(., ~ifelse(min(.x$value_rcl) >= 0 & max(.x$value_rcl) <= 255,
"INT1U", "other")) %>%
unlist()) %>%
mutate(R_datatype_rcl = case_when(R_datatype_rcl %in% "INT1U" ~ "INT1U",
R_datatype_rcl %in% "other" ~ R_datatype)) %>%
mutate(GDAL_datatype = case_when(R_datatype_rcl %in% "INT4S" ~ "Int32",
R_datatype_rcl %in% "INT1U" ~ "Byte",
R_datatype_rcl %in% "INT2U" ~ "UInt16",
R_datatype_rcl %in% "FLT4S" ~ "Float32"))
# mask rasters in parallel by designating water and outside NL = 0
# use same mask as for continuous covariates
system.time(
foreach(cat = 1:length(v_cov_cat_names)) %dopar%
system(paste0('gdal_calc.py -A out/data/covariates/reclassify/',
names(r_stack_cov_cat[[cat]]), '_reclassified.tif',
' -B out/data/covariates/mask_continuous/ahn2_nodata_mask.tif',
' --outfile=out/data/covariates/mask_categorical/',
names(r_stack_cov_cat[[cat]]), '_masked.tif',
' --calc="A*B" --type=',
tbl_datatype_cov$GDAL_datatype[cat], ' --overwrite'))
)
# time elapsed: ca 13.5 min
# Since we cannot list more than one nodatavalue (NA), we first classified all
# NA values as 0 (because this value is not occupied in any of the categorical covariates)
# in a second step designate 0 = NA using gdal_translate
system.time(
foreach(cat = 1:length(v_cov_cat_names)) %dopar% {
system(paste0('gdal_translate -ot ', tbl_datatype_cov$GDAL_datatype[cat],
' -a_nodata 0 out/data/covariates/mask_categorical/',
names(r_stack_cov_cat[[cat]]), '_masked.tif',
' out/data/covariates/reclassify/',
names(r_stack_cov_cat[[cat]]), '_reclassified_na.tif'))
}
)
# time elapse: 5.5 min
# stop parallel backend
stopCluster(cl)
# remove temporary / intermediary GeoTIFF files on disk
foreach(cat = 1:length(v_cov_cat_names)) %do%
unlink(paste0("out/data/covariates/reclassify/", v_cov_cat_names[[cat]],
"_reclassified.tif"))
### Add descriptions to reclassified covariates --------------------------------
# read in reclassified rasters
ls_cat_cov_recl <- foreach(cat = 1:length(v_cov_cat_names)) %do%
raster(paste0("out/data/covariates/reclassify/", v_cov_cat_names[[cat]],
"_reclassified_na.tif"))
# set up parallel backend to use multiple cores
cores <- detectCores()
cl <- makeCluster(20) # to not overload memory
registerDoParallel(cl)
# designate categorical covariates as such (parallel)
system.time(
ls_cat_cov_recl <- foreach(cat = 1:length(ls_cat_cov_recl)) %dopar% {
raster::ratify(ls_cat_cov_recl[[cat]], count = TRUE)
}
)
# time elapse: 9.5 min
# 255 values are NA: this is the raster default for datatype INT1U
v_255 <- map(ls_cat_cov_recl, ~levels(.x)[[1]]) %>%
map(., ~as_tibble(.x)) %>%
map(., ~filter(.x, ID %in% 255)) %>%
map(., ~(nrow(.x) > 0)) %>%
unlist()
v_cov_cat_names[v_255]
# define levels of categorical covariates in several steps (see ?raster::factorValues):
# 1) retrieve levels
ls_tbl_rat <- map(ls_cat_cov_recl, ~levels(.x)[[1]]) %>%
map(., ~as_tibble(.x)) %>%
map(., ~filter(.x, !ID %in% 255)) # remove NA values
# 2) add description of classes
ls_tbl_rat <- foreach(i = 1:length(ls_tbl_rat)) %do% {
add_column(ls_tbl_rat[[i]], description = ls_tbl_recl[[i]] %>%
filter(!description_rcl %in% NA) %>%
.$description_rcl %>%
unique())
}
# 3) designate categorical covariates with reclassified classes
foreach(i = 1:length(ls_cat_cov_recl)) %do% {
levels(ls_cat_cov_recl[[i]])[[1]] <- as.data.frame(ls_tbl_rat[[i]])
}
# warnings()
### Make raster stack and save to disk --------------------------------------
# make a stack
r_stack_cov_cat <- stack(ls_cat_cov_recl)
# remove "reclassified" in raster names
names(r_stack_cov_cat) <- names(r_stack_cov_cat) %>%
stringr::str_replace(., "_reclassified_na", "")
# Saving as GeoTIFF does not save entire attribute table
# rasters's native .grd format saves attribute table including descriptions
system.time(
foreach(cat = 1:length(ls_cat_cov_recl)) %dopar%
raster::writeRaster(r_stack_cov_cat[[cat]],
paste0("out/data/covariates/final_stack/",
names(r_stack_cov_cat[[cat]]), ".grd"),
datatype = tbl_datatype_cov$R_datatype_rcl[cat],
overwrite = TRUE)
)
# time elapsed: 8 min (28 cores); 6 min (38 cores)
# specify continuous covariates
v_cov_cont_names <- tbl_cov_meta %>%
filter(values_type %in% "continuous") %>%
.$name
# stack of continuous covariates
r_stack_cov_cont <- r_stack_cov[[v_cov_cont_names]]
# save continuous covariates as well
system.time(
foreach(cont = 1:length(v_cov_cont_names)) %dopar%
raster::writeRaster(r_stack_cov_cont[[cont]],
paste0("out/data/covariates/final_stack/",
names(r_stack_cov_cont[[cont]]), ".grd"),
datatype = raster::dataType(r_stack_cov_cont)[cont],
overwrite = TRUE)
)
# time elapsed: 3.5 min
# stop parallel backend
stopCluster(cl)