-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path11_soil_CCNL_prep.R
139 lines (124 loc) · 6.68 KB
/
11_soil_CCNL_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#------------------------------------------------------------------------------
# Name: 11_soil_CCNL_prep.R
#
# Content: - compile relevant soil property data and geographic locations of
# sampling locations of the CCNL dataset
# - export table of soil property data and 3D coordinates of the CCNL
# dataset
#
# Inputs: - CCNL soil point raw data: data/soil/ccnl/CCNL_dataset.csv
#
# Output: - CCNL soil point data re-structured and targeted towards soil
# property target variables: out/data/soil/tbl_CCNL.Rds
#
# Project: BIS+
# Author: Anatol Helfenstein
# Updated: November 2020
#------------------------------------------------------------------------------
### empty memory and workspace; load required packages ----------------------
gc()
rm(list=ls())
library(tidyverse)
### Read in CCNL data -------------------------------------------------------
# read in CCNL soil point data
tbl_CCNL <- read_csv("data/soil/ccnl/CCNL_dataset.csv")
# Most soil properties in CCNL dataset were predicted using Near Infrared Spectroscopy (NIRS)
# For each site/location: 1 topsoil (0-30 cm) and 1 subsoil (30-100) sample was taken
# see data/soil/ccnl/CCNL_dataset_Summary.xlsx Exel file for overview of CCNL dataset
# rename columns
tbl_CCNL <- tbl_CCNL %>%
rename(sample_id = X, # what is difference between X and ID_EA?
# = ID_EA,
site_id = ID,
site_id_WUR = ID_WUR,
d_upper = bemdiepte_BOV,
d_lower = bemdiepte_OND,
clay_NIR_gkg = Lutum, # NIR = Near Infrared Spectroscopy
sand_NIR_gkg = Zand, # gkg = g/kg (units)
silt_NIR_gkg = Silt,
SOM_NIR_gkg = SOM_NIRS,
SOM_per = SOM_glv, # per = % (units);
# measurement method: "gloeiverlies" = Gluehverlust (in GER) = loss on ignition
# = os_cor_glv, # ???
clay_gkg = Lutum_min,
sand_gkg = zand_min,
silt_gkg = silt_min,
lime_NIR_gkg = KZK, # *KZK = “Koolzure Kalk”, ~ carbonated lime
SOC_NIR_gkg = SOC,
TOC_NIR_gkg = TOC,
N_tot_NIR_gkg = Ntotal,
CaCEC_NIR_mmolkg = CaCEC, # CaCEC = Ca cation exchange capacity
CEC_NIR_mmolkg = CEC, # mmolkg = mmol/kg (units)
C_inorg_NIR_gkg = C_inorg,
KCEC_NIR_mmolkg = KCEC,
# = K_status,
grain_size_NIR_microm = M50, # microm = micrometers
MgCEC_NIR_mmolkg = MgCEC,
NaCEC_NIR_mmolkg = NaCEC,
pH_NIR = pH, # predictions using NIR of pH in water, KCl or CaCl2 suspension?
ASL_NIR_mgkg = Active_Soil_life, # ASL = Active Soil Life (potential N mineralization)
# mgkg = mg/kg (units)
S_tot_NIR_gkg = Stotal,
N_dis_org_NIR_mgkg = DissolvedOrganicNitrogen,
BD_gcm3 = Dichtheid_eind, # BD = bulk density (is it really BD though?)
# gcm3 = g/cm^3 (units)
PLFA_tot_NIR_microgCg = PLFA_Total, # PLFA = ???
# microgCg = microgram C / g (units)
PLFA_fun_NIR_microgCg= PFLA_Fungi,
PLFA_bac_NIR_microgCg= PFLA_Bacteria,
N_tot_mgNkg = N_Totaal, # measured using wet chemistry method (Dumas method)
# mgNkg = mg N/kg (units)
C_tot_per = C_Totaal, # measured using wet chemistry method (Dumas method)
C_org_per = C_Org, # measured using wet chemistry method (Dumas method)
weight_fresh_g = Gewicht_vers, # g = g (grams; units)
weight_dry_g = Gewicht_droog,
weight_diff_g = Gewicht_Verschil, # weight difference
P_oxal_mmolPkg = P_oxalaat, # mmolPkg = mmol P kg^-1 (units)
Fe_oxal_mmolFekg = Fe_oxalaat, # mmolPkg = mmol Fe kg^-1 (units)
Al_oxal_mmolAlkg= Al_oxalaat, # mmolPkg = mmol Al kg^-1 (units)
P_Al = P_Al_klassiek, # measured in P2O5 100g^-1 (units)
P_CaCl2_mgPkg = P_CaCl2, # mg P kg^-1
FBV = Bindend_vermogen_FBV, # binding capacity of the soil FBV
# measured using conventional method in mmol P kg^-1 grond (units)
sat_FVG_per = Verzadigingsgraad_FVG, # degree of saturation FVG (Verzadigingsgraad)
# measured using conventional method in % (units)
X = x,
Y = y,
soil_type = BC_2019, # soil type (2019 soil map)
stratum = steekstratum, # ?
subarea_soil_LU = deelgebied, # "Deelgebied" based on landuse (LU) and soil type
# based on statistical area estimations
strata_surface_ha = oppervlakte_ha, # in hectars (ha) (units)
landuse_LGN18 = LG18) # land use category based on LGN 2018 land use map
# I thought there was also penetration resistance measurements???
# nest variable columns for better overview and reorganize order of columns
tbl_CCNL <- tbl_CCNL %>%
# soil target properties: pH, CEC, Ctot, Corg, SOM, N, P, BD, clay, silt, sand
nest(soil_target = c(pH_NIR, CEC_NIR_mmolkg, CaCEC_NIR_mmolkg, KCEC_NIR_mmolkg,
MgCEC_NIR_mmolkg, NaCEC_NIR_mmolkg, C_tot_per, C_org_per,
SOC_NIR_gkg, TOC_NIR_gkg, SOM_per, SOM_NIR_gkg, N_tot_mgNkg,
N_tot_NIR_gkg, N_dis_org_NIR_mgkg, P_oxal_mmolPkg,
P_CaCl2_mgPkg, P_Al, BD_gcm3, clay_gkg, clay_NIR_gkg,
silt_gkg, silt_NIR_gkg, sand_gkg, sand_NIR_gkg,
grain_size_NIR_microm),
# order soil chemical properties in order of plant nutrient importance:
# primary, seconday, tertiary macronutrients and then micronutrients
soil_other = c(C_inorg_NIR_gkg, lime_NIR_gkg, K_status, S_tot_NIR_gkg,
Fe_oxal_mmolFekg, Al_oxal_mmolAlkg, ASL_NIR_mgkg,
PLFA_tot_NIR_microgCg, PLFA_fun_NIR_microgCg,
PLFA_bac_NIR_microgCg, FBV, sat_FVG_per, weight_fresh_g,
weight_dry_g, weight_diff_g),
# environmental factors at locations from which samples originate
env_fact = c(soil_type, stratum, subarea_soil_LU, strata_surface_ha,
landuse_LGN18),
# remaining variables (some of which are unknown)
unknown = c(ID_EA, site_id_WUR, os_cor_glv)) %>%
# There is almost no metadata (date, comments, methods, etc.)
# order columns of nested tbl: ID, coordinates, horizon/depth, target soil properties,
# other nested cols and names of unknown cols
select(sample_id, site_id, X, Y, d_upper, d_lower, soil_target, soil_other,
env_fact, unknown) %>%
# arrange by site from topsoil to increasing depth
arrange(sample_id, d_upper & d_lower)
# save tbl to disk
write_rds(tbl_CCNL, "out/data/soil/tbl_CCNL.Rds")