-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsweep.py
65 lines (62 loc) · 1.78 KB
/
sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
This script iterates over all combinations of hyper-parameters provided in sweep config
and submits batch job for each experiment to ComputeCanada cluster.
"""
import itertools
import subprocess
if __name__ == "__main__":
# Meta info
account = "def-eugenium"
user = "amoudgl"
network = "simple_vgg"
algo = "dtp"
time = "90:0:0"
# Hyper params to sweep over
sweep_config = [
[
"--batch_size 256",
],
[
"--num_workers 4",
],
[
"--dataset imagenet32",
],
[
"--seed 124",
"--seed 125",
"--seed 126",
"--seed 127",
],
[
"--feedback_training_iterations 25 35 40 60 25",
],
[
"--f_optim.lr 0.01 cosine",
"--f_optim.lr 0.05 cosine",
"--f_optim.lr 0.01 step --step_size 45",
"--f_optim.lr 0.05 step --step_size 45",
],
]
init_commands = f"module load python/3.8 && source /scratch/{user}/py38/bin/activate && cd /scratch/{user}/scalingDTP && export WANDB_MODE=offline"
python_command = f"python main_pl.py run {algo} {network}"
sbatch_command = (
f"sbatch --gres=gpu:1 --account={account} --time={time} --cpus-per-task=16 --mem=48G"
)
# Submit batch jobs for all combinations
all_args = list(itertools.product(*sweep_config))
print(f"Total jobs = {len(all_args)}")
for args in all_args:
args = " ".join(args)
job_command = (
sbatch_command
+ ' --wrap="'
+ init_commands
+ " && "
+ python_command
+ " "
+ args
+ '"'
)
print(job_command)
subprocess.run(job_command, shell=True)