Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can't get the same results as in the article with pretrained model. #55

Open
1214635079 opened this issue Feb 25, 2020 · 2 comments
Open

Comments

@1214635079
Copy link

I tested Set5, Set14, BSD100 and urban100 datasets use pretrained models DBPN_x8.pth or DBPN-RES-MR64-3_8x.pth, but the results I got have a big gap with your results showed in the paper. Do I need to retrain the model? What's wrong with my operation? Thank you very much!

@shazib-summar
Copy link

Same issue here. The generated images are awful.
I'm using the following configurations:

parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--self_ensemble', type=bool, default=False)
parser.add_argument('--chop_forward', type=bool, default=False)
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--input_dir', type=str, default='Input')
parser.add_argument('--output', default='Results/', help='Location to save checkpoint models')
parser.add_argument('--test_dataset', type=str, default='Set5_LR_x4')
parser.add_argument('--model_type', type=str, default='DBPNLL')
parser.add_argument('--residual', type=bool, default=False)
parser.add_argument('--model', default='models/PIRM2018_region3.pth', help='sr pretrained base model')

@Sherif1994
Copy link

Sherif1994 commented Nov 8, 2020

the same issue when I test the set5 images it gave good results but if I test image from my own it produces bad result had chessboard effect
my_image1
my_image2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants