-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathevaluate.py
54 lines (44 loc) · 1.41 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
import chainer
from chainer import cuda
import fcn
import numpy as np
import tqdm
from models.fcn8 import FCN8s
def evaluate():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--file', type=str, help='model file path')
args = parser.parse_args()
file = args.file
print("evaluating: ",file)
dataset = fcn.datasets.VOC2011ClassSeg('seg11valid')
n_class = len(dataset.class_names)
model = FCN8s()
chainer.serializers.load_npz(file, model)
gpu = 0
if gpu >= 0:
cuda.get_device(gpu).use()
model.to_gpu()
lbl_preds, lbl_trues = [], []
for i in tqdm.trange(len(dataset)):
datum, lbl_true = fcn.datasets.transform_lsvrc2012_vgg16(
dataset.get_example(i))
x_data = np.expand_dims(datum, axis=0)
if gpu >= 0:
x_data = cuda.to_gpu(x_data)
with chainer.no_backprop_mode():
x = chainer.Variable(x_data)
with chainer.using_config('train', False):
model(x)
lbl_pred = chainer.functions.argmax(model.score, axis=1)[0]
lbl_pred = chainer.cuda.to_cpu(lbl_pred.data)
lbl_preds.append(lbl_pred)
lbl_trues.append(lbl_true)
acc, acc_cls, mean_iu, fwavacc = fcn.utils.label_accuracy_score(lbl_trues, lbl_preds, n_class)
print('Accuracy: %.4f' % (100 * acc))
print('AccClass: %.4f' % (100 * acc_cls))
print('Mean IoU: %.4f' % (100 * mean_iu))
print('Fwav Acc: %.4f' % (100 * fwavacc))
if __name__ == '__main__':
evaluate()