-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgenerate_looperman_four_bar.py
220 lines (181 loc) · 7.27 KB
/
generate_looperman_four_bar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import torch
from torchvision import utils
from model_drum_four_bar import Generator
from tqdm import tqdm
import sys
sys.path.append('./melgan')
from modules import Generator_melgan
import yaml
import os
import librosa
import soundfile as sf
import numpy as np
import os
def read_yaml(fp):
with open(fp) as file:
# return yaml.load(file)
return yaml.load(file, Loader=yaml.Loader)
def generate(args, g_ema, device, mean_latent):
epoch = args.ckpt.split('.')[0]
os.makedirs(f'{args.store_path}/{epoch}', exist_ok=True)
os.makedirs(f'{args.store_path}/{epoch}/mel_80_320', exist_ok=True)
feat_dim = 80
mean_fp = f'{args.data_path}/mean.mel.npy'
std_fp = f'{args.data_path}/std.mel.npy'
mean = torch.from_numpy(np.load(mean_fp)).float().view(1, feat_dim, 1).to(device)
std = torch.from_numpy(np.load(std_fp)).float().view(1, feat_dim, 1).to(device)
vocoder_config_fp = './melgan/args.yml'
vocoder_config = read_yaml(vocoder_config_fp)
n_mel_channels = vocoder_config.n_mel_channels
ngf = vocoder_config.ngf
n_residual_layers = vocoder_config.n_residual_layers
sr=44100
vocoder = Generator_melgan(n_mel_channels, ngf, n_residual_layers).to(device)
vocoder.eval()
vocoder_param_fp = os.path.join('./melgan', 'best_netG.pt')
vocoder.load_state_dict(torch.load(vocoder_param_fp))
with torch.no_grad():
g_ema.eval()
for i in tqdm(range(args.pics)):
sample_z = torch.randn(args.sample, args.latent, device=device)
sample, _ = g_ema(
[sample_z], truncation=args.truncation, truncation_latent=mean_latent
)
np.save(f'{args.store_path}/{epoch}/mel_80_320/{i}.npy', sample.squeeze().data.cpu().numpy())
utils.save_image(
sample,
f"{args.store_path}/{epoch}/{str(i).zfill(6)}.png",
nrow=1,
normalize=True,
range=(-1, 1),
)
de_norm = sample.squeeze(0) * std + mean
audio_output = vocoder(de_norm)
sf.write(f'{args.store_path}/{epoch}/{i}.wav', audio_output.squeeze().detach().cpu().numpy(), sr)
print('generate {}th wav file'.format(i))
@torch.no_grad()
def style_mixing(args, generator, step, mean_style, n_source, n_target, device, j):
index = 5
# create directory
os.makedirs(f'./generated_interpolation_{index}/{j}', exist_ok=True)
# load melgan vocoder
feat_dim = 80
mean_fp = f'{args.data_path}/mean.mel.npy'
std_fp = f'{args.data_path}/std.mel.npy'
mean = torch.from_numpy(np.load(mean_fp)).float().view(1, feat_dim, 1).to(device)
std = torch.from_numpy(np.load(std_fp)).float().view(1, feat_dim, 1).to(device)
vocoder_config_fp = './melgan/args.yml'
vocoder_config = read_yaml(vocoder_config_fp)
n_mel_channels = vocoder_config.n_mel_channels
ngf = vocoder_config.ngf
n_residual_layers = vocoder_config.n_residual_layers
sr=44100
vocoder = Generator_melgan(n_mel_channels, ngf, n_residual_layers).to(device)
vocoder.eval()
vocoder_param_fp = os.path.join('./melgan', 'best_netG.pt')
vocoder.load_state_dict(torch.load(vocoder_param_fp))
#generate spectrogram
source_code = torch.randn(n_source, 512).to(device)
target_code = torch.randn(n_target, 512).to(device)
shape = 4 * 2 ** step
alpha = 1
images = [torch.ones(1, 1, 80, 320).to(device) * -1]
source_image,_ = generator(
[source_code], truncation=args.truncation, truncation_latent=mean_style
)
target_image,_ = generator(
[target_code], truncation=args.truncation, truncation_latent=mean_style
)
images.append(source_image)
for i in range(n_source):
de_norm = source_image[i] * std + mean
audio_output = vocoder(de_norm)
sf.write(f'./generated_interpolation_{index}/{j}/source_{i}.wav', audio_output.squeeze().detach().cpu().numpy(), sr)
for i in range(n_target):
de_norm = target_image[i] * std + mean
audio_output = vocoder(de_norm)
sf.write(f'./generated_interpolation_{index}/{j}/target_{i}.wav', audio_output.squeeze().detach().cpu().numpy(), sr)
for i in range(n_target):
image, _ = generator(
[target_code[i].unsqueeze(0).repeat(n_source, 1), source_code],
truncation_latent=mean_style,
inject_index = index
)
for k in range(n_source):
de_norm = image[k] * std + mean
audio_output = vocoder(de_norm)
sf.write(f'./generated_interpolation_{index}/{j}/source_{k}_target_{i}.wav', audio_output.squeeze().detach().cpu().numpy(), sr)
images.append(target_image[i].unsqueeze(0))
images.append(image)
images = torch.cat(images, 0)
utils.save_image(
images, f'./generated_interpolation_{index}/{j}/sample_mixing.png', nrow=args.n_col + 1, normalize=True, range=(-1, 1)
)
return images
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="Generate samples from the generator")
parser.add_argument(
"--size", type=int, default=64, help="output image size of the generator"
)
parser.add_argument(
"--sample",
type=int,
default=1,
help="number of samples to be generated for each image",
)
parser.add_argument(
"--pics", type=int, default=20, help="number of images to be generated"
)
parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
parser.add_argument(
"--truncation_mean",
type=int,
default=4096,
help="number of vectors to calculate mean for the truncation",
)
parser.add_argument(
"--ckpt",
type=str,
default="stylegan2-ffhq-config-f.pt",
help="path to the model checkpoint",
)
parser.add_argument(
"--data_path",
type=str,
help="path store the std and mean of mel",
)
parser.add_argument(
"--store_path",
type=str,
help="path store the generated audio",
)
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier of the generator. config-f = 2, else = 1",
)
parser.add_argument("--style_mixing", action = "store_true")
parser.add_argument('--n_row', type=int, default=3, help='number of rows of sample matrix')
parser.add_argument('--n_col', type=int, default=5, help='number of columns of sample matrix')
args = parser.parse_args()
args.latent = 512
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
checkpoint = torch.load(args.ckpt)
g_ema.load_state_dict(checkpoint["g_ema"])
if args.truncation < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(args.truncation_mean)
else:
mean_latent = None
generate(args, g_ema, device, mean_latent)
# Style mixing
if args.style_mixing == True:
step = 0
for j in range(20):
img = style_mixing(args,g_ema, step, mean_latent, args.n_col, args.n_row, device, j)