-
-
Notifications
You must be signed in to change notification settings - Fork 357
/
Copy pathsplitOp.hs
104 lines (92 loc) · 3.28 KB
/
splitOp.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import Data.Array.CArray
import Data.Complex
import Data.List (intercalate, transpose)
import Math.FFT (dft, idft)
type Vector = CArray Int (Complex Double)
(.*), (.+) :: Vector -> Vector -> Vector
a .* b = liftArray2 (*) a b
a .+ b = liftArray2 (+) a b
normalize :: Double -> Vector -> Vector
normalize dx v =
let factor = 1 / sqrt dx / norm2 v :+ 0
in liftArray (factor *) v
data Parameters = Parameters
{ xmax :: Double
, res :: Int
, dt :: Double
, timesteps :: Int
, dx :: Double
, x :: Vector
, dk :: Double
, ks :: Vector
, imTime :: Bool
}
defaultParameters :: Parameters
defaultParameters = makeParameters 10 512 0.01 1000 True
makeParameters :: Double -> Int -> Double -> Int -> Bool -> Parameters
makeParameters xmax res dt timesteps imTime =
let fi = fromIntegral
rng = (0, res - 1)
ks = [0 .. div res 2 - 1] ++ [-div res 2 .. -1]
in Parameters
xmax
res
dt
timesteps
(2 * xmax / fi res)
(listArray rng $
map (\n -> xmax * (-1 + 2 * fi n / fi res) :+ 0) [1 .. res])
(pi / xmax)
(listArray rng $ map ((:+ 0) . (pi / xmax *) . fi) ks)
imTime
data Operators = Operators
{ v :: Vector
, rStep :: Vector
, kStep :: Vector
, wfc :: Vector
}
makeOperators :: Parameters -> Complex Double -> Complex Double -> Operators
makeOperators param v0 wfc0 =
let rng = (0, res param - 1)
time
| imTime param = dt param :+ 0
| otherwise = 0 :+ dt param
v = liftArray (\x -> 0.5 * (x - v0) ^ 2) (x param)
rStep = liftArray (\x -> exp (-0.5 * time * x)) v
kStep = liftArray (\k -> exp (-0.5 * time * k ^ 2)) (ks param)
wfc = liftArray (\x -> exp (-(x - wfc0) ^ 2 / 2)) (x param)
in Operators v rStep kStep (normalize (dx param) wfc)
evolve :: Parameters -> Operators -> [Operators]
evolve param op@(Operators _ rStep kStep _) = iterate splitop op
where
splitop op = op {wfc = wfc' op}
wfc' = norm . (rStep .*) . idft . (kStep .*) . dft . (rStep .*) . wfc
norm = if imTime param then normalize (dx param) else id
calculateEnergy :: Parameters -> Operators -> Double
calculateEnergy param ops = (* dx param) . sum . map realPart $ elems totalE
where
totalE = potentialE .+ kineticE
potentialE = wfcConj .* v ops .* wfc ops
kineticOp = liftArray ((/ 2) . (^ 2)) (ks param)
kineticE = wfcConj .* idft (kineticOp .* dft (wfc ops))
wfcConj = liftArray conjugate $ wfc ops
-- Use gnuplot to make an animated GIF using ../gnuplot/plot_output.plt
-- $ gnuplot -e "folder='../haskell'" plot_output.plt
printEvolution :: Parameters -> [Operators] -> IO ()
printEvolution param =
mapM_ (export . (format <$>)) . zip [0 ..] . take 100 . skip
where
skip (x:xs) = x : skip (drop (div (timesteps param) 100 - 1) xs)
format (Operators v _ _ wfc) =
let density = liftArray ((^ 2) . abs) wfc
values = map (map (show . realPart) . elems) [x param, density, v]
in intercalate "\n" $ map (intercalate "\t") $ transpose values
export (i, f) = writeFile ("output" ++ pad (show i) ++ ".dat") f
pad n = replicate (5 - length n) '0' ++ n
main :: IO ()
main = do
let p = defaultParameters
o = makeOperators p 0 4
evol = evolve p o
print $ calculateEnergy p (evol !! timesteps p)
printEvolution p evol