-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
69 lines (53 loc) · 2.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import uuid
import hydra
import wandb
import pathlib
from src.loaders import get_dataloaders
from src.models import get_model
from src.optimisers import get_optimiser
from src.schedulers import get_scheduler
from src.losses import get_loss
from src.run import run
from src.utils import set_random_seed, get_device, load_config, save_config, to_dict
@hydra.main(config_path="config", config_name="config.yaml")
def train(cfg):
# set random seed for reproducibility
set_random_seed(seed=cfg.train.seed,
is_gpu=cfg.train.is_gpu)
# get training backend
device = get_device(is_gpu=cfg.train.is_gpu,
gpu_number=cfg.train.gpu_number)
# unique id
experiment_id = cfg.experiment.id if cfg.experiment.id is not None else uuid.uuid4().hex[:8]
# initialise logging
if cfg.logging.wb_logging: wandb.init(project=cfg.logging.wb_project, id=experiment_id)
model_name, ensemble = cfg.model.name, cfg.model.ensemble
models_dir = pathlib.Path("./models") / ((model_name + "_" + ensemble) if ensemble is not None else model_name) / ("run_" + str(cfg.experiment.run)) / experiment_id
models_dir.mkdir(parents=True)
# initalise dataloaders
dataloaders = get_dataloaders(**to_dict(cfg.data),
seed=cfg.train.seed + cfg.train.run,
device=device)
# initialise model
model = get_model(**to_dict(cfg.model)).to(device)
# initialise loss
loss = get_loss(ensemble=ensemble, **to_dict(cfg.loss))
# initialise optimiser
optimiser = get_optimiser(model=model, **to_dict(cfg.optimiser))
# initialise scheduler
scheduler = get_scheduler(optimiser=optimiser, **to_dict(cfg.scheduler))
# train model
run(model=model,
train_loader=dataloaders["train"],
valid_loader=dataloaders["valid"],
criterion=loss,
optimiser=optimiser,
scheduler=scheduler,
num_epochs=cfg.train.num_epochs,
save_dir=models_dir,
device=device,
wb_logging=cfg.logging.wb_logging)
# save hyperparameters
save_config(cfg, models_dir)
if __name__ == "__main__":
train()