-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathdemo.py
47 lines (42 loc) · 1.69 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2
from face_onnx.detector import Detector as FaceDetector
'''
Three detector options:
1. Original PyTorch inference detector
2. MNN Python inference detector (experimental)
3. ONNX inference detector based on onnxruntime
MNN detector is only tested on Windows 10 and Centos7.
'''
# from detector import Detector
from mnn_detector import Detector
# from onnx_detector import Detector
import numpy as np
face_detector = FaceDetector()
lmk_detector = Detector()
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
out = cv2.VideoWriter("output.mp4", cv2.VideoWriter_fourcc(*"mp4v"), 20.0, (frame.shape[1], frame.shape[0]))
while True:
ret, frame = cap.read()
if frame is None:
break
bboxes, _ = face_detector.detect(frame)
if len(bboxes) != 0:
bbox = bboxes[0]
bbox = bbox.astype(np.int)
lmks, PRY_3d = lmk_detector.detect(frame, bbox)
lmks = lmks.astype(np.int)
frame = cv2.rectangle(frame, tuple(bbox[0:2]), tuple(bbox[2:4]), (0, 0, 255), 1, 1)
for point in lmks:
frame = cv2.circle(frame, tuple(point), 2, (0, 255, 0), -1, 1)
frame = cv2.putText(frame, "Pitch: {:.4f}".format(PRY_3d[0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
(0, 255, 0), 1, 1)
frame = cv2.putText(frame, "Yaw: {:.4f}".format(PRY_3d[1]), (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
(0, 255, 0), 1, 1)
frame = cv2.putText(frame, "Roll: {:.4f}".format(PRY_3d[2]), (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
(0, 255, 0), 1, 1)
cv2.imshow("Peppa Landmark Detection", frame)
if cv2.waitKey(27) == ord("q"):
break
out.write(frame)
out.release()