-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodels.py
149 lines (125 loc) · 5.31 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.distributions.normal import Normal
from torch.distributions.multivariate_normal import MultivariateNormal
from torch.distributions.bernoulli import Bernoulli
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
def __init__(self, x_dim, z_dim, h_dim, dropout=0.2):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(x_dim, h_dim)
self.fc2 = nn.Linear(h_dim, h_dim)
self.fc21 = nn.Linear(h_dim, z_dim)
self.fc22 = nn.Linear(h_dim, z_dim)
def forward(self, x):
h = torch.tanh(self.fc1(x))
h = torch.tanh(self.fc2(h))
mu = self.fc21(h)
logvar = self.fc22(h)
return mu, logvar
class Decoder(nn.Module):
def __init__(self, x_dim, z_dim, h_dim):
super(Decoder, self).__init__()
self.fc3 = nn.Linear(z_dim, h_dim)
self.fc4 = nn.Linear(h_dim, h_dim)
self.fc5 = nn.Linear(h_dim, x_dim)
def forward(self, z):
h = torch.tanh(self.fc3(z))
h = torch.tanh(self.fc4(h))
out = self.fc5(h)
return out
class REM(nn.Module):
def __init__(self, x_dim, z_dim, h_dim, version):
super(REM, self).__init__()
self.x_dim = x_dim
self.z_dim = z_dim
self.version = version
self.encoder = Encoder(x_dim, z_dim, h_dim)
self.decoder = Decoder(x_dim, z_dim, h_dim)
self.prior = Normal(torch.zeros([z_dim]).to(device), torch.ones([z_dim]).to(device))
def forward(self, x, S):
x = x.view(-1, self.x_dim)
bsz = x.size(0)
### get w and \alpha and L(\theta)
mu, logvar = self.encoder(x)
q_phi = Normal(loc=mu, scale=torch.exp(0.5*logvar))
z_q = q_phi.rsample((S, ))
recon_batch = self.decoder(z_q)
x_dist = Bernoulli(logits=recon_batch)
log_lik = x_dist.log_prob(x).sum(-1)
log_prior = self.prior.log_prob(z_q).sum(-1)
log_q = q_phi.log_prob(z_q).sum(-1)
log_w = log_lik + log_prior - log_q
tmp_alpha = torch.logsumexp(log_w, dim=0).unsqueeze(0)
alpha = torch.exp(log_w - tmp_alpha).detach()
if self.version == 'v1':
p_loss = -alpha * (log_lik + log_prior)
### get moment-matched proposal
mu_r = alpha.unsqueeze(2) * z_q
mu_r = mu_r.sum(0).detach()
z_minus_mu_r = z_q - mu_r.unsqueeze(0)
reshaped_diff = z_minus_mu_r.view(S*bsz, -1, 1)
reshaped_diff_t = reshaped_diff.permute(0, 2, 1)
outer = torch.bmm(reshaped_diff, reshaped_diff_t)
outer = outer.view(S, bsz, self.z_dim, self.z_dim)
Sigma_r = outer.mean(0) * S / (S - 1)
Sigma_r = Sigma_r + torch.eye(self.z_dim).to(device) * 1e-6 ## ridging
### get v, \beta, and L(\phi)
L = torch.cholesky(Sigma_r)
r_phi = MultivariateNormal(loc=mu_r, scale_tril=L)
z = r_phi.rsample((S, ))
z_r = z.detach()
recon_batch_r = self.decoder(z_r)
x_dist_r = Bernoulli(logits=recon_batch_r)
log_lik_r = x_dist_r.log_prob(x).sum(-1)
log_prior_r = self.prior.log_prob(z_r).sum(-1)
log_r = r_phi.log_prob(z_r)
log_v = log_lik_r + log_prior_r - log_r
tmp_beta = torch.logsumexp(log_v, dim=0).unsqueeze(0)
beta = torch.exp(log_v - tmp_beta).detach()
log_q = q_phi.log_prob(z_r).sum(-1)
q_loss = -beta * log_q
if self.version == 'v2':
p_loss = -beta * (log_lik_r + log_prior_r)
rem_loss = torch.sum(q_loss + p_loss, 0).sum()
return rem_loss
def log_lik(self, loader, n_samples):
"""Get log marginal estimate via importance sampling
"""
nll = 0
for i, (data, _) in enumerate(loader):
data = data.view(-1, self.x_dim).to(device)
bsz = data.size(0)
mu, logvar = self.encoder(data)
### get moment-matched proposal
q_phi = Normal(loc=mu, scale=torch.exp(0.5*logvar))
z_q = q_phi.rsample((n_samples, ))
recon_batch = self.decoder(z_q)
x_dist = Bernoulli(logits=recon_batch)
log_lik = x_dist.log_prob(data).sum(-1)
log_prior = self.prior.log_prob(z_q).sum(-1)
log_q = q_phi.log_prob(z_q).sum(-1)
log_w = log_lik + log_prior - log_q
tmp_alpha = torch.logsumexp(log_w, dim=0).unsqueeze(0)
alpha = torch.exp(log_w - tmp_alpha).detach()
mu_r = alpha.unsqueeze(2) * z_q
mu_r = mu_r.sum(0).detach()
nll_proposal = Normal(loc=mu_r, scale=torch.exp(0.5*logvar))
bsz = data.size(0)
z = nll_proposal.rsample((n_samples, ))
recon_batch = self.decoder(z)
x_dist = Bernoulli(logits=recon_batch)
log_lik = x_dist.log_prob(data).sum(-1)
log_prior = self.prior.log_prob(z).sum(-1)
log_r = nll_proposal.log_prob(z).sum(-1)
loss = log_lik + log_prior - log_r
ll = torch.logsumexp(loss, dim=0) - math.log(n_samples)
ll = ll.sum()
nll += -ll.item()
if i > 0 and i % 20000000 == 0:
print('i: {}/{}'.format(i, len(loader)))
nll /= len(loader.dataset)
return nll